

Description

 Solo Forth is a Forth system for the ZX Spectrum 128 and
compatible computers, with disk drives and +3DOS, G+DOS, or TR-DOS.

Solo Forth cannot run on the original ZX Spectrum 48, but could be
used to develop programs for it.

Solo Forth can be used as a stand-alone Forth system (either on an
emulator or on the real computer), or as part of a cross-development
environment on a GNU/Linux operating system (in theory, other type of
operating systems could be used as well).

Main features

	
Fast DTC (Direct Threaded Code) implementation.

	
A kernel as small as possible.

	
Name space in banked memory, separated from code and data space.

	
Easy access to banked memory.

	
Big library of useful source code.

	
Modular DOS support.

	
Fully documented source code.

	
Detailed documentation.

	
Conform to the Forth standard (not fully tested yet).

Minimum requirements

	
128 KiB RAM (all machines that support +3DOS have 128 KiB).

	
One double-sided 80-track disk drive (two recommended), for 720-KiB disks.
The original single-sided 40-track disk drive (173 KiB per disk
side) of the ZX Spectrum +3 is not supported.

Motivation, history and current status

 The motivation behind Solo Forth is double:

	
I wanted to program the ZX Spectrum with a modern Forth system:
In 2015, my
detailed
disassembly of ZX Spectrum’s Abersoft Forth, a popular tape-based
implementation of fig-Forth ported to several 8-bit home computers
in the 1980’s (and the Forth system I started learning Forth with
in 1984), helped me understand the inner working of the fig-Forth
model, including its by-design limitations, compared to modern
Forths, and discover some bugs of the ZX Spectrum port. At the same time I
wrote the Afera
library in order to make Abersoft Forth more stable, powerful and
comfortable for cross development.
The objective was reached but, after a
certain point, further improvements weren’t feasible without making
radical changes in the system. The need for a new Forth system
arised: a Forth designed from the start to use disk drives and
banked memory, and useful for cross-development.

	
Nobody had written such a Forth system before: In 2015 there was
no disk-based Forth for the ZX Spectrum platform, and the only
Forth written for ZX Spectrum 128 (the first model with banked
memory) was Lennart Benschop’s Forth-83
(1988). But despite being more powerful than fig-Forth, it is still
tape-based and keeps the block sources in a RAM disk. Beside, the
system is built by metacompilation, what makes it difficult to
adapt to disk drives.

The development of Solo Forth started on 2015-05-30, from the
disassembled code of Abersoft Forth. Some ideas and code were reused
also from the Afera library and from a previous abandoned project
called DZX-Forth
(a port of CP/M DX-Forth to ZX Spectrum +3e).

The GitHub repository was created on 2016-03-13 from the
development backups, in order to preserve the evolution of the code
from the very beginning.

Solo Forth is very stable, and it’s being used to develop two projects
in Forth:
Nuclear
Waste Invaders and
Black Flag.

About this manual

 This is the +3DOS variant of the Solo Forth manual. Nevertheless, some
details about the rest of supported DOSes are included as well, when the
comparison is useful.

This manual is built automatically from the sources. It contains mainly a
description of the Forth system, the basic usage
information and a complete glossary with cross references.

Platforms

Table 1. Supported platforms

	Computer
	Disk interface
	DOS

	Pentagon 128

	
	TR-DOS

	Pentagon 512

	
	TR-DOS

	Pentagon 1024

	
	TR-DOS

	Scorpion ZS 256

	
	TR-DOS

	ZX Spectrum 128

	Beta 128

	TR-DOS

	ZX Spectrum 128

	Plus D

	G+DOS

	ZX Spectrum +2

	Beta 128

	TR-DOS

	ZX Spectrum +2

	Plus D

	G+DOS

	ZX Spectrum +2A

	(External disk drive)

	+3DOS

	ZX Spectrum +2B

	(External disk drive)

	+3DOS

	ZX Spectrum +3

	
	+3DOS

	ZX Spectrum +3e

	
	+3DOS

Porting the G+DOS version of Solo Forth to its close relatives GDOS,
Beta DOS and Uni-DOS would require only minor changes, beside adding
some library code to support their specific features.

Supporting
IDEDOS,
ResiDOS,
esxDOS or
NextZXOS would let Solo Forth use
hard drives, flash cards, and a lot of memory.

Table 2. Platforms that could be supported in future versions

	Computer
	Disk interface
	DOS

	ZX Evolution TS-Conf

	
	TR-DOS

	ZX Spectrum +3e

	divIDE/divMMC/ZXATASP/ZXCF/ZXMMC…​

	IDEDOS

	ZX Spectrum +3e

	divIDE/divMMC/ZXATASP/ZXCF/ZXMMC…​

	ResiDOS

	ZX Spectrum 128/+2

	DISCiPLE

	GDOS

	ZX Spectrum 128/+2

	DISCiPLE/Plus D

	Uni-DOS

	ZX Spectrum 128/+2

	Plus D

	Beta DOS

	ZX Spectrum 128/+2/+2A/+2B/+3

	divIDE/divMMC/ZXATSP/ZXCF/ZXMMC…​

	esxDOS

	ZX Spectrum Next

	
	NextZXOS

	ZX-UNO/ZX-UNO+/ZX-DOS

	
	esxDOS

Comparative of DOS support

 Block disks are fully supported on +3DOS, but most file-management words are
not implemented yet, though standard Forth words are better supported than on
G+DOS or TR-DOS.

The following table shows the main disk-management words implemented on each
DOS:

Table 3. Main disk-related words implemented

	Word
	+3DOS
	G+DOS
	TR-DOS
	Description

	2-block-drives

	YES

	YES

	YES

	Use the first two drives as block drives

	3-block-drives

	n/a

	n/a

	YES

	Use the first three drives as block drives

	4-block-drives

	n/a

	n/a

	YES

	Use the first four drives as block drives

	>file

	
	YES

	YES

	Save memory zone to a file

	acat

	YES

	YES

	YES

	Display an abbreviated disk catalogue

	bank-read-file

	YES

	
	
	Read from a file with a bank paged in

	bank-write-file

	YES

	
	
	Write to a file with a bank paged in

	bin

	YES

	YES

	
	Standard Forth

	cat

	YES

	YES

	YES

	Display a detailed disk catalogue

	close-file

	YES

	
	
	Standard Forth

	create-file

	YES

	
	
	Standard Forth

	delete-file

	YES

	YES

	YES

	Standard Forth

	drive-unused

	YES

	YES

	
	Return the number of unused kibibytes in a drive

	file-dir#

	
	
	YES

	Return the directory number of a file

	file-exists?

	
	YES

	YES

	Return a flag: does a files exists?

	file-length

	
	YES

	YES

	Return the length of a file

	file-position

	YES

	
	
	Standard Forth

	file-sector

	
	
	YES

	Return the first sector of a file

	file-sectors

	
	
	YES

	Return the number of sectors occupied by a file

	file-size

	YES

	
	
	Standard Forth

	file-start

	
	YES

	YES

	Return the start address of a file

	file-status

	
	YES

	YES

	Standard Forth

	file-track

	
	
	YES

	Return the first track of a file

	file-type

	
	YES

	YES

	Return the type of a file

	file>

	
	YES

	YES

	Load file contents to memory zone

	find-file

	
	YES

	YES

	Find a file

	flush-drive

	YES

	
	
	Write all pending data for a drive

	flush-file

	
	
	
	Standard Forth

	get-block-drives

	YES

	YES

	YES

	Get the drives used as block drives

	get-drive

	YES

	YES

	YES

	Get the number of the current drive

	include-file

	
	
	
	Standard Forth

	include

	
	
	
	Standard Forth

	included

	
	
	
	Standard Forth

	open-file

	YES

	
	
	Standard Forth

	r/o

	YES

	
	
	Standard Forth

	r/w

	YES

	
	
	Standard Forth

	read-byte

	YES

	
	
	Read byte from file

	read-file

	YES

	
	
	Standard Forth

	read-line

	YES

	
	
	Standard Forth

	rename-file

	YES

	YES

	YES

	Standard Forth

	reposition-file

	YES

	
	
	Standard Forth

	require

	
	
	
	Standard Forth

	required

	
	
	
	Standard Forth

	resize-file

	
	
	
	Standard Forth

	set-block-drives

	YES

	YES

	YES

	Set the drives used as block drives

	set-drive

	YES

	YES

	YES

	Set the current drive

	undelete-file

	
	
	YES

	Undelete a file

	w/o

	YES

	
	
	Standard Forth

	wacat

	YES

	YES

	
	Display an abbreviated disk catalogue with wildcards

	wcat

	YES

	YES

	
	Display a detailed disk catalogue with wildcards

	write-byte

	YES

	
	
	Write a byte to a file

	write-file

	YES

	
	
	Standard Forth

	write-line

	YES

	
	
	Standard Forth

Download

 Solo Forth can be downloaded from two sites:

	
Solo Forth home page

	
Solo Forth repository in GitHub

Project directories

	Directory
	Subdirectory
	Description

	backgrounds

	
	Version background images

	bin

	
	ZX Spectrum binary files for disk 0

	bin

	addons

	Code loaded from disk, not assembled in the library yet

	bin

	dos

	DOS files

	bin

	fonts

	Fonts for the supported screen modes

	disks

	
	Disk images

	disks

	gplusdos

	G+DOS disk images

	disks

	plus3dos

	+3DOS disk images

	disks

	trdos

	TR-DOS disk images

	doc

	
	Manuals in DocBook, EPUB, HTML and PDF

	make

	
	Files used by make to build the system

	screenshots

	
	Version screenshots

	src

	
	Sources

	src

	addons

	Code to be loaded from disk. Not used yet.

	src

	doc

	Files used to build the documentation

	src

	inc

	Z80 symbols

	src

	lib

	Library

	src

	loader

	BASIC loader for disk 0

	tmp

	
	Temporary files created by make

	tools

	
	Development and user tools

	vim

	
	Vim files

	vim

	ftplugin

	Filetype plugin

	vim

	syntax

	Syntax highlighting

Disks

 The <disks/plus3dos> directory of the directory tree
contains the following disk images:

disks/plus3dos/disk_0_boot.dsk
disks/plus3dos/disk_1_library.dsk
disks/plus3dos/disk_2_programs.dsk
disks/plus3dos/disk_3_workbench.dsk

	
Disk 0 is the boot disk. It contains the BASIC loader, the Solo
Forth binary, some addons (i.e. compiled code that is not part of
the library yet) and fonts for the supported screen modes.

	
Disk 1 contains the library.

	
Disk 2 contains some programs: little sample games, most of them
under development, two block editors and one sound editor.

	
Disk 3 contains tests and benchmarks. Most of them were used during
the development and their only documentation is the commented
source.

Disks 1, 2 and 3 are Forth block disks: They contain the
source Forth blocks directly on the disk sectors, without any file
system. Therefore their contents cannot be accessed with ordinary
DOS commands.

The DSK disk image format

 The DSK disk image format, used for +3DOS and other systems,
contains a lot of metadata to describe the
format of the disk, the tracks and the sectors…​

On +3DOS, sector 0 of track 0 cannot be used for Forth blocks,
because it must contain the disk specification, even for sector-level
access. Since the size of a sector is 512 B, only one Forth block is
lost because of this restriction.

How to run

	
Run a ZX Spectrum emulator and select a ZX Spectrum +3 (or
ZX Spectrum +3e)[1].

	
“Insert” the disk image file <disks/plus3dos/disk_0_boot.180.dsk>
(or <disks/plus3dos/disk_0_boot.720.dsk>, depending on the capacity
of the drive) as disk 'A'.

	
Choose “Loader” from the computer start menu. Solo Forth will be
loaded from disk.

1 Make sure the disk drives are configured as double-sided and 80-track

How to use the library

	
Run Solo Forth.

	
“Insert” the file <disks/plus3dos/disk_1_library.dsk> as disk B.
'b' set-drive throw to make drive 'B' the current one.

	
Type 1 load to load block 1 from the library disk. By convention,
block 0 cannot be loaded (it is used for comments), and block 1 is
used as a loader. In Solo Forth, block 1 contains 2 load, in
order to load the need tool from block 2.

	
Type need name, were “name” is the name of the word or tool you
want to load from the library.

How to make a library index

 The need word and its related words search the index line (line 0)
of all blocks of the disk for the first occurence of the required
word, within a configurable range of blocks (using the variables
first-locatable and last-locatable). Of course, nested need are
resolved the same way: searching the library from the beginning. This
can be slow. This is not a problem, because the goal of Solo Forth is
cross development, and therefore only the last step of the development
loop, i.e., the compilation of the sources from the disk images
created in the host system, compilation that includes all the slow
searching of library blocks, is done in the real (actually, emulated)
machine. But the system includes a tool to create an index of the
library, which is used to locate their contents instantaneously, what
makes things more comfortable when the Forth system is used
interactively.

How to use the library index:

	
Load the indexer with need make-thru-index.

	
Make the index and activate it with make-thru-index.

	
The default behaviour (no index) can be restored with
use-no-index. The index can be reactivated with
use-thru-index.

The indexer creates an index (actually, a Forth word list whose
definitions use no code or data space) and changes the default
behaviour of need and related words to use it. Then need name
will automatically start loading the first block where the “name”
is defined

Table 4. Time and name-space memory required to make the library index

	Computer
	DOS
	Block drives
	Library blocks
	Seconds
	Bytes

	ZX Spectrum 128

	G+DOS

	1

	791 (8..799)

	357

	19515

	ZX Spectrum +3

	+3DOS

	1

	710 (8..718)

	323

	18636

	Pentagon 128

	TR-DOS

	2

	1263 (8..1271)

	255

	18437

	Scorpion ZS 256

	TR-DOS

	2

	1263 (8..1271)

	291

	18437

The name space is in far memory, a virtual 64-KiB space formed
by 4 configurable memory banks (see far-banks). No code or data
space is used by the indexer.

An alternative indexer is under development. It’s activated with
use-fly-index and does not make and index in advance: Instead, it
indexes the blocks on the fly, when they are searched the first time.
This indexer was included in Solo Forth 0.12.0 but it’s not finished
yet.

How to load a program that needs the library

 The programs included in disk 2, and the tests and benchmarks included in disk
3, need words from the library, which is in disk 1. Therefore, two disk drives
must be configured first as block drives, using 2-block-drives.

Let’s see an example, how to load the game called Tetris for
Terminals, which is in disk 2.

	
Run Solo Forth.

	
Insert the library disk image (disk 1) into the first drive.

	
Insert the programs disk image (disk 2) into the second drive.

	
Execute command 1 load in order to load the need utility from
the library disk.

	
Execute the command need 2-block-drives, which loads
2-block-drives from the library disk and then executes it, setting the
first and the second drives as block drives.

	
Execute the command need tt, which locates the first block of
the game (in disk 2) and loads it, loading its requirements from the
library (disk 1) as needed.

	
Follow the instructions.

When 2-block-drives is executed, the blocks of the first two disk
drives are seen as one single set, i.e. 200 list will list block
200 from the first disk, but 850 list will list the block from the
second disk:

Table 5. Range of blocks per drive on every DOS, in normal order

	DOS
	1st drive
	2nd drive
	3rd drive
	4th drive

	+3DOS

	0-718

	719-1437

	n/a

	n/a

	G+DOS

	0-799

	800-1599

	n/a

	n/a

	TR-DOS

	0-635

	636-1271

	1272-1908

	1909-2544

2-block-drives is a layer above set-block-drives, which can
configure any number of block drives in any order. Examples:

 'b' 'a' 2 set-block-drives \ identical to ``2-block-drives``
'a' 'b' 2 set-block-drives \ use both drives in reverse order

How to search the source files

 A shell script is included in order to make searching the Forth
sources for a regular expression a bit easier: <tools/seek>.

The script uses ack by default; if ack is not installed,
grep is used instead. All parameters are passed to them.

Usage examples:

 ./tools/seek use-thru-index
./tools/seek use-thru-index -l
./tools/seek color
./tools/seek ";\s:\s"
./tools/seek "\-bank"
./tools/seek "code\s+\S+\s+\("

How to test and benchmark

 Disk 3 (called “workbench”) contains many little specific tests and benchmarks
used during the development of Solo Forth, probably not interesting for the
application programmer. But it also contains an adapted version of the Hayes
test and some known benchmarks.

First, set the required block disks

	
Run Solo Forth or enter cold to start from scratch.

	
“Insert” the file <disks/plus3dos/disk_1_library.dsk> into the disk drive 'A'
of your emulated machine.

	
“Insert” the file <disks/plus3dos/disk_3_workbench.dsk> into the disk drive
'B' of your emulated machine.

	
Enter command 1 load to load the need tool.

	
Enter command need 2-block-drives to set both disk drives as block drives
in their normal order, making need search both of them: first drive 'A'
(the library), then drive 'B' (the benchmarks and tests). Note need
2-block-drives not only loads the word 2-block-drives, but also executes
it. This is equivalent to the command need set-block-drives 'B' 'A' 2
set-block-drives

Second, load the desired code

 Depending on the code you want to run, enter the corresponding command:

	
need hayes-test

	
need byte-magazine-benchmark

	
need interface-age-benchmark

	
need vector-loop-benchmark

	
need all-benchmarks to run all the three benchmarks above

How to write Forth programs

 Briefly, the steps of cross development are the following:

	
Edit the sources of the Forth program on the host operating system, using the
simple FSB format described in the documentation of
fsb and
fsb2.

	
Convert the sources into Forth block disk images using
fsb2.

	
Run Solo Forth on a ZX Spectrum emulator and compile the Forth
program from the disk image. Further testing and debugging can be done in the
Forth system.

In order to use Solo Forth to write programs for ZX Spectrum,
programmers already acquainted with Forth and GNU/Linux systems can
extract all the required information from the <Makefile> of Solo
Forth.

The only difference between building Solo Forth and
building a Forth program is the content of disk 0 (the boot disk),
if needed, and the library modules included in the library disk,
which usually also contains the source of the program at the end. If the program
doesn’t need to use the disk at run-time, you can simply copy the
default disk 0, and boot it to load your program from block 1 of your
customized disk 1, with a simple 1 load. When the loading
finishes, you can save a system snapshot, in SZX format, using the
corresponding option of your ZX Spectrum emulator.

Some games are provided as examples, in disk 2. In order
to try, improve and fix the Forth system during its development, two
more complex game projects are being developed at the same time:

	
Black Flag
(Black Flag in
GitHub).

	
Nuclear
Waste Invaders
(Nuclear
Waste Invaders in GitHub).

They are not finished yet, but they can be useful as examples of
program development with Solo Forth. See how the useful load-program
is used in block 1 of their sources.

How to rebuild Solo Forth

 If you modify the sources, you have to build new disk images for your
DOS of choice. Also the manual depends on the documentation included
in the sources.

First, see the requirements listed in the header of the <Makefile>
file and install the required programs. Then enter the project
directory and use one of the following commands to build the disk
images or the manual for your DOS of choice:

Table 6. Commands to rebuild the disk images

	DOS
	Computer
	

	+3DOS

	All

	make plus3dos

	G+DOS

	All

	make gplusdos

	TR-DOS

	All

	make trdos

	TR-DOS

	128-KiB models

	make trdos128

	TR-DOS

	Pentagon 512/1024

	make pentagon

	TR-DOS

	Scorpion ZS 256

	make scorpion

	All

	All

	make

Table 7. Commands to rebuild the manual

	Format
	+3DOS
	G+DOS
	TR-DOS
	All

	DocBook

	make plus3dosdbk

	make gplusdosdbk

	make trdosdbk

	make dbk

	EPUB

	make plus3dosepub

	make gplusdosepub

	make trdosepub

	make epub

	HTML

	make plus3doshtml

	make gplusdoshtml

	make trdoshtml

	make html

	ODT

	make plus3dosodt

	make gplusdosodt

	make trdosodt

	make odt

	PDF

	make plus3dospdf

	make gplusdospdf

	make trdospdf

	make pdf

	All

	make plus3dosdoc

	make gplusdosdoc

	make trdosdoc

	make doc

Only the EPUB, HTML and PDF built directly from the Asciidoctor
source are included in the release files. Other formats like ODT and
DocBook, or the EPUB and HTML variants obtained from DocBook, are
optional and can be built from the sources.

The disk images will be created in the <disks> directory. The manual
will be created in the <doc> directory.

Exception codes

 Exception codes (also called throw codes of throw values) are used
as prescribed by the Forth-2012 standard: codes -255..-1 are used only
as assigned by the standard, and codes -4095..-256 are reserved for
Solo Forth. Therefore, programs shall not define values for use with
throw in the range -4095..-1.

Table 8. Exception code ranges

	Range
	Reserved for

	1..32767

	Programs

	-255..-1

	Standard Forth

	-999..-256

	Solo Forth

	-1127..-1000

	Solo Forth: +3DOS

	-1154..-1128

	Solo Forth: ZX Spectrum OS (BASIC)

	-4095..-1155

	Solo Forth

	-32768..-4096

	Programs

The original ZX Spectrum OS error codes are included (in range -1154..-1128)
because a few of them may be returned by some DOS words in special cases.

The way errors are displayed is configurable. By default only the exception
code is displayed by an uncatched throw, because the default action of
.throw, which is a deferred word, is .throw#. In order to display also the
error description, the alternative action .throw-message must be loaded from
the library with need .throw-message.

Table 9. Exception code assignments

	Exception code
	Meaning

	#-01

	ABORT

	#-02

	ABORT"

	#-03

	stack overflow

	#-04

	stack underflow

	#-05

	return stack overflow

	#-06

	return stack underflow

	#-07

	do-loops nested too deeply during execution

	#-08

	dictionary overflow

	#-09

	invalid memory address

	#-10

	division by zero

	#-11

	result out of range

	#-12

	argument type mismatch

	#-13

	undefined word

	#-14

	interpreting a compile-only word

	#-15

	invalid FORGET

	#-16

	attempt to use zero-length string as a name

	#-17

	pictured numeric output string overflow

	#-18

	parsed string overflow

	#-19

	definition name too long

	#-20

	write to a read-only location

	#-21

	unsupported operation

	#-22

	control structure mismatch

	#-23

	address alignment exception

	#-24

	invalid numeric argument

	#-25

	return stack imbalance

	#-26

	loop parameters unavailable

	#-27

	invalid recursion

	#-28

	user interrupt

	#-29

	compiler nesting

	#-30

	obsolescent feature

	#-31

	>BODY used on non-CREATEd definition

	#-32

	invalid name argument

	#-33

	block read exception

	#-34

	block write exception

	#-35

	invalid block number

	#-36

	invalid file position

	#-37

	file I/O exception

	#-38

	non-existent file

	#-39

	unexpected end of file

	#-40

	invalid BASE for floating point conversion

	#-41

	loss of precision

	#-42

	floating-point divide by zero

	#-43

	floating-point result out of range

	#-44

	floating-point stack overflow

	#-45

	floating-point stack underflow

	#-46

	floating-point invalid argument

	#-47

	compilation word list deleted

	#-48

	invalid POSTPONE

	#-49

	search-order overflow

	#-50

	search-order underflow

	#-51

	compilation word list changed

	#-52

	control-flow stack overflow

	#-53

	exception stack overflow

	#-54

	floating-point underflow

	#-55

	floating-point unidentified fault

	#-56

	QUIT

	#-57

	exception in sending or receiving a character

	#-58

	[IF], [ELSE], or [THEN] exception

	#-59

	ALLOCATE

	#-60

	FREE

	#-61

	RESIZE

	#-62

	CLOSE-FILE

	#-63

	CREATE-FILE

	#-64

	DELETE-FILE

	#-65

	FILE-POSITION

	#-66

	FILE-SIZE

	#-67

	FILE-STATUS

	#-68

	FLUSH-FILE

	#-69

	OPEN-FILE

	#-70

	READ-FILE

	#-71

	READ-LINE

	#-72

	RENAME-FILE

	#-73

	REPOSITION-FILE

	#-74

	RESIZE-FILE

	#-75

	WRITE-FILE

	#-76

	WRITE-LINE

	#-77

	malformed xchar

	#-78

	SUBSTITUTE

	#-79

	REPLACES

	#-256

	not a word nor a number

	#-257

	warning: is not unique

	#-258

	stack imbalance

	#-259

	trying to load from block 0

	#-260

	wrong digit

	#-261

	deferred word is uninitialized

	#-262

	assertion failed

	#-263

	execution only

	#-264

	definition not finished

	#-265

	loading only

	#-266

	off current editing block

	#-267

	warning: not present, though needed

	#-268

	needed, but not located

	#-269

	relative jump too long

	#-270

	text not found

	#-271

	immediate word not allowed in this structure

	#-272

	array index out of range

	#-273

	invalid assembler condition

	#-274

	command line history overflow

	#-275

	wrong number

	#-276

	dictionary reached the zone of memory banks

	#-277

	needed, but not indexed

	#-278

	empty block found: quit indexing

	#-279

	user area overflow

	#-280

	user area underflow

	#-281

	escaped strings search-order overflow

	#-282

	escaped strings search-order underflow

	#-283

	assembly label number out of range

	#-284

	assembly label number already used

	#-285

	too many unresolved assembly label references

	#-286

	not located

	#-287

	wrong number of drives

	#-288

	too many files open

	#-289

	input source exhausted

	#-290

	invalid UDG scan

	#-291

	out of OS memory

	#-292

	file access method not supported

	#-293

	string too long

	#-1000

	+3DOS: Drive not ready

	#-1001

	+3DOS: Disk is write protected

	#-1002

	+3DOS: Seek fail

	#-1003

	+3DOS: CRC data error

	#-1004

	+3DOS: No data

	#-1005

	+3DOS: Missing address mark

	#-1006

	+3DOS: Unrecognised disk format

	#-1007

	+3DOS: Unknown disk error

	#-1008

	+3DOS: Disk changed whilst +3DOS was using it

	#-1009

	+3DOS: Unsuitable media for drive

	#-1010

	+3DOS: (Unused error)

	#-1011

	+3DOS: (Unused error)

	#-1012

	+3DOS: (Unused error)

	#-1013

	+3DOS: (Unused error)

	#-1014

	+3DOS: (Unused error)

	#-1015

	+3DOS: (Unused error)

	#-1016

	+3DOS: (Unused error)

	#-1017

	+3DOS: (Unused error)

	#-1018

	+3DOS: (Unused error)

	#-1019

	+3DOS: (Unused error)

	#-1020

	+3DOS: Bad filename

	#-1021

	+3DOS: Bad parameter

	#-1022

	+3DOS: Drive not found

	#-1023

	+3DOS: File not found

	#-1024

	+3DOS: File already exists

	#-1025

	+3DOS: End of file

	#-1026

	+3DOS: Disk full

	#-1027

	+3DOS: Directory full

	#-1028

	+3DOS: Read-only file

	#-1029

	+3DOS: File number not open (or with wrong access)

	#-1030

	+3DOS: Access denied (file is in use already)

	#-1031

	+3DOS: Cannot rename between drives

	#-1032

	+3DOS: Extent missing (which should be there)

	#-1033

	+3DOS: Uncached (software error)

	#-1034

	+3DOS: File too big (trying to read/write past 8 MB)

	#-1035

	+3DOS: Disk not bootable (boot sector not acceptable)

	#-1036

	+3DOS: Drive in use (remap/remove with files open)

	#-1128

	OS: OK

	#-1129

	OS: NEXT without FOR

	#-1130

	OS: Variable not found

	#-1131

	OS: Subscript wrong

	#-1132

	OS: Out of memory

	#-1133

	OS: Out of screen

	#-1134

	OS: Number too big

	#-1135

	OS: RETURN without GO SUB

	#-1136

	OS: End of file

	#-1137

	OS: STOP statement

	#-1138

	OS: Invalid argument

	#-1139

	OS: Integer out of range

	#-1140

	OS: Nonsense in BASIC

	#-1141

	OS: BREAK - CONT repeats

	#-1142

	OS: Out of DATA

	#-1143

	OS: Invalid file name

	#-1144

	OS: No room for line

	#-1145

	OS: STOP in INPUT

	#-1146

	OS: FOR without NEXT

	#-1147

	OS: Invalid I/O device

	#-1148

	OS: Invalid colour

	#-1149

	OS: BREAK into program

	#-1150

	OS: RAMTOP no good

	#-1151

	OS: Statement lost

	#-1151

	OS: Invalid stream

	#-1152

	OS: FN without DEF

	#-1153

	OS: Parameter error

	#-1154

	OS: Tape loading error

Notation

Stack notation

 Stack parameters input to and output from a definition are described
using the notation:

(stack-id: before -- after)

where stack-id: specifies which stack is being described, before
represents the stack-parameter data types before execution of the
definition and after represents them after execution. The symbols
used in before and after are shown in table
Stack notation symbols for numbers.

The control-flow-stack stack-id is "C:", the data-stack stack-id is
"S:", and the return-stack stack-id is "R:". When there is no
confusion, the data-stack stack-id is omitted. In Solo Forth, the
data stack is used as control-flow stack.

When there are several items of the same type, a numerical suffix is
added: (n1 n2 — n3); sometimes with brackets: (n[1] n[2] — n[3]); sometimes with hashes: (n#1 n#2 — n#3). Eventually,
the format will be unified.

When there are alternate after representations, they are described
by after[1] | after[2], e.g. (n — ca len true | false).

When there are alternate items, they are described by
item[1]|item[2], e.g. (n[1]|u[1] n[2]|u[2] — n[3]|u[3]) .

The top of the stack is to the right. Only those stack items required
for or provided by execution of the definition are shown.

Table 10. Stack notation symbols for numbers

	Symbol
	Data type
	Size
	Range

	a

	address

	1 cell

	0 .. 65535

	aa

	aligned address[2]

	1 cell

	0 .. 65535

	ca

	character-aligned address[2]

	1 cell

	0 .. 65535

	fa

	float-aligned address[2]

	1 cell

	0 .. 65535

	f

	well-formed flag (false: 0; true: -1)

	1 cell

	-1 .. 0

	0f

	zero flag (false: 0; true: non-zero)

	1 cell

	-32768 .. 65535

	true

	true flag (-1)

	1 cell

	-1

	false

	false flag (0)

	1 cell

	0

	b

	8-bit byte

	1 cell

	-128 .. 255

	c

	8-bit character

	1 cell

	0 .. 255

	char

	8-bit character

	1 cell

	0 .. 255

	u

	16-bit unsigned number

	1 cell

	0 .. 65535

	len

	16-bit unsigned number (memory zone length)

	1 cell

	0 .. 65335

	n

	16-bit signed number

	1 cell

	-32768 .. 32767

	+n

	16-bit non-negative number

	1 cell

	0 .. 32767

	x

	16-bit unspecified number

	1 cell

	-32768 .. 65535

	d

	32-bit signed double number

	2 cells

	-2147483648 .. 2147483647

	+d

	32-bit non-negative double number

	2 cells

	0 .. 2147483647

	ud

	32-bit unsigned double number

	2 cells

	0 .. 4294697295

	xd

	32-bit unspecified number

	2 cells

	-2147483648 .. 2147483647

	t

	48-bit signed triple number

	3 cells

	-140737488355328 .. 140737488355327

	+t

	48-bit non-negative triple number

	3 cells

	0 .. 140737488355327

	ut

	48-bit unsigned triple number

	3 cells

	0 .. 281474976710655

	q

	64-bit signed quadruple number

	4 cells

	−9223372036854775808 .. 9223372036854775807

	+q

	64-bit non-negative quadruple number

	4 cells

	0 .. 9223372036854775807

	uq

	64-bit unsigned quadruple number

	4 cells

	0 .. 18446744073709551615

	col

	8-bit cursor column

	1 cell

	0 .. 31; 0 .. 41; 0 .. 63

	row

	8-bit cursor row

	1 cell

	0 .. 23

	gx

	8-bit (absolute) or 16-bit (relative) graphic x coordinate

	1 cell

	0 .. 255; -32768 .. 32767

	gy

	8-bit (absolute) or 16-bit (relative) graphic y coordinate

	1 cell

	0 .. 191; -32768 .. 32767; 0 .. 175

	xt

	execution token (=cfa)

	1 cell

	

	cfa

	code field address (=xt)

	1 cell

	

	lfa

	link field address

	1 cell

	

	nt

	name token (=nfa)

	1 cell

	

	nfa

	name field address (=nt)

	1 cell

	

	dfa

	data field address

	1 cell

	

	xtp

	execution token pointer

	1 cell

	

	wid

	word-list identifier

	1 cell

	

	ior

	Input/Output result code

	1 cell

	-32768 .. 0

	dosior

	Input/Output result code in DOS format

	1 cell

	-322768 .. 65535

	orig

	address of an unresolved forward branch

	1 cell

	0 .. 65535

	dest

	address of a backward branch target

	1 cell

	0 .. 65535

	cs-id

	control structure identifier

	1 cell

	

	do-sys

	loop control parameters (=orig)

	1 cell

	0 .. 65535

	loop-sys

	loop control parameters

	2 cells

	

	nest-sys

	definition call

	1 cell

	

	source-sys

	source identifier

	n cells

	

	i*x

	any data type

	0 or more cells

	

	j*x

	any data type

	0 or more cells

	

	k*x

	any data type

	0 or more cells

	

	u*x

	u elements of type x (eg. u*wid)

	0 or more cells

	

	r

	a floating point real number

	5 bytes[3]

	1E-38 .. 1E38

	rf

	a floating point real number flag

	5 bytes[3]

	0 .. 1

	op

	Z80 8-bit opcode, generally a jump

	1 cell

	0 .. 255

	reg

	Z80 8-bit register identifier

	1 cell

	0 .. 7

	regp

	Z80 16-bit register pair identifier

	1 cell

	0; 2; 4

	regph

	Z80 16-bit HL register pair identifier

	1 cell

	4

	regpi

	Z80 16-bit IX/IY register pair identifier

	1 cell

	4

Table 11. Stack notation symbols for parsed text

	Symbol
	Description

	<char>

	the delimiting character marking the end of the string being parsed

	<chars>

	zero or more consecutive occurrences of the character char

	<space>

	a delimiting space character

	<spaces>

	zero or more consecutive occurrences of the character space

	<quote>

	a delimiting double quote

	<paren>

	a delimiting right parenthesis

	<eol>

	an implied delimiter marking the end of a line

	ccc

	a parsed sequence of arbitrary characters, excluding the delimiter character

	name

	a token delimited by space, equivalent to <spaces>ccc<space> or <spaces>ccc<eol>

2 As Solo Forth runs on the Z80 processor, all addresses are aligned, but the specific symbols for aligned addresses are used in the source, for clarity.

3 In the floating point stack of the ZX Spectrum operating system.

Z80 flags notation

Table 12. Z80 flags notation

	Symbol
	Description
	bit

	Fc

	Carry flag

	0

	Fh

	Half Carry flag

	4

	Fn

	Add/Subtract flag

	1

	Fp

	Parity/Overflow flag

	2

	Fs

	Sign flag

	7

	Fz

	Zero flag

	6

Z80 instructions

Table 13. Z80 instructions and their equivalent Forth commands

	Z80 instruction
	Forth command
	Size
	Object code
	Clock
	SZHPNC
	Effect

	ADC A,(HL)

	m a adc,

	1

	8E

	7

	***V0*

	A=A+[HL]+CY

	ADC A,(IX+n)

	n ix adcx,

	3

	DD 8E xx

	19

	***V0*

	A=A+[IX+n]+CY

	ADC A,(IY+n)

	n iy adcx,

	3

	FD 8E xx

	19

	***V0*

	A=A+[IY+n]+CY

	ADC A,n

	n adc#,

	2

	CE xx

	7

	***V0*

	A=A+n+CY

	ADC A,r

	r adc,

	1

	88+r

	4

	***V0*

	A=A+r+CY

	ADC HL,BC

	b adcp,

	2

	ED 4A

	15

	***V0*

	HL=HL+BC+CY

	ADC HL,DE

	d adcp,

	2

	ED 5A

	15

	***V0*

	HL=HL+DE+CY

	ADC HL,HL

	h adcp,

	2

	ED 6A

	15

	***V0*

	HL=HL+HL+CY

	ADC HL,SP

	sp adcp,

	2

	ED 7A

	15

	***V0*

	HL=HL+SP+CY

	ADD A,(HL)

	m a add,

	1

	86

	7

	***V0*

	A=A+[HL]

	ADD A,(IX+n)

	n ix addx,

	3

	DD 86 xx

	19

	***V0*

	A=A+[IX+n]

	ADD A,(IY+n)

	n iy addx,

	3

	FD 86 xx

	19

	***V0*

	A=A+[IY+n]

	ADD A,n

	n add#,

	2

	C6 xx

	7

	***V0*

	A=A+n

	ADD A,r

	r add,

	1

	80+r

	4

	***V0*

	A=A+r

	ADD HL,BC

	b addp,

	1

	09

	11

	--*-0*

	HL=HL+BC

	ADD HL,DE

	d addp,

	1

	19

	11

	--*-0*

	HL=HL+DE

	ADD HL,HL

	h addp,

	1

	29

	11

	--*-0*

	HL=HL+HL

	ADD HL,SP

	sp addp,

	1

	39

	11

	--*-0*

	HL=HL+SP

	ADD IX,BC

	b addix,

	2

	DD 09

	15

	--*-0*

	IX=IX+BC

	ADD IX,DE

	d addix,

	2

	DD 19

	15

	--*-0*

	IX=IX+DE

	ADD IX,IX

	n/a

	2

	DD 29

	15

	--*-0*

	IX=IX+IX

	ADD IX,SP

	sp addix,

	2

	DD 39

	15

	--*-0*

	IX=IX+SP

	ADD IY,BC

	b addiy,

	2

	FD 09

	15

	--*-0*

	IY=IY+BC

	ADD IY,DE

	d addiy,

	2

	FD 19

	15

	--*-0*

	IY=IY+DE

	ADD IY,IY

	n/a

	2

	FD 29

	15

	--*-0*

	IY=IY+IY

	ADD IY,SP

	sp addiy,

	2

	FD 39

	15

	--*-0*

	IY=IY+SP

	AND (HL)

	m and,

	1

	A6

	7

	***P00

	A=A&[HL]

	AND (IX+n)

	n ix andx,

	3

	DD A6 xx

	19

	***P00

	A=A&[IX+n]

	AND (IY+n)

	n iy andx,

	3

	FD A6 xx

	19

	***P00

	A=A&[IY+n]

	AND n

	n and#,

	2

	E6 xx

	7

	***P00

	A=A&n

	AND r

	r and,

	1

	A0+r

	4

	***P00

	A=A&r

	BIT b,(HL)

	m b bit,

	2

	CB 46+8*b

	12

	**1*0-

	[HL]&{2^b}

	BIT b,(IX+n)

	n ix b bitx,

	4

	DD CB xx 46+8*b

	20

	**1*0-

	[IX+n]&{2^b}

	BIT b,(IY+n)

	n iy b bitx,

	4

	FD CB xx 46+8*b

	20

	**1*0-

	[IY+n]&{2^b}

	BIT b,r

	r b bit,

	2

	CB 40+8*b+r

	8

	**1*0-

	r&{2^b}

	CALL C,nn

	nn c? ?call,

	3

	DC xx xx

	17/10

	If CY then [SP-=2]=PC,PC=nn

	CALL M,nn

	nn m? ?call,

	3

	FC xx xx

	17/10

	If S then [SP-=2]=PC,PC=nn

	CALL NC,nn

	nn nc? ?call,

	3

	D4 xx xx

	17/10

	If !CY then [SP-=2]=PC,PC=nn

	CALL nn

	nn call,

	3

	CD xx xx

	17

	SP-=2,[SP+1,SP]=PC,PC=nn

	CALL NZ,nn

	nn nz? ?call,

	3

	C4 xx xx

	17/10

	If !Z then [SP-=2]=PC,PC=nn

	CALL P,nn

	nn p? ?call,

	3

	F4 xx xx

	17/10

	If !S then [SP-=2]=PC,PC=nn

	CALL PE,nn

	nn pe? ?call,

	3

	EC xx xx

	17/10

	If P then [SP-=2]=PC,PC=nn

	CALL PO,nn

	nn po? ?call,

	3

	E4 xx xx

	17/10

	If !P then [SP-=2]=PC,PC=nn

	CALL Z,nn

	nn z? ?call,

	3

	CC xx xx

	17/10

	If Z then [SP-=2]=PC,PC=nn

	CCF

	ccf,

	1

	3F

	4

	--*-0*

	CY=~CY

	CP (HL)

	m cp,

	1

	BE

	7

	***V1*

	A-[HL]

	CP (IX+n)

	n ix cpx,

	3

	DD BE xx

	19

	***V1*

	A-[IX+n]

	CP (IY+n)

	n iy cpx,

	3

	FD BE xx

	19

	***V1*

	A-[IY+n]

	CP n

	n cp#,

	2

	FE xx

	7

	***V1*

	A-n

	CP r

	r cp,

	1

	B8+r

	4

	***V1*

	A-r

	CPD

	n/a

	2

	ED A9

	16

	****1-

	A-[HL],HL=HL-1,BC=BC-1

	CPDR

	n/a

	2

	ED B9

	21/16

	****1-

	CPD until A=[HL] or BC=0

	CPI

	n/a

	2

	ED A1

	16

	****1-

	A-[HL],HL=HL+1,BC=BC-1

	CPIR

	cpir,

	2

	ED B1

	21/16

	****1-

	CPI until A=[HL] or BC=0

	CPL

	cpl,

	1

	2F

	4

	--1-1-

	A=~A

	DAA

	daa,

	1

	27

	4

	***P-*

	A=adjust result to BCD-format

	DEC (HL)

	m dec,

	1

	35

	11

	***V1-

	[HL]=[HL]-1

	DEC (IX+n)

	n ix decx,

	3

	DD 35 xx

	23

	***V1-

	[IX+n]=[IX+n]-1

	DEC (IY+n)

	n iy decx,

	3

	FD 35 xx

	23

	***V1-

	[IY+n]=[IY+n]-1

	DEC A

	a dec,

	1

	3D

	4

	***V1-

	A=A-1

	DEC B

	b dec,

	1

	05

	4

	***V1-

	B=B-1

	DEC BC

	b decp,

	1

	0B

	6

	BC=BC-1

	DEC C

	c dec,

	1

	0D

	4

	***V1-

	C=C-1

	DEC D

	d dec,

	1

	15

	4

	***V1-

	D=D-1

	DEC DE

	d decp,

	1

	1B

	6

	DE=DE-1

	DEC E

	e dec,

	1

	1D

	4

	***V1-

	E=E-1

	DEC H

	h dec,

	1

	25

	4

	***V1-

	H=H-1

	DEC HL

	h decp,

	1

	2B

	6

	HL=HL-1

	DEC IX

	ix decp,

	2

	DD 2B

	10

	IX=IX-1

	DEC IY

	iy decp,

	2

	FD 2B

	10

	IY=IY-1

	DEC L

	l dec,

	2

	2D

	4

	***V1-

	L=L-1

	DEC SP

	sp decp,

	1

	3B

	6

	SP=SP-1

	DI

	di,

	1

	F3

	4

	disable interrupts

	DJNZ n

	nn djnz,

	2

	10 xx

	13/8

	B=B-1, if B != 0 then PC+=n

	EI

	ei,

	1

	FB

	4

	enable interrupts

	EX (SP),HL

	exsp,

	1

	E3

	19

	[SP]<→HL

	EX (SP),IX

	n/a

	2

	DD E3

	23

	[SP]<→IX

	EX (SP),IY

	n/a

	2

	FD E3

	23

	[SP]<→IY

	EX AF,AF'

	exaf,

	1

	08

	4

	AF<→AF'

	EX DE,HL

	exde,

	1

	EB

	4

	DE<→HL

	EXX

	exx,

	1

	D9

	4

	BC<→BC',DE<→DE',HL<→HL'

	HALT

	halt,

	1

	76

	4

	repeat NOP until interrupt

	IM 0

	n/a

	2

	ED 46

	8

	set interrupt 0

	IM 1

	im1,

	2

	ED 56

	8

	set interrupt 1

	IM 2

	im2,

	2

	ED 5E

	8

	set interrupt 2

	IN A,(C)

	a inbc,

	2

	ED 78

	12

	***P0-

	A=[C]

	IN A,(n)

	n in,

	2

	DB xx

	11

	A=[n]

	IN B,(C)

	b inbc,

	2

	ED 40

	12

	***P0-

	B=[C]

	IN C,(C)

	c inbc,

	2

	ED 48

	12

	***P0-

	C=[C]

	IN D,(C)

	d inbc,

	2

	ED 50

	12

	***P0-

	D=[C]

	IN E,(C)

	e inbc,

	2

	ED 58

	12

	***P0-

	E=[C]

	IN H,(C)

	h inbc,

	2

	ED 60

	12

	***P0-

	H=[C]

	IN L,(C)

	l inbc,

	2

	ED 68

	12

	***P0-

	L=[C]

	INC (HL)

	h incp,

	1

	34

	11

	***V0-

	[HL]=[HL]+1

	INC (IX+n)

	n ix incx,

	3

	DD 34 xx

	23

	***V0-

	[IY+n]=[IX+n]+1

	INC (IY+n)

	n iy incx,

	3

	FD 34 xx

	23

	***V0-

	[IY+n]=[IY+n]+1

	INC A

	a inc,

	1

	3C

	4

	***V0-

	A=A+1

	INC B

	b inc,

	1

	04

	4

	***V0-

	B=B+1

	INC BC

	b incp,

	1

	03

	6

	BC=BC+1

	INC C

	c inc,

	1

	0C

	4

	***V0-

	C=C+1

	INC D

	d inc,

	1

	14

	4

	***V0-

	D=D+1

	INC DE

	d incp,

	1

	13

	6

	DE=DE+1

	INC E

	e inc,

	1

	1C

	4

	***V0-

	E=E+1

	INC H

	h inc,

	1

	24

	4

	***V0-

	H=H+1

	INC HL

	h incp,

	1

	23

	6

	HL=HL+1

	INC IX

	ix incp,

	2

	DD 23

	10

	IX=IX+1

	INC IY

	iy incp,

	2

	FD 23

	10

	IY=IY+1

	INC L

	l inc,

	1

	2C

	4

	***V0-

	L=L+1

	INC SP

	sp incp,

	1

	33

	6

	SP=SP+1

	IND

	n/a

	2

	ED AA

	16

	***?1-

	[HL]=[C],HL=HL-1,B=B-1

	INDR

	n/a

	2

	ED BA

	21/16

	01*?1-

	IND until B=0

	INI

	n/a

	2

	ED A2

	16

	***?1-

	[HL]=[C],HL=HL+1,B=B-1

	INIR

	n/a

	2

	ED B2

	21/16

	01*?1-

	INI until B=0

	JP (HL)

	jphl,

	1

	E9

	4

	PC=HL

	JP (IX)

	jpix,

	2

	DD E9

	8

	PC=IX

	JP (IY)

	n/a

	2

	FD E9

	8

	PC=IY

	JP C,nn

	nn c? ?jp,

	3

	DA xx xx

	10/10

	If CY then PC=nn

	JP M,nn

	nn m? ?jp,

	3

	FA xx xx

	10/10

	If S then PC=nn

	JP NC,nn

	nn nc? ?jp,

	3

	D2 xx xx

	10/10

	If !CY then PC=nn

	JP nn

	nn jp,

	3

	C3 xx xx

	10

	PC=nn

	JP NZ,nn

	nn nz? ?jp,

	3

	C2 xx xx

	10/10

	If !Z then PC=nn

	JP P,nn

	nn p? ?jp,

	3

	F2 xx xx

	10/10

	If !S then PC=nn

	JP PE,nn

	nn pe? ?jp,

	3

	EA xx xx

	10/10

	If P then PC=nn

	JP PO,nn

	nn po? ?jp,

	3

	E2 xx xx

	10/10

	If !P then PC=nn

	JP Z,nn

	nn z? ?jp,

	3

	CA xx xx

	10/10

	If Z then PC=nn

	JR C,n

	nn c? ?jr,

	2

	38 xx

	12/7

	If CY then PC=PC+n

	JR NC,n

	nn nc? ?jr,

	2

	30 xx

	12/7

	If !CY then PC=PC+n

	JR NZ,n

	nn z? ?jr,

	2

	20 xx

	12/7

	If !Z then PC=PC+n

	JR Z,n

	nn z? ?jr,

	2

	28 xx

	12/7

	If Z then PC=PC+n

	JR n

	nn jr,

	2

	18 xx

	12

	PC=PC+n

	LD (BC),A

	b stap,

	1

	02

	7

	[BC]=A

	LD (DE),A

	d stap,

	1

	12

	7

	[DE]=A

	LD (HL),n

	n m ld#,

	2

	36 xx

	10

	[HL]=n

	LD (HL),r

	r m ld,

	1

	70+r

	7

	[HL]=r

	LD (IX+n1),n2

	n2 n1 ix st#x,

	4

	DD 36 xx xx

	19

	[IX+n]=n

	LD (IX+n),r

	r n ix stx,

	3

	DD 70+r xx

	19

	[IX+n]=r

	LD (IY+n1),n2

	n2 n1 iy st#x,

	4

	FD 36 xx xx

	19

	[IY+n]=n

	LD (IY+n),r

	r n iy stx,

	3

	FD 70+r xx

	19

	[IY+n]=r

	LD (nn),A

	nn sta,

	3

	32 xx xx

	13

	[nn]=A

	LD (nn),BC

	nn b stp,

	4

	ED 43 xx xx

	20

	[nn]=C, (nn+1)=B

	LD (nn),DE

	nn d stp,

	4

	ED 53 xx xx

	20

	[nn]=E, (nn+1)=D

	LD (nn),HL

	nn h sthl,

	3

	22 xx xx

	16

	[nn]=L, (nn+1)=H

	LD (nn),HL

	nn h stp,

	3

	ED 63 xx xx

	20

	[nn]=L, (nn+1)=H

	LD (nn),IX

	nn ix stp,

	4

	DD 22 xx xx

	20

	[nn,nn+1]=IX

	LD (nn),IY

	nn iy stp,

	4

	FD 22 xx xx

	20

	[nn,nn+1]=IY

	LD (nn),SP

	nn sp stp,

	4

	ED 73 xx xx

	20

	[nn,nn+1]=SP

	LD A,(BC)

	b ftap,

	1

	0A

	7

	A=[BC]

	LD A,(DE)

	d ftap,

	1

	1A

	7

	A=[DE]

	LD A,(HL)

	m a ld,

	1

	7E

	7

	A=[HL]

	LD A,(IX+n)

	n ix a ftx,

	3

	DD 7E xx

	19

	A=[IX+n]

	LD A,(IY+n)

	n iy a ftx,

	3

	FD 7E xx

	19

	A=[IY+n]

	LD A,(nn)

	nn fta,

	3

	3A xx xx

	13

	A=[nn]

	LD A,I

	ldai,

	2

	ED 57

	9

	**0*0-

	A=I

	LD A,n

	n a ld#,

	2

	3E xx

	7

	A=n

	LD A,R

	ldar,

	2

	ED 5F

	9

	**0*0-

	A=R

	LD A,r

	r a ld,

	1

	78+r

	4

	A=r

	LD B,(HL)

	m b ld,

	1

	46

	7

	B=[HL]

	LD B,(IX+n)

	n ix b ftx,

	3

	DD 46 xx

	19

	B=[IX+n]

	LD B,(IY+n)

	n iy b ftx,

	3

	FD 46 xx

	19

	B=[IY+n]

	LD B,n

	n b ld#,

	2

	06 xx

	7

	B=n

	LD B,r

	r b ld,

	1

	40+r

	4

	B=r

	LD BC,(nn)

	nn b ftp,

	4

	ED 4B xx xx

	20

	C=[nn],B=[nn+1]

	LD BC,nn

	nn b ldp#,

	3

	01 xx xx

	10

	BC=nn

	LD C,(HL)

	m c ld,

	1

	4E

	7

	C=[HL]

	LD C,(IX+n)

	n ix c ftx,

	3

	DD 4E xx

	19

	C=[IX+n]

	LD C,(IY+n)

	n iy c ftx,

	3

	FD 4E xx

	19

	C=[IY+n]

	LD C,n

	n c ld#,

	2

	0E xx

	7

	C=n

	LD C,r

	r c ld,

	1

	48+r

	4

	C=r

	LD D,(HL)

	m d ld,

	1

	56

	7

	D=[HL]

	LD D,(IX+n)

	n ix d ftx,

	3

	DD 56 xx

	19

	D=[IX+n]

	LD D,(IY+n)

	n iy d ftx,

	3

	FD 56 xx

	19

	D=[IY+n]

	LD D,n

	n d ld#,

	2

	16 xx

	7

	D=n

	LD D,r

	r d ld,

	1

	50+r

	4

	D=r

	LD DE,(nn)

	nn d ftp,

	4

	ED 5B xx xx

	20

	E=[nn],D=[nn+1]

	LD DE,nn

	nn d ldp#,

	3

	11 xx xx

	10

	DE=nn

	LD E,(HL)

	m e ld,

	1

	5E

	7

	E=[HL]

	LD E,(IX+n)

	n ix e ftx,

	3

	DD 5E xx

	19

	E=[IX+n]

	LD E,(IY+n)

	n iy e ftx,

	3

	FD 5E xx

	19

	E=[IY+n]

	LD E,n

	n e ld#,

	2

	1E xx

	7

	E=n

	LD E,r

	r e ld,

	1

	58+r

	4

	E=r

	LD H,(HL)

	m h ld,

	1

	66

	7

	H=[HL]

	LD H,(IX+n)

	n ix h ftx,

	3

	DD 66 xx

	19

	H=[IX+n]

	LD H,(IY+n)

	n iy h ftx,

	3

	FD 66 xx

	19

	H=[IY+n]

	LD H,n

	n h ld#,

	2

	26 xx

	7

	H=n

	LD H,r

	r h ld,

	1

	60+r

	4

	H=r

	LD HL,(nn)

	nn fthl,

	3

	2A xx xx

	16

	L=[nn],H=[nn+1]

	LD HL,(nn)

	nn h ftp,

	4

	ED 6B xx xx

	20

	L=[nn],H=[nn+1]

	LD HL,nn

	nn h ldp#,

	3

	21 xx xx

	10

	HL=nn

	LD I,A

	ldia,

	2

	ED 47

	9

	I=A

	LD IX,(nn)

	nn ix ftp,

	4

	DD 2A xx xx

	20

	IX=[nn,nn+1]

	LD IX,nn

	nn ix ldp#,

	4

	DD 21 xx xx

	14

	IX=nn

	LD IY,(nn)

	nn iy ftp,

	4

	FD 2A xx xx

	20

	IY=[nn,nn+1]

	LD IY,nn

	nn iy ldp#,

	4

	FD 21 xx xx

	14

	IY=nn

	LD L,(HL)

	m l ld,

	1

	6E

	7

	L=[HL]

	LD L,(IX+n)

	n ix l ftx,

	3

	DD 6E xx

	19

	L=[IX+n]

	LD L,(IY+n)

	n iy l ftx,

	3

	FD 6E xx

	19

	L=[IY+n]

	LD L,n

	n l ld#,

	2

	2E xx

	7

	L=n

	LD L,r

	r l ld,

	1

	68+r

	4

	L=r

	LD R,A

	ldra,

	2

	ED 4F

	9

	R=A

	LD SP,(nn)

	nn sp ftp,

	4

	ED 7B xx xx

	20

	SP=[nn,nn+1]

	LD SP,HL

	ldsp,

	1

	F9

	6

	SP=HL

	LD SP,IX

	n/a

	2

	DD F9

	10

	SP=IX

	LD SP,IY

	n/a

	2

	FD F9

	10

	SP=IY

	LD SP,nn

	nn sp ldp#,

	3

	31 xx xx

	10

	SP=nn

	LDD

	ldd,

	2

	ED A8

	16

	--0*0-

	[DE]=[HL],HL-=1,DE-=1,BC-=1

	LDDR

	lddr,

	2

	ED B8

	21/16

	--000-

	LDD until BC=0

	LDI

	ldi,

	2

	ED A0

	16

	--0*0-

	[DE]=[HL],HL+=1,DE+=1,BC=-1

	LDIR

	ldir,

	2

	ED B0

	21/16

	--000-

	LDI until BC=0

	NEG

	neg,

	2

	ED 44

	8

	***V1*

	A=-A

	NOP

	nop,

	1

	00

	4

	OR (HL)

	m or,

	1

	B6

	7

	***P00

	A=Av[HL]

	OR (IX+n)

	n ix orx,

	3

	DD B6 xx

	19

	***P00

	A=Av[IX+n]

	OR (IY+n)

	n iy orx,

	3

	FD B6 xx

	19

	***P00

	A=Av[IY+n]

	OR n

	n or#,

	2

	F6 xx

	7

	***P00

	A=AvN

	OR r

	r or,

	1

	B0+r

	4

	***P00

	A=Avr

	OTDR

	n/a

	2

	ED BB

	21/16

	01*?1-

	OUTD until B=0

	OTIR

	n/a

	2

	ED B3

	21/16

	01*?1-

	OUTI until B=0

	OUT (C),A

	a outbc,

	2

	ED 79

	12

	[C]=A

	OUT (C),B

	b outbc,

	2

	ED 41

	12

	[C]=B

	OUT (C),C

	c outbc,

	2

	ED 49

	12

	[C]=C

	OUT (C),D

	d outbc,

	2

	ED 51

	12

	[C]=D

	OUT (C),E

	e outbc,

	2

	ED 59

	12

	[C]=E

	OUT (C),H

	h outbc,

	2

	ED 61

	12

	[C]=H

	OUT (C),L

	l outbc,

	2

	ED 69

	12

	[C]=L

	OUT (n),A

	n out,

	2

	D3 xx

	11

	[n]=A

	OUTD

	n/a

	2

	ED AB

	16

	***?1-

	[C]=[HL],HL=HL-1,B=B-1

	OUTI

	n/a

	2

	ED A3

	16

	***?1-

	[C]=[HL],HL=HL+1,B=B-1

	POP AF

	a pop,

	1

	F1

	10

	F=[SP],SP+,A=[SP],SP+

	POP BC

	b pop,

	1

	C1

	10

	C=[SP],SP+,B=[SP],SP+

	POP DE

	d pop,

	1

	D1

	10

	E=[SP],SP+,D=[SP],SP+

	POP HL

	h pop,

	1

	E1

	10

	L=[SP],SP+,H=[SP],SP+

	POP IX

	ix pop,

	2

	DD E1

	14

	IX=[SP,SP+1],SP+,SP+

	POP IY

	iy pop,

	2

	FD E1

	14

	IY=[SP,SP+1],SP+,SP+

	PUSH AF

	a push,

	1

	F5

	11

	-SP,[SP]=A,-SP,[SP]=F

	PUSH BC

	b push,

	1

	C5

	11

	-SP,[SP]=B,-SP,[SP]=C

	PUSH DE

	d push,

	1

	D5

	11

	-SP,[SP]=D,-SP,[SP]=E

	PUSH HL

	h push,

	1

	E5

	11

	-SP,[SP]=H,-SP,[SP]=L

	PUSH IX

	ix push,

	2

	DD E5

	15

	-SP,-SP,[SP,SP+1]=IX

	PUSH IY

	iy push,

	2

	FD E5

	15

	-SP,-SP,[SP,SP+1]=IY

	RES b,(HL)

	m b res,

	2

	CB 86+8*b

	15

	[HL]=[HL]&{~2^b}

	RES b,(IX+n)

	n ix b resx,

	4

	DD CB xx 86+8*b

	23

	[IX+n]=[IX+n]&{~2^b}

	RES b,(IY+n)

	n iy b resx,

	4

	FD CB xx 86+8*b

	23

	[IY+n]=[IY+n]&{~2^b}

	RES b,r

	r b res,

	2

	CB 80+8*b+r

	8

	r=r&{~2^b}

	RET

	ret,

	1

	C9

	10

	PC=[SP,SP+1],SP+,SP+

	RET C

	c? ?ret,

	1

	D8

	11/5

	If CY then PC=[SP,SP+1],SP+=2

	RET M

	m? ?ret,

	1

	F8

	11/5

	If S then PC=[SP,SP+1],SP+=2

	RET NC

	nc? ?ret,

	1

	D0

	11/5

	If !CY then PC=[SP,SP+1],SP+=2

	RET NZ

	nz? ?ret,

	1

	C0

	11/5

	If !Z then PC=[SP,SP+1],SP+=2

	RET P

	p? ?ret,

	1

	F0

	11/5

	If !S then PC=[SP,SP+1],SP+=2

	RET PE

	pe? ?ret,

	1

	E8

	11/5

	If P then PC=[SP,SP+1],SP+=2

	RET PO

	po? ?ret,

	1

	E0

	11/5

	If !P then PC=[SP,SP+1],SP+=2

	RET Z

	z? ?ret,

	1

	C8

	11/5

	If Z then PC=[SP,SP+1],SP+=2

	RETI

	n/a

	2

	ED 4D

	14

	PC=[SP,SP+1],SP+,SP+

	RETN

	n/a

	2

	ED 45

	14

	PC=[SP,SP+1],SP+,SP+

	RL (HL)

	m rl,

	2

	CB 16

	15

	**0P0*

	[HL]={CY,[HL]}<<CY

	RL (IX+n)

	n ix rlx,

	4

	DD CB xx 16

	23

	**0P0*

	[IX+n]={CY,[IX+n]}<<CY

	RL (IY+n)

	n iy rlx,

	4

	FD CB xx 16

	23

	**0P0*

	[IY+n]={CY,[IY+n]}<<CY

	RL r

	r rl,

	2

	CB 10+r

	8

	**0P0*

	r={CY,r}<<CY

	RLA

	rla,

	1

	17

	4

	--0-0*

	A={CY,A}<<CY

	RLC (HL)

	m rlc,

	2

	CB 06

	15

	**0P0*

	[HL]={[HL]}<<

	RLC (IX+n)

	n ix rlcx,

	4

	DD CB xx 06

	23

	**0P0*

	[IX+n]={[IX+n]}<<

	RLC (IY+n)

	n iy rlcx,

	4

	FD CB xx 06

	23

	**0P0*

	[IY+n]={[IY+n]}<<

	RLC r

	r rlc,

	2

	CB 00+r

	8

	**0P0*

	r={r}<<

	RLCA

	rlca,

	1

	07

	4

	--0-0*

	A=*<<

	RLD

	rld,

	2

	ED 6F

	18

	**0P0-

	{A,[HL]}={A,[HL]}←4

	RR (HL)

	m rr,

	2

	CB 1E

	15

	**0P0*

	[HL]=CY>>{CY,[HL]}

	RR (IX+n)

	n ix rrx,

	4

	DD CB xx 1E

	23

	**0P0*

	[IX+n]=CY>>{CY,[IX+n]}

	RR (IY+n)

	n iy rrx,

	4

	FD CB xx 1E

	23

	**0P0*

	[IT+n]=CY>>{CY,[IY+n]}

	RR r

	r rr,

	2

	CB 18+r

	8

	**0P0*

	r=CY>>{CY,r}

	RRA

	rra,

	1

	1F

	4

	--0-0*

	A=CY>>{CY,A}

	RRC (HL)

	m rrc,

	2

	CB 0E

	15

	**0P0*

	[HL]⇒>{[HL]}

	RRC (IX+n)

	n ix rrcx,

	4

	DD CB xx 0E

	23

	**0P0*

	[IX+n]⇒>{[IX+n]}

	RRC (IY+n)

	n iy rrcx,

	4

	FD CB xx 0E

	23

	**0P0*

	[IY+n]⇒>{[IY+n]}

	RRC r

	r rrc,

	2

	CB 08+r

	8

	**0P0*

	r⇒>{r}

	RRCA

	rrca,

	1

	0F

	4

	--0-0*

	A⇒>*

	RRD

	n/a

	2

	ED 67

	18

	**0P0-

	{A,[HL]}=4→{A,[HL]}

	RST 0

	0 rst,

	1

	C7

	11

	-SP,-SP,[SP+1,SP]=PC,PC=00

	RST 8H

	$8 rst,

	1

	CF

	11

	-SP,-SP,[SP+1,SP]=PC,PC=08

	RST 10H

	$10 rst,

	1

	D7

	11

	-SP,-SP,[SP+1,SP]=PC,PC=10

	RST 18H

	$18 rst,

	1

	DF

	11

	-SP,-SP,[SP+1,SP]=PC,PC=18

	RST 20H

	$20 rst,

	1

	E7

	11

	-SP,-SP,[SP+1,SP]=PC,PC=20

	RST 28H

	$28 rst,

	1

	EF

	11

	-SP,-SP,[SP+1,SP]=PC,PC=28

	RST 30H

	$30 rst,

	1

	F7

	11

	-SP,-SP,[SP+1,SP]=PC,PC=30

	RST 38H

	$38 rst,

	1

	FF

	11

	-SP,-SP,[SP+1,SP]=PC,PC=38

	SBC (HL)

	m sbc,

	1

	9E

	7

	***V1*

	A=A-[HL]-CY

	SBC A,(IX+n)

	n ix sbcx,

	3

	DD 9E xx

	19

	***V1*

	A=A-[IX+n]-CY

	SBC A,(IY+n)

	n iy sbcx,

	3

	FD 9E xx

	19

	***V1*

	A=A-[IY+n]-CY

	SBC A,n

	n sbc#,

	2

	DE xx

	7

	***V1*

	A=A-n-CY

	SBC HL,BC

	b sbcp,

	2

	ED 42

	15

	***V1*

	HL=HL-BC-CY

	SBC HL,DE

	d sbcp,

	2

	ED 52

	15

	***V1*

	HL=HL-DE-CY

	SBC HL,HL

	h sbcp,

	2

	ED 62

	15

	***V1*

	HL=HL-HL-CY

	SBC HL,SP

	sp sbcp,

	2

	ED 72

	15

	***V1*

	HL=HL-SP-CY

	SBC r

	r sbc,

	1

	98+r

	4

	***V1*

	A=A-r-CY

	SCF

	scf,

	1

	37

	4

	--0-01

	CY=1

	SET b,(HL)

	m b set,

	2

	CB C6+8*b

	15

	[HL]=[HL]v{2^b}

	SET b,(IX+n)

	n ix b setx,

	4

	DD CB xx C6+8*b

	23

	[IX+n]=[IX+n]v{2^b}

	SET b,(IY+n)

	n iy b setx,

	4

	FD CB xx C6+8*b

	23

	[IY+n]=[IY+n]v{2^b}

	SET b,r

	r b set,

	2

	CB C0+8*b+r

	8

	r=rv{2^b}

	SLA (HL)

	m sla,

	2

	CB 26

	15

	**0P0*

	[HL]=[HL]*2

	SLA (IX+n)

	n ix sla,

	4

	DD CB xx 26

	23

	**0P0*

	[IX+n]=[IX+n]*2

	SLA (IY+n)

	n iy sla,

	4

	FD CB xx 26

	23

	**0P0*

	[IY+n]=[IY+n]*2

	SLA r

	r sla,

	2

	CB 20+r

	8

	**0P0*

	r=r*2

	SLL (HL)

	m sll,

	2

	CB 36

	15

	**0P0*

	[HL]=[HL]*2+1

	SLL (IX+n)

	n ix sllx,

	4

	DD CB xx 36

	23

	**0P0*

	[IX+n]=[IX+n]*2+1

	SLL (IY+n)

	n iy sllx,

	4

	FD CB xx 36

	23

	**0P0*

	[IY+n]=[IY+n]*2+1

	SLL r

	r sll,

	2

	CB 30+r

	8

	**0P0*

	r=r*2+1

	SRA (HL)

	m sra,

	2

	CB 2E

	15

	**0P0*

	[HL]=(signed)[HL]/2

	SRA (IX+n)

	n ix srax,

	4

	DD CB xx 2E

	23

	**0P0*

	[IX+n]=(signed)[IX+n]/2

	SRA (IY+n)

	n iy srax,

	4

	FD CB xx 2E

	23

	**0P0*

	[IY+n]=(signed)[IY+n]/2

	SRA r

	r sra,

	2

	CB 28+r

	8

	**0P0*

	r=(signed)r/2

	SRL (HL)

	m sra,

	2

	CB 3E

	15

	**0P0*

	[HL]=(unsigned)[HL]/2

	SRL (IX+n)

	n ix srlx,

	4

	DD CB xx 3E

	23

	**0P0*

	[IX+n]=(unsigned)[IX+n]/2

	SRL (IY+n)

	n iy srlx,

	4

	FD CB xx 3E

	23

	**0P0*

	[IY+n]=(unsigned)[IY+n]/2

	SRL r

	r srl,

	2

	CB 38+r

	8

	**0P0*

	r=(unsigned)r/2

	SUB (HL)

	m sub,

	1

	96

	7

	***V1*

	A=A-[HL]

	SUB (IX+n)

	n ix subx,

	3

	DD 96 xx

	19

	***V1*

	A=A-[IX+n]

	SUB (IY+n)

	n iy subx,

	3

	FD 96 xx

	19

	***V1*

	A=A-[IY+n]

	SUB n

	n sub#,

	2

	D6 xx

	7

	***V1*

	A=A-n

	SUB r

	r sub,

	1

	90+r

	4

	***V1*

	A=A-r

	XOR (HL)

	m xor,

	1

	AE

	7

	***P00

	A=Ax[HL]

	XOR (IX+n)

	n ix xorx,

	3

	DD AE xx

	19

	***P00

	A=Ax[IX+n]

	XOR (IY+n)

	n ix xorx,

	3

	FD AE xx

	19

	***P00

	A=Ax[IY+n]

	XOR n

	n xor#,

	2

	EE xx

	7

	***P00

	A=AxN

	XOR r

	r xor,

	1

	A8+r

	4

	***P00

	A=Axr

Legend

	
Clock

	
The time it takes to execute the instruction in CPU cycles.
If there are two numbers given for Clock, then the highest is when the
jump is taken, the lowest is when it skips the jump.

	
Size

	
How many bytes the instruction takes up in a program.

	
SZHPNC

	
How the different Z80 flags (bits of the "F" register) are
affected (S=Sign, Z=Zero, H=Half Carry, P=Parity/Overflow,
N=Add/Subtract, C=Carry):

Table 14. Flag effect symbols

	Symbol
	Meaning

	-

	Flag unaffected

	*

	Flag affected

	0

	Flag reset

	1

	Flag set

	?

	Unknown

	P

	Parity/Overflow flag used as parity

	V

	Parity/Overflow flag used as overflow

	
Object code

	
The equivalent machine code instruction in hexadecimal,
with "xx" instead of the parameters (e.g. addresses or bytes), and
some calculations based on certain parameters (e.g. registers or bit
numbers).

	
b

	
Bit. Can be 0-7.

	
r

	
Register. Can be "B", "C", "D", "E", "H", "L" or "A".

Table 15. Register values in opcodes

	Register
	Value of r in the object code

	B

	0

	C

	1

	D

	2

	E

	3

	H

	4

	L

	5

	A

	7

The Solo Forth’s Z80 assembler treats (HL) as a register
named m, with value 6.

Glossary

"

"n"

 "n" (-- c) "quote-n-quote"

A character constant containing the (lowercase) character
used by y/n, y/n? and no? to represent a negative
answer. By default it’s "n". For localization, the value
can be changed with c!>.

See also: "y".

Source file: <src/lib/keyboard.yes-question.fs>.

"y"

 "y" (-- c) "quote-y-quote"

A character constant containing the (lowercase) character
used by y/n, y/n? and yes?, to represent an
affirmative answer. By default it’s "y". For localization,
the value can be changed with c!>.

See also: "n".

Source file: <src/lib/keyboard.yes-question.fs>.

#

#

 # (ud1 -- ud2) "number-sign"

Divide ud1 by the number in base, giving the quotient
ud2 and the remainder n. (n is the least significant
digit of ud1.) Convert n to external form and add the
resulting character to the beginning of the pictured numeric
output string that was started by <#.

is tipically used between <# and #>.

Definition:

 : # (ud1 -- ud2) base @ ud/mod rot >digit hold ;

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: hold, ud/mod, >digit.

Source file: <src/kernel.z80s>.

#>

 #> (xd -- ca len) "number-sign-greater"

End the pictured numeric output conversion that was started by
<#: Drop xd and make the pictured numeric output string
available as the string ca len.

Definition:

 : #> (xd -- ca len) 2drop hld @ pad over - ;

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: #, #s, hold, hld, sign, pad.

Source file: <src/kernel.z80s>.

#block-drives

 #block-drives (-- ca) "number-sign-block-drives"

A cvariable. ca is the address of a byte containing
the number of block drives defined in block-drives, i.e. the
number of drives that are used for blocks. #block-drives
could be modified manually, provided also block-drives is
configured accordingly, but set-block-drives is provided for
that.

The default value of #block-drives is 1, which is restored
by cold.

See also: max-blocks.

Source file: <src/kernel.z80s>.

#chars

 #chars (ca len c -- +n) "dash-chars"

Return the count +n of chars c in a string ca len.

See also: #spaces, char-in-string?, char-position?.

Source file: <src/lib/strings.MISC.fs>.

#do

 #do Compilation: (-- do-sys) "dash-do"

Execute 0 ?do and leave do-sys to be consumed by
loop or +loop.

#do is an immediate and compile-only word.

Usage example:

 : times (n --) #do i . loop ;

0 times \ prints nothing
4 times \ prints 0 1 2 3

See also: ?do, do, -do.

Origin: Comus.

Source file: <src/lib/flow.do.fs>.

#esc-order

 #esc-order (-- a) "number-sign-esc-order"

A variable. a is the address of a cell containing the
number of word lists in the escaped strings search order.

See also: esc-context, max-esc-order, get-esc-order,
set-esc-order, >esc-order.

Source file: <src/lib/strings.escaped.fs>.

#file-ids

 #file-ids (-- n)

n is the total number of file identifiers that can be
used.

See also: file-ids, file-id.

Source file: <src/lib/dos.plus3dos.fs>.

#indented

 #indented (-- a) "number-sign-indented"

A variable. a is the address of a cell containing the
numbers of characters indented on the current line.

See also: #ltyped, indented+.

Source file: <src/lib/display.ltype.fs>.

#kk

 #kk (-- n) "dash-k-k"

A cconstant. n is the number of keyboard keys, i.e. the
number of physical rubber keys on the keyboard of the
original ZX Spectrum: 40.

See also: kk-ports, kk-chars, kk-0#, kk-0, kk-1#,
kk-1, kk-2#, kk-2, kk-3#, kk-3, kk-4#, kk-4,
kk-5#, kk-5, kk-6#, kk-6, kk-7#, kk-7, kk-8#,
kk-8, kk-9#, kk-9, kk-a#, kk-a, kk-b#, kk-b,
kk-c#, kk-c, kk-cs#, kk-cs, kk-d#, kk-d,
kk-e#, kk-e, kk-en#, kk-en, kk-f#, kk-f,
kk-g#, kk-g, kk-h#, kk-h, kk-i#, kk-i, kk-j#,
kk-j, kk-k#, kk-k, kk-l#, kk-l, kk-m#, kk-m,
kk-n#, kk-n, kk-o#, kk-o, kk-p#, kk-p, kk-q#,
kk-q, kk-r#, kk-r, kk-s#, kk-s, kk-sp#,
kk-sp, kk-ss#, kk-ss, kk-t#, kk-t, kk-u#,
kk-u, kk-v#, kk-v, kk-w#, kk-w, kk-x#, kk-x,
kk-y#, kk-y, kk-z.

Source file: <src/lib/keyboard.MISC.fs>.

#lag

 #lag (-- ca n) "number-sign-lag"

Part of specforth-editor:
Return cursor address ca and count n after cursor till
end of line.

See also: #lead.

Source file: <src/lib/prog.editor.specforth.fs>.

#lead

 #lead (-- a n) "number-sign-lead"

Part of specforth-editor:
From the cursor pointer r# compute the line address a
in the block buffer and the offset from a to the cursor
location n.

See also: #locate, #lag.

Source file: <src/lib/prog.editor.specforth.fs>.

#locate

 #locate (-- n1 n2) "number-sign-locate"

Part of specforth-editor:
From the cursor pointer r# compute the line number n2
and the character offset n1 in line number n2.

See also: #lead, c/l.

Source file: <src/lib/prog.editor.specforth.fs>.

#ltyped

 #ltyped (-- a) "l-typed-number-sign"

A variable . a is the address of a cell containing the
number of characters displayed by ltype on the current
row.

See also: ltyped, #indented.

Source file: <src/lib/display.ltype.fs>.

#order

 #order (-- a) "number-sign-order"

A user variable. a is the address of a cell containing the
number of word lists in the search order.

See also: context, max-order, get-order, set-order,
>order, wordlist.

Source file: <src/kernel.z80s>.

#s

 #s (ud1 -- ud2) "number-sign-s"

Convert one digit of ud1 according to the rule for #.
Continue conversion until the quotient is zero. ud2 is zero.
Used between <# and #>.

Definition:

 #s (ud1 -- ud2) begin # 2dup or 0until ;

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

Source file: <src/kernel.z80s>.

#spaces

 #spaces (ca len -- +n) "dash-spaces"

Count number +n of spaces in a string ca len.

See also: #chars, spaces.

Source file: <src/lib/strings.MISC.fs>.

#tib

 #tib (-- a) "number-sign-t-i-b"

A variable. a is the address of a cell containing the number
of characters in 'tib', the terminal input buffer.

Origin: Forth-83 (Required Word Set), Forth-94 (CORE EXT,
obsolescent).

See also: /tib.

Source file: <src/kernel.z80s>.

#words

 #words (-- n) "number-sign-words"

n is the number of words currently defined in the system,
which is updated by header,.

See also: fyi, greeting, cold.

Source file: <src/kernel.z80s>.

%

%

 % (n1 n2 -- n3) "per-cent"

n1 is percentage n3 of n2.

See also: u%, */.

Source file: <src/lib/math.operators.1-cell.fs>.

'

'

 ' ("name" -- xt) "tick"

If name is found in the current search order, return its
execution token xt, else throw an exception.

Definition:

 : ' ("name" -- xt) defined dup ?defined name> ;

Origin: Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: ['], '', defined, ?defined, >.

Source file: <src/kernel.z80s>.

''

 '' ("name" -- xtp) "tick-tick"

If name is found in the current search order, return its
execution-token pointer xtp, else throw an exception.

Since aliases share the execution token of their original
word, it’s not possible to get the name of an alias from
its execution token. But '' can do it:

 ' drop alias discard
' discard >name .name \ this prints "drop"
'' discard >>name .name \ this prints "discard"

See also: [''], '.

Source file: <src/lib/compilation.fs>.

'bs'

 'bs' (-- c) "tick-b-s-tick"

A character constant that returns the caracter code used as
backspace (8).

See also: 'cr', 'tab'.

Source file: <src/lib/display.control.fs>.

'cr'

 'cr' (-- c) "tick-c-r-tick"

A character constant that returns the caracter code used as
carriage return (13).

See also: cr, crs, newline, 'lf'.

Source file: <src/lib/display.control.fs>.

'ctrl-z'

 'ctrl-z' (-- c) "tick-control-z-tick"

c is the character used by +3DOS for padding the files,
which is $1A.

Source file: <src/lib/dos.plus3dos.fs>.

'lf'

 'lf' (-- c) "tick-l-f-tick"

A character constant that returns the caracter code used as
line feed (10).

In the ZX Spectrum’s character set, control character
code 10 is not called "line feed" but "cursor down", which
is analogous.

See also: cr, newline.

Source file: <src/lib/display.control.fs>.

'line

 'line (-- ca len)

Part of the gforth-editor:
Return the rest of the current line, from the
current position.

See also: 'rest, c/l, 'par.

Source file: <src/lib/prog.editor.gforth.fs>.

'par

 'par (buf "ccc<eol>" -- ca len)

Part of the gforth-editor:
Parse ccc. If the result string is empty,
discard it and return the counted string at buf;
else return the parsed string and also store it
at buf as a counted string.

See also: 'rest, 'line.

Source file: <src/lib/prog.editor.gforth.fs>.

'rest

 'rest (-- ca len)

Part of the gforth-editor:
Return the rest of the current screen, from the
current position.

See also: 'line, 'par, scr, block, b/buf.

Source file: <src/lib/prog.editor.gforth.fs>.

'tab'

 'tab' (-- c) "tick-tab-tick"

A character constant that returns the caracter code used as
tabulator (6).

See also: tab, 'cr', 'bs'.

Source file: <src/lib/display.control.fs>.

(

(

 (("ccc<paren>" --) "paren"

Parse ccc delimited by a right parenthesis. The number of
characters in ccc may be zero to the number of characters in
the parse area.

(is an immediate word.

Definition:

 : (("ccc<paren>" --) ')' parse 2drop ; immediate

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: \, parse.

Source file: <src/kernel.z80s>.

(+ato

 (+ato (n1 n2 xt --) "paren-plus-a-to"

Add n1 to element n2 of 1-dimension single-cell
values array xt.

See also: avalue, +ato.

Source file: <src/lib/data.array.value.fs>.

(+cato

 (+cato (c n xt --) "paren-plus-c-a-to"

Add c to element n of 1-dimension character values
array xt.

See also: cavalue, +cato.

Source file: <src/lib/data.array.value.fs>.

(+loop

 (+loop (n --) (R: loop-sys1 -- loop-sys2) "paren-plus-loop"

Add n to the loop index. If the loop index did not cross the
boundary between the loop limit minus one and the loop limit,
continue execution at the beginning of the loop. Otherwise,
discard the loop parameters and continue execution immediately
following the loop.

(+loop is compiled by +loop.

See also: (loop.

Source file: <src/kernel.z80s>.

(-do

 (-do (n1|u1 n2|u2 --) (R: -- loop-sys |) "paren-minus-do"

If n1|u1 is not less than n2|u2, discard both
parameters and continue execution at the location given by
the consumer of the do-sys left by -do at compilation
time. Otherwise set up loop control parameters loop-sys
with index n2|u2 and limit n1|u1 and continue executing
immediately following -do. Anything already on the
return stack becomes unavailable until the loop control
parameters loop_sys are discarded.

(-do is compiled by -do.

Source file: <src/lib/flow.do.fs>.

(."

 (." (--) "paren-dot-quote"

Type the compiled string that follows. (." is the
run-time procedure compiled by .".

Definition:

 : (." (--) r@ count dup char+ r> + >r type ;

See also: ,", type, count.

Source file: <src/kernel.z80s>.

(.word

 (.word (nt --) "paren-dot-word"

Default action of .word: display the name of the
definition nt and execute tab.

Source file: <src/lib/tool.list.words.fs>.

(.xs

 (.xs (--) "paren-dot-x-s"

Display a list of the items in the current xstack; TOS is
the right-most item.

(.xs is a factor of .xs.

Source file: <src/lib/data.xstack.fs>.

(0-1-8-color.

 (0-1-8-color. (n c --) "paren-zero-one-eight-color-dot"

emit control character c. Then convert n to the set
0, 1 and 8 and emit it. The conversion of n is done as
follows:

	
0, 1 and 8 are not changed.

	
2, 4 and 6 are converted to 0.

	
3, 5 and 7 are converted to 1.

	
Values greater than 8 or less than 0 are converted to 8.

This word is a factor of flash. and bright..

Source file: <src/lib/display.attributes.fs>.

(0-9-color.

 (0-9-color. (-- a) "paren-zero-nine-color-dot"

Return the address a of a routine used by paper. and
ink.. This routine prints a color attribute in the range
0..9.

Input:
- A = attribute control char ($10 for ink, $11 for paper)
- TOS = attribute value (0..9)

If TOS is greater than 9, 9 is used instead.

Source file: <src/lib/display.attributes.fs>.

(2ato

 (2ato (xd n xt --) "paren-two-a-to"

Store xd into element n of 1-dimension double-cell
values array xt.

See also: 2ato.

Source file: <src/lib/data.array.value.fs>.

(;code

 (;code (--) (R: a --) "paren-semicolon-code"

Rewrite the code field of the most recently defined high-level
word (it cannot be a code word) to point to the following
machine code sequence, which is at a.

(;code is the run-time procedure compiled by ;code and
does>.

Definition:

 : (;code (--) (R: a --) r> latestxt 1+ ! ;

See also: latestxt.

Source file: <src/kernel.z80s>.

(>drive-block

 (>drive-block (u1 -- u2) "paren-to-drive-block"

Convert block u1 to its equivalent u2 in its
corresponding disk drive, which is set the current drive.

(>drive-block becomes the action of >drive-block
after block-drives has been loaded.

See also: ?drive#, ?block-drive, set-drive,
set-block-drives.

Source file: <src/lib/dos.COMMON.fs>.

(>tape-file

 (>tape-file (--) "paren-to-tape-file"

Write a tape file using the data stored at tape-header.

(>tape-file is a factor of >tape-file.

Source file: <src/lib/tape.fs>.

(?ccase

 (?ccase (c ca len --) "paren-question-c-case"

Run-time procedure compiled by ?ccase. If c is in the
string ca len, execute the n-th word compiled after
?ccase, where n is the position of the first c in the
string (0..len-1). If c is not in ca len, do nothing.

Source file: <src/lib/flow.ccase.fs>.

(?do

 (?do (n1|u1 n2|u2 --) (R: -- loop-sys |) "paren-question-do"

If n1|u1 is equal to n2|u2, continue execution at the
location given by the consumer of the do-sys left by ?do
at compilation time. Otherwise set up loop control parameters
loop-sys with index n2|u2 and limit n1|u1 and continue
executing immediately following ?do. Anything already on
the return stack becomes unavailable until the loop control
parameters loop_sys are discarded.

(?do is compiled by ?do.

See also: (do, (-do.

Source file: <src/kernel.z80s>.

(abort

 (abort (--) "paren-abort"

Restart the system by emptying the stack and performing
quit.

Definition:

 : (abort (--) empty-stack boot quit ;

See also: error, abort, boot, empty-stack.

Source file: <src/kernel.z80s>.

(abort"

 (abort" (x --) "paren-abort-quote"

If x is not zero, perform the function of -2 throw,
displaying the string that was compiled inline by abort".

(abort" is the run-time procedure compiled by
abort".

See also: throw.

Source file: <src/lib/exception.fs>.

(aif

 (aif (op -- orig cs-id) "paren-a-if"

Compile the Z80 assembler absolute-jump instruction op
and put the location of a new unresolved forward reference
orig and the assembler control-structure identifier
cs_id onto the stack, to be consumed by aelse or
athen.

op was left by any of the following assembler
conditions: nz?, z?, nc?, c?, po?, pe?, p?,
m?.

(aif is a factor of aif and aelse.

See also: >mark.

Source file: <src/lib/assembler.fs>.

(any-of

 (any-of (x#0 x#1 ... x#n n -- x#0 x#0 | x#0 0) "paren-any-of"

The run-time factor of any-of. If x#0 equals any of
x#1 …​ x#n, return x#0 x#0; else return x#0 0.

Source file: <src/lib/flow.case.fs>.

(at-xy

 (at-xy (col row --) "paren-at-x-y"

Set the cursor coordinates to column col and row row,
by displaying control character 22 followed by col and
row, as needed by some display modes, e.g. mode-64ao
and mode-42pw. The upper left corner is column zero, row
zero.

(at-xy is a possible action of at-xy, which is a
deferred word (see defer) configured by the current
display mode.

The default mode-32 expects row right after
control character 22, and then col, i.e in the order used
by Sinclair BASIC. This will be fixed/unified in a future
version of Solo Forth.

Source file: <src/lib/display.mode.COMMON.fs>.

(ato

 (ato (x n xt --) "paren-a-to"

Store x into element n of 1-dimension single-cell
values array xt.

See also: ato.

Source file: <src/lib/data.array.value.fs>.

(auntil

 (auntil (dest cs-id op) "paren-a-until"

Compile a Z80 assembler conditional absolute-jump opcode
op.

(auntil is a factor of auntil and aagain.

Source file: <src/lib/assembler.fs>.

(baden-sqrt

 (baden-sqrt (n1 -- n2 n3) "paren-baden-square-root"

Integer square root n3 of radicand n1 with remainder
n2. (baden-sqrt is a factor of baden-sqrt.

Source file: <src/lib/math.operators.1-cell.fs>.

(between-of

 (between-of (x1 x2 x3 -- x1 x1 | x1 x4) "paren-between-of"

The run-time factor of between-of. If x1 is in range
x2 x3, as calculated by between, return x1 x1;
otherwise return x1 x4, being x4 not equal to x1.

Source file: <src/lib/flow.case.fs>.

(bye

 (bye (--) "paren-bye"

Restore the two lower lines of the screen, as expected by
BASIC, set interrupt mode 1, restore the OS stack pointer,
restore the alternate HL Z80 register, and finally force a
"STOP" BASIC error in order to return control to the host OS.

(bye is the final low-level procedure of bye.

Source file: <src/kernel.z80s>.

(c

 (c (ca len --) "paren-c"

Copy the string ca len to the cursor line at the cursor
position. (c is a factor of
c.

See also: #lag, r#, #lead, cmove, update.

Source file: <src/lib/prog.editor.specforth.fs>.

(cat

 (cat (ca1 ca2 x -- n ior) "paren-cat"

Fill a buffer ca2 with part of the directory (sorted),
using filename stored at ca1. Input and output
parameters:

	

ca1

	
address of $FF-terminated filename (wildcards permitted)

	

ca2

	
address of buffer

	

x (low byte)

	
bit 0 set if system files are included

	

x (high byte)

	
size of the buffer in entries, plus one (>=2)

	

n

	
number of completed entries in buffer (if non-zero, there may be more to come)

	

ior

	
I/O result code (if non-zero, n is undefined)

(cat is a factor of wcat and a direct interface to
the DOS CATALOG +3DOS routine.

Entry 0 of the buffer must be preloaded with the first
filename required (or erased with zeroes). Entry 1 will
contain the first matching filename greater than the
preloaded entry (if any). If the buffer is too small for
the catalogue, (cat can be called again with entry 0
replaced by entry n (task done by more-cat) to fetch
the next part of the directory.

See also: cat-buffer, cat-entries, /cat-entry.

Source file: <src/lib/dos.plus3dos.fs>.

(cato

 (cato (c n xt --) "paren-c-a-to"

Store c into element n of 1-dimension character
values array xt.

See also: cato.

Source file: <src/lib/data.array.value.fs>.

(ccase

 (ccase (c ca len --) "paren-c-case"

Run-time procedure compiled by ccase. If c is in the
string ca len, execute the n-th word compiled after
ccase, where n is the position of the first c in the
string (0..len-1). If c is not in ca len,
execute the word compiled right before endccase.

Source file: <src/lib/flow.ccase.fs>.

(ccase0

 (ccase0 (c ca len --) "paren-c-case-zero"

Run-time procedure compiled by ccase0. If c is in the
string ca len, execute the n-th word compiled after
ccase0, where n is the position of the first c in the
string (0..len-1) plus 1. If c is not in ca len,
execute the word compiled right after ccase0.

Source file: <src/lib/flow.ccase.fs>.

(close-file

 (close-file (fid -- ior) "paren-close-file"

Close the file identified by fid and return the I/O
result code ior.

(close-file is a factor of close-file.
(close-file closes the file, but does not update
file-ids.

Source file: <src/lib/dos.plus3dos.fs>.

(comp'

 (comp' (nt -- xt) "paren-comp-tick"

A factor of name>compile. If nt is an immediate word,
return the xt of execute, else return the xt of
compile,.

See also: immediate?.

Source file: <src/lib/compilation.fs>.

(cr

 (cr (--) "paren-c-r"

Transmit a carriage return to the selected output device.
(cr is the default action of the deferred word cr (see
defer).

Source file: <src/kernel.z80s>.

(d.

 (d. (d n -- ca len) "paren-d-dot"

Convert d to an unsigned number in the current base,
with n digits, as string ca len.

See also: (dbin., (dhex..

Source file: <src/lib/display.numbers.fs>.

(dbin.

 (dbin. (d n --) "paren-d-bin-dot"

Display d as an unsigned binary number with n digits.

See also: (dhex., 32bin., 16bin., 8bin., bin..

Source file: <src/lib/display.numbers.fs>.

(defer

 (defer (--) "paren-defer"

throw error #-261 ("deferred word is uninitialized".
(defer is the default action of the uninitialized
deferred words (see defer).

Definition:

 : (defer (--) #-261 error ;

Source file: <src/kernel.z80s>.

(delete-file

 (delete-file (ca -- ior) "paren-delete-file"

Delete the disk file named in the $FF-terminated string
ca and return the I/O result code ior.

(delete-file is a factor of delete-file.

Source file: <src/lib/dos.plus3dos.fs>.

(dhex.

 (dhex. (d n --) "paren-d-hex-dot"

Display d as an unsigned hexadecimal number with n digits.

See also: (dbin., 32hex., 16hex., 8hex., hex..

Source file: <src/lib/display.numbers.fs>.

(do

 (do (n1|u1 n2|u2 --) (R: -- loop-sys) "paren-do"

Set up loop control parameters loop-sys with index n2|u2
and limit n1|u1 and continue executing immediately following
do. Anything already on the return stack becomes
unavailable until the loop control parameters loop_sys are
discarded.

(do is compiled by do.

See also: (?do, (-do.

Source file: <src/kernel.z80s>.

(dstep

 (dstep (R: x ud -- x ud' | x) "paren-d-step"

The run-time procedure compiled by dstep.

If the loop index ud is zero, discard it and continue
execution after the loop. Otherwise decrement the loop
index and continue execution at the beginning of the loop.

Source file: <src/lib/flow.dfor.fs>.

(fp@

 (fp@ (-- fa) "paren-f-p-fetch"

Return the address fa above the top of the floating-point
stack. (fp@ is a factor of fp@.

See also: fp.

Source file: <src/lib/math.floating_point.rom.fs>.

(g-emit

 (g-emit (c --) "paren-g-emit"

Display character c (32..127) at the current graphic
coordinates.

The character is printed with overprinting (equivalent to
1 overprint).

See also: g-emit, g-emit_.

Source file: <src/lib/display.g-emit.fs>.

(gigatype

 (gigatype (ca len a1 a2 --) "paren-gigatype"

If len is greater than zero, display text string ca len
at screen address a1 using the current fonts, doubled
pixels (16x16 pixels per character) and modifying the
characters on the fly after style data table a2.

(gigatype is written in Z80 and it’s the low-level
procedure of gigatype.

Source file: <src/lib/display.gigatype.fs>.

(greater-of

 (greater-of (n1 n2 -- n1 n1 | n1 n3) "paren-greater-of"

The run-time factor of greater-of.

If n1 is greater than n2, leave n1 n1; otherwise
leave n1 n3, being n3 not equal to n1.

See also: (less-of.

Source file: <src/lib/flow.case.fs>.

(heap-in

 (heap-in (--) "paren-heap-in"

If the current heap was created by bank-heap, page in
its bank, which is stored at heap-bank; else do nothing.

(heap-in is the action of heap-in.

Source file: <src/lib/memory.allocate.COMMON.fs>.

(home

 (home (--) "paren-home"

Default action of home: Set the cursor position at the
top left position (column 0, row 0).

Source file: <src/kernel.z80s>.

(index-block

 (index-block (u --) "paren-index-block"

Index block u, evaluating its header line. The only word
list in the search order must be index-wordlist.

(index-block is a common factor of index-block and
(make-thru-index.

Source file: <src/lib/blocks.indexer.COMMON.fs>.

(jr,

 (jr, (a op --) "paren-j-r-comma"

Compile a Z80 assembler relative-jump intruction op to
the absolute address a.

(jr, is a factor of jr,.

Source file: <src/lib/assembler.fs>.

(lcr

 (lcr (--) "paren-l-c-r"

A deferred word (see defer) whose default action is cr.
(lcr is the actual carriage return done by lcr,
before updating the data of the left-justified displaying
system. (lcr is a hook for the application, for
special cases.

See also: ltype.

Source file: <src/lib/display.ltype.fs>.

(less-of

 (less-of (n1 n2 -- n1 n1 | n1 n3) "paren-less-of"

The run-time factor of less-of.

If n1 is less than n2, leave n1 n1; otherwise leave
n1 n3, being n3 not equal to n1.

See also: (greater-of.

Source file: <src/lib/flow.case.fs>.

(load

 (load (u --) "paren-load"

Make block u the current input source and interpret it.

(load is a common factor of load and continued.

Definition:

 : (load (u --) dup lastblk ! block>source interpret ;

See also: block>source, interpret.

Source file: <src/kernel.z80s>.

(load-program

 (load-program (u --) "paren-load-program"

Load a program from block u, i.e. a set of blocks that
are loaded as a whole. The blocks of a program don’t have
block headers. Therefore programs cannot have internal
requisites, i.e. they use need only to load from the
library, which must be before the blocks of the program on
the disk or disks.

Programs don’t need --> or any similar word to control
the loading of blocks. The loading starts from block u
and continues until the last block of the disk or until
end-program is executed.

(load-program is a factor of load-program.
(load-program can be used to resume load-program
after an error, provided the code of block where the error
happened (lastblk) is not the continuation of the
previous block.

See also: loading-program.

Source file: <src/lib/blocks.fs>.

(located

 (located (ca len -- block | 0) "paren-located"

Locate the first block whose header contains the string ca
len (surrounded by spaces), and return its number. If not
found, return zero. The search is case-sensitive.

Only the blocks delimited by first-locatable and
last-locatable are searched.

(located is a deferred word (see defer). Its default
action is multiline-(located, which is under development;
its alternative old action is 1-line-(located.

(located is the default action of located, which is
changed by use-fly-index.

See also: default-first-locatable.

Source file: <src/lib/002.need.fs>.

(loop

 (loop (R: loop-sys1 -- loop-sys2) "paren-loop"

Increment the loop index by one. If the loop index did not
cross the boundary between the loop limit minus one and the
loop limit, continue execution at the beginning of the loop.
Otherwise, discard the loop parameters and continue execution
immediately following the loop.

(loop is compiled by loop.

See also: (+loop.

Source file: <src/kernel.z80s>.

(make-thru-index

 (make-thru-index (--) "paren-make-thru-index"

Create the blocks index, from first-locatable to
last-locatable.

(make-thru-index is a factor of make-thru-index.

See also: use-thru-index.

Source file: <src/lib/blocks.indexer.thru.fs>.

(mode-64ao-output_

 (mode-64ao-output_ (-- a) "paren-mode-64-a-o-output"

a is the address of a Z80 routine, the low-level
mode-64ao driver, which displays the character in the A
register. The Forth IP is not preserved.

mode-64ao-output_ is called by mode-64ao-output_ and
mode-64ao-emit.

Source file: <src/lib/display.mode.64ao.fs>.

(options

 (options (i*x x -- j*x) "paren-options"

Run-time procedure compiled by options[.

x = option to search for

Source file: <src/lib/flow.options-bracket.fs>.

(or-of

 (or-of (x1 x2 x3 -- x1 x1 | x1 x4) "paren-or-of"

The run-time factor of less-of.

Source file: <src/lib/flow.case.fs>.

(parse-esc-string

 (parse-esc-string (ca len "ccc<quote>" -- ca' len') "paren-parse-esc-string"

Parse a text string delimited by a double quote,
translating some configurable characters that are escaped
with a backslash. Add the translated string to ca len,
returning a new string ca' len' in the stringer.

(parse-esc-string is a factor of parse-esc-string.

See also: set-esc-order.

Source file: <src/lib/strings.escaped.fs>.

(pixel-pan-right

 (pixel-pan-right (-- a) "paren-pixel-pan-right"

Return the address a of a Z80 routine that pans the whole
screen one pixel to the right.

The BC register (the Forth IP) is not preserved.
This is intended, in order to save time when this routine
is called in a loop. Therefore the calling code must save
the BC register.

See also: pixel-pan-right, pixel-scroll-up.

Source file: <src/lib/graphics.scroll.fs>.

(pixel-scroll-up

 (pixel-scroll-up (-- a) "paren-pixel-scroll-up"

Return the address a of a Z80 routine that scrolls the
whole screen one pixel up.

The BC register (the Forth IP) is not preserved.
This is intended, in order to save time when this routine
is called in a loop. Therefore the calling code must save
the BC register.

See also: pixel-scroll-up.

Source file: <src/lib/graphics.scroll.fs>.

(rename-file

 (rename-file (ca1 ca2 -- ior) "paren-rename-file"

Rename filename ca1 (a $FF-terminated string) to filename
ca2 (a $FF-terminated string) and return the I/O result
code ior.

(rename-file is a factor of rename-file.

Source file: <src/lib/dos.plus3dos.fs>.

(resolve-ref

 (resolve-ref (orig b --) "paren-resolve-ref"

Resolve reference at orig to assembler label b.

See also: resolve-rl#, resolve-al#.

Source file: <src/lib/assembler.labels.fs>.

(rif

 (rif (op -- orig cs-id) "paren-r-if"

Compile the Z80 assembler conditional relative-jump
instruction op. Leave address orig to be resolved by
relse or rthen and the identifier cs-id of the
control-flow structure rif .. relse .. rthen.

(rif is a factor of rif and relse.

Source file: <src/lib/assembler.fs>.

(runtil

 (runtil (dest cs-id op --) "paren-r-until"

Compile a Z80 assembler conditional relative-jump
instruction op to address dest, as part of a
control-flow structure identified by cs-id.

(runtil is a factor of runtil,
ragain and rstep.

Source file: <src/lib/assembler.fs>.

(source-id

 (source-id (-- a) "paren-source-i-d"

A constant. a is the address of a cell containinig the value
returned by source-id.

Source file: <src/kernel.z80s>.

(step

 (step (R: u -- u') "paren-step"

The run-time procedure compiled by step.

If the loop index is zero, discard the loop parameters and
continue execution after the loop. Otherwise decrement the
loop index and continue execution at the beginning of the
loop.

Source file: <src/lib/flow.for.fs>.

(substitution

 (substitution (ca1 len1 -- ca2) "paren-substitution"

Given a string ca1 len1 create its definition in
substitute-wordlist its substitution and return the
address of its storage space in data space, not allocated.

(substitution is a common factor of substitution and
xt-substitution.

See also: substitution, xt-substitution, replaces.

Source file: <src/lib/strings.replaces.fs>.

(tape-file>

 (tape-file> (--) "paren-tape-file-from"

Read a tape file using the data stored at tape-header.

(tape-file> is a factor of tape-file>.

Source file: <src/lib/tape.fs>.

(udg-block

 (udg-block (width height a "name..." --) "paren-u-d-g-block"

Parse a UDG block, and store it from address a. width
and height are in characters. The maximum width is 7
(imposed by the size of Forth source blocks). height has
no maximum, as the UDG block can ocuppy more than one Forth
block (provided the Forth block has no index line, i.e.
load-program is used to load the source).

The scans can be formed by binary digits, by the characters
hold in udg-blank and udg-dot, or any combination of
both notations.

(udg-block is a common factor of udg-block and
,udg-block, whose documentation include usage examples.

See also: csprite, udg-group.

Source file: <src/lib/graphics.udg.fs>.

(user

 (user (+n "name" --) "paren-user"

Create a user variable name. +n is the offset within the
user area where the value for name is stored. Execution of
name leaves its absolute user area storage address. No user
space is allocated.

(user is a factor of ucreate.

See also: user, 2user, uallot.

Source file: <src/kernel.z80s>.

(warning"

 (warning" (f --) "paren-warning-quote"

If f is not zero, display the in-line string; else do
nothing.

(warning" is the inner procedure compiled by
warning".

Source file: <src/lib/exception.fs>.

(wat-xy

 (wat-xy (col row --) "paren-w-at-x-y"

Set the cursor coordinates to current-window cursor
coordinates col row. The upper left corner of the
window is column zero, row zero.

See also: wat-xy.

Source file: <src/lib/display.window.fs>.

(within-of

 (within-of (x1 x2 x3 -- x1 x1 | x1 x4) "paren-within-of"

The run-time factor of within-of. If x1 is in range
x2 x3, as calculated by within, return x1 x1;
otherwise return x1 x4, being x4 not equal to x1.

Source file: <src/lib/flow.case.fs>.

(~~

 (~~ (nt n u --) "paren-tilde-tilde"

The runtime action compiled by ~~ during the definition
of word nt in line n of block u:

If the content of ~~? is not zero, execute the following
words in the given order: ~~before-info, ~~info,
~~control and ~~after-info.

See also: ~~y.

Source file: <src/lib/tool.debug.tilde-tilde.fs>.

(~~info

 (~~info (--) "paren-tilde-tilde-info"

Default action of ~~info: Show the debugging info
compiled by ~~ and the current contents of the data
stack. At least to lines are used, depending on the
contents of the stack. The first line shows the block, line
and definition name where ~~ was compiled; the second
line shows the contents of the stack. The printing position
can be configured with ~~y.

Source file: <src/lib/tool.debug.tilde-tilde.fs>.

)

)

) (f --) "close-paren"

End an assertion.

) is an immediate word.

Origin: Gforth.

See also: assert(.

Source file: <src/lib/tool.debug.assert.fs>.

*

*

 * (n1|u1 n2|u2 -- n3|u3) "star"

Multiply n1|u1 by n2|u2 giving the product n3|u3.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: m*, um*, d*.

Source file: <src/kernel.z80s>.

*!

 *! (n|u a --) "star-store"

Multiply n|u by the single-cell number stored at a and store
the product in a

See also: 2*! /!, +!, -!.

Source file: <src/lib/memory.MISC.fs>.

*/

 */ (n1 n2 n3 -- n4) "star-slash"

Multiply n1 by n2 producing the intermediate
d. Divide d by n3 giving the quotient n4.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-94
(CORE), Forth-2012 (CORE).

See also: */mod, m*/, *, /, */_, */-.

Source file: <src/lib/math.operators.1-cell.fs>.

*/-

 */- (n1 n2 n3 -- n4) "star-slash-dash"

Multiply n1 by n2 producing the intermediate result
d. Divide d by n3 (doing a symmetric division),
giving the symmetric quotient n4.

See also: */-rem, */, */_, sm/rem.

Source file: <src/lib/math.operators.1-cell.fs>.

*/-rem

 */-rem (n1 n2 n3 -- n4 n5) "star-slash-dash-rem"

Multiply n1 by n2 producing the intermediate result
d. Divide d by n3 (doing a symmetric division), giving
the remainder n4 and the symmetric quotient n5.

See also: */mod, */_mod, sm/rem.

Source file: <src/lib/math.operators.1-cell.fs>.

*/_

 */_ (n1 n2 n3 -- n4) "star-slash-underscore"

Multiply n1 by n2 producing the intermediate result
d. Divide d by n3 (doing a floored division), giving
the floored quotient n4.

See also: */_mod, */, */-, fm/mod.

Source file: <src/lib/math.operators.1-cell.fs>.

*/_mod

 */_mod (n1 n2 n3 -- n4 n5) "star-slash-underscore-mod"

Multiply n1 by n2 producing the intermediate result
d. Divide d by n3 (doing a floored division), giving
the remainder n4 and the floored quotient n5.

See also: */mod, */_, */-rem, fm/mod.

Source file: <src/lib/math.operators.1-cell.fs>.

*/mod

 */mod (n1 n2 n3 -- n4 n5) "star-slash-mod"

Multiply n1 by n2 producing the intermediate
result d. Divide d by n3 producing the remainder
n4 and the quotient n5.

Definition:

 : */mod (n1 n2 n3 -- n4 n5) >r m* r> m/ ;

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-94
(CORE), Forth-2012 (CORE).

See also: /mod, */, */_mod, */-rem, m*, m/.

Source file: <src/kernel.z80s>.

+

+

 + (n1|u1 n2|u2 -- n3|u3) "plus"

Add n1|u1 to n2|u2, giving the sum n3|u3.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: m+, d+, 2+, 1+, -.

Source file: <src/kernel.z80s>.

+!

 +! (n|u a --) "plus-store"

Add n|u to the single-cell number at a.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: c+!, @, +, !.

Source file: <src/kernel.z80s>.

+3dos

 +3dos (--) "plus-three-dos"

An alias of noop that is defined only in the +3DOS version
of Solo Forth. Its goal is to check the DOS a program is
running on, using defined or [defined].

+3dos is an immediate word.

See also: dos, tr-dos, g+dos.

Source file: <src/kernel.z80s>.

+ato

 +ato (n1 n2 "name" --) "plus-a-to"

Add n1 to element n2 of 1-dimension single-cell
values array name.

+ato is an immediate word.

See also: avalue, (+ato.

Source file: <src/lib/data.array.value.fs>.

+beep>note

 +beep>note (+n1 -- +n2 +n3) "plus-beet-to-note"

Convert a positive pitch +n1 of beep to its
corresponding note +n3 (0..11) in octave +n2, being
zero the middle octave.

See also: beep>note, -beep>note, /octave, beep>dhz,
beep>bleep.

Source file: <src/lib/sound.48.fs>.

+branch

 +branch (n --) "plus-branch"

A run-time procedure to branch conditionally. If n is
positive, the following in-line address is copied to IP to
branch forward or backward.

+branch is compiled by -if and -until.

See also: branch, ?branch, 0branch, -branch.

Source file: <src/lib/flow.branch.fs>.

+cato

 +cato (c n "name" --) "plus-c-a-to"

Add c to element n of 1-dimension character values
array name.

+cato is an immediate word.

See also: cavalue, (+cato.

Source file: <src/lib/data.array.value.fs>.

+exit

 +exit (n --) (R: nest-sys | -- nest-sys |) "plus-exit"

If n is positive, return control to the calling
definition, specified by nest-sys.

+exit is not intended to be used within a
loop. Use 0>= if unloop exit then instead.

+exit can be used in interpretation mode to stop the
interpretation of a block.

See also: exit, ?exit, 0exit, -exit, +if, +while,
+until.

Source file: <src/lib/flow.conditionals.positive.fs>.

+field

 +field (n1 n2 "name" -- n3) "plus-field"

Create a definition for name with the execution semantics
defined below. Return n3 = n1 + n2 where n1 is the
offset in the data structure before +field executes,
and n2 is the size of the data to be added to the data
structure. n1 and n2 are in bytes.

name execution: (a1 -- a2)

Add n1 to a1 giving a2.

In Solo Forth, +field is an unitialized deferred word
(see defer), for which three implementations are
provided: +field-unopt, +field-opt-0 and
+field-opt-0124.

Origin: Forth-2012 (FACILITY EXT).

See also: begin-structure.

Source file: <src/lib/data.begin-structure.fs>.

+field-opt-0

 +field-opt-0 (n1 n2 "name" -- n3) "plus-field-opt-zero"

Optimized implementation of +field. This implementation
is more efficient than +field-unopt (but less than
+field-opt-0124) because the field 0 does not calculate
the field offset.

+field-opt-0 uses 31 bytes of data space.

Loading +field-opt-0 makes it the action of
+field.

Source file: <src/lib/data.begin-structure.fs>.

+field-opt-0124

 +field-opt-0124 (n1 n2 "name" -- n3) "plus-field-opt-zero-one-two-four"

Optimized implementation of +field that optimizes the
calculation of field offsets 0, 1, 2 and 4. Therefore it is
more efficient than +field-unopt and +field-opt-0, but
it uses 106 bytes of data space and needs case.

Loading +field-opt-0124 makes it the action of
+field.

Source file: <src/lib/data.begin-structure.fs>.

+field-unopt

 +field-unopt (n1 n2 "name" -- n3) "plus-field-unopt"

Unoptimized implementation of +field. This
implementation is less efficient than +field-opt-0 and
+field-opt-0124 because the field offset is calculated
also when it is 0.

The advantage of this implementation is it uses only 22
bytes of data space, so it could be useful in some cases.

Loading +field-unopt makes it the action of
+field.

Source file: <src/lib/data.begin-structure.fs>.

+if

 +if "plus-if"
 Compilation: (C: -- orig)
 Run-time: (f --)

Faster and smaller alternative to the idiom 0>= if.

+if is an immediate and compile-only word.

See also: if, 0if, -if, -branch ,+while, +until,
+exit.

Source file: <src/lib/flow.conditionals.positive.fs>.

+load

 +load (n --) "plus-load"

Load the block that is n blocks from the current one.

See also: load, blk, +thru.

Source file: <src/lib/blocks.fs>.

+loop

 +loop "plus-loop"
 Compilation: (do-sys --)

Compilation: Compile (+loop and resolve the do-sys
address left by do, ?do or -do.

+loop is an immediate and compile-only word.

Origin: Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: loop.

Source file: <src/lib/flow.do.fs>.

+order

 +order (wid --) "plus-order"

Remove all instances of the word list identified by wid
from the search order, then add it to the top.

See also: -order, >order, set-order, order.

Source file: <src/lib/word_lists.fs>.

+origin

 +origin (n -- a) "plus-origin"

Leave the memory address a relative by n bytes to the
origin parameter area. +origin is used to access or
modify the boot-up parameters at the origin area.

See the details in the source of the kernel.

Origin: fig-Forth.

Source file: <src/kernel.z80s>.

+perform

 +perform (a n --) "plus-perform"

Execute the execution token pointed by an offset of n
cells from base address a, i.e., execute the contents of
element n of the cell table that starts at a.

If the execution token is zero, do nothing.

See also: perform, execute, array>.

Source file: <src/lib/flow.MISC.fs>.

+place

 +place (ca1 len1 ca2 --) "plus-place"

Add the string ca1 len1 to the end of the counted string
ca2.

See also: place, s+, smove, count.

Source file: <src/lib/strings.MISC.fs>.

+seclusion

 +seclusion (wid1 wid2 -- wid1 wid2) "plus-seclusion"

Start more private definitions of a seclusion module.

See also: -seclusion, end-seclusion.

Source file: <src/lib/modules.MISC.fs>.

+stringer

 +stringer (-- a) "plus-stringer"

A variable. a is the address of a cell containing the
pointer of the stringer, i.e. an offset to its first free
address. The offset equals the number of free characters in
the stringer.

See also: empty-stringer.

Source file: <src/kernel.z80s>.

+thru

 +thru (u1 u2 --) "plus-thru"

Load consecutively the blocks that are u1 blocks through
u2 blocks from the current one.

See also: +load, blk, load.

Source file: <src/lib/blocks.fs>.

+toarg

 +toarg (--) "plus-to-arg"

Set the add action for the next local variable. Used with
locals created by arguments.

Loading +toarg makes @ the default action of
arguments locals, which is hold in arg-default-action.

See also: toarg.

Source file: <src/lib/locals.arguments.fs>.

+under

 +under (n1|u1 n2|u2 x -- n3|u3 x) "plus-under"

Add n2|u2 to n1|u2, giving the sum n3|u3.

+under is written in Z80. Its definition in Forth
is the following:

 : +under (n1|u1 n2|u2 x -- n3|u3 x) >r + r> ;

Origin: Comus.

See also: under+, +.

Source file: <src/lib/math.operators.1-cell.fs>.

+until

 +until "plus-until"
 Compilation: (C: dest --)
 Run-time: (f --)

Faster and smaller alternative to the idiom 0>= until.

+until is an immediate and compile-only word.

See also: until, 0until, -until, -branch, +if,
+while, +exit.

Source file: <src/lib/flow.conditionals.positive.fs>.

+while

 +while (n --) "plus-while"
 Compilation: (C: dest -- orig dest)
 Run-time: (f --)

Faster and smaller alternative to the idiom 0>= while.

+while is an immediate and compile-only word.

See also: while, 0while, -while, +if, +until, +exit.

Source file: <src/lib/flow.conditionals.positive.fs>.

,

,

 , (x --) "comma"

Reserve one cell of data space and store x in the cell.

Definition:

 : , (x --) here ! cell allot ;

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: 2,, c,, here, !, cell, allot.

Source file: <src/kernel.z80s>.

,"

 ," ("ccc<quote>" --) "comma-quote"

Parse "ccc" delimited by a double-quote and compile the
string.

Definition:

 : ," (--) '"' parse s, ;

See also: parse, s,, far,".

Source file: <src/kernel.z80s>.

,np

 ,np (x --) "comma-n-p"

Store x into the cell address pointed by np, the
name-space pointer, increasing it by one cell.

See also: far!.

Source file: <src/kernel.z80s>.

,udg-block

 ,udg-block (width height "name..." --) "comma-u-d-g-block"

Parse a UDG block, and compile it in data space. width
and height are in characters. The maximum width is 7
(imposed by the size of Forth source blocks). height has
no maximum, as the UDG block can ocuppy more than one Forth
block (provided the Forth block has no index line, i.e.
load-program is used to load the source).

The scans can be formed by binary digits, by the characters
hold in udg-blank and udg-dot, or any combination of
both notations.

Usage example:

 here 3 1 ,udg-block
..........X..X..........
...XXXXXX.X..X.XXXXXXX..
..XXXXXXXXXXXXXXXXXXXXX.
.XXXXXXXXXXXXXXXXXXXXXXX
.XX.X.X.X.X.X.X.X.X.X.XX
..XX..XX..XX..XX..XX.XX.
...X.XXX.XXX.XXX.XXX.X..
....X.X.X.X.X.X.X.X.X... constant tank

: .tank (--)
 tank dup emit-udga /udg+ dup emit-udga /udg+ emit-udga ;

cr .tank cr

See also: udg-block, csprite, udg-group, emit-udga.

Source file: <src/lib/graphics.udg.fs>.

-

-

 - (n1|u1 n2|u2 -- n3|u3) "minus"

Substract n2|u2 from n1|u1, giving the difference n3|u3.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: d-, 2-, 1-, +.

Source file: <src/kernel.z80s>.

-!

 -! (n|u a --) "minus-store"

Subtract n|u from the single-cell number stored at a.

See also: +!, 1-!, c-!.

Source file: <src/lib/memory.MISC.fs>.

-->

 --> (--) "next-block"

Continue interpretation with the next block.

--> is an immediate word.

Definition:

 : --> (--)
 ?loading refill 0= #-35 ?throw ; immediate

Origin: fig-Forth, Forth-79 (Reference Word Set), Forth-83
(Controlled Reference Words).

See also: ?-->, load, continued, ?loading, refill.

Source file: <src/kernel.z80s>.

-1

 -1 (-- -1) "minus-one"

Return -1. -1 is not a constant, but a code word,
which is faster.

See also: 0, 1, 2, true.

Source file: <src/kernel.z80s>.

-1..1

 -1..1 (-- -1|0|1) "minus-one-dot-dot-one"

Return a random number: -1, 0 or 1.

See also: -1|1, rnd, fast-random.

Source file: <src/lib/random.fs>.

-1|1

 -1|1 (-- -1|1) "minus-one-bar-one"

Return a random number: -1 or 1.

See also: -1..1, rnd, fast-random.

Source file: <src/lib/random.fs>.

->

 -> (i*x --)

Part of the hayes-test: Record depth and content of
stack.

See also: {, }.

Source file: <src/lib/meta.tester.hayes.fs>.

->

 -> (i*x --)

Part of ttester: Record depth and contents of
stack.

See also: t{, }t.

Source file: <src/lib/meta.tester.ttester.fs>.

->in/l

 ->in/l (-- n) "minus-to-in-slash-l"

Return number n of characters not interpreted yet in the
current line of the block being interpreted. No check is done
whether any block is actually being interpreted.

->in/l is a factor of \.

Definition:

 : ->in/l (-- n) c/l >in/l - ;

See also: blk-line, >in/l, >in, c/l.

Source file: <src/kernel.z80s>.

-beep>note

 -beep>note (-n1 -- -n2 +n3) "minus-beep-to-note"

Convert a negative pitch -n1 of beep to its
corresponding note +n3 (0..11) in octave -n2, being
zero the middle octave.

See also: beep>note, +beep>note, /octave, beep>dhz,
beep>dhz.

Source file: <src/lib/sound.48.fs>.

-block-drives

 -block-drives (--) "minus-block-drives"

Fill block-drives with not-block-drive, making no disk
drive be used as block drive.

See also: set-block-drives, get-block-drives.

Source file: <src/lib/dos.COMMON.fs>.

-branch

 -branch (n --) "minus-branch"

A run-time procedure to branch conditionally. If n is
negative, the following in-line address is copied to IP to
branch forward or backward.

-branch is compiled by +if and +until.

See also: branch, ?branch, 0branch, +branch.

Source file: <src/lib/flow.branch.fs>.

-do

 -do
 Compilation: (-- do-sys)
"minus-do"

Compile (-do and leave do-sys to be consumed by loop
or +loop. -do is an alternative to do and ?do,
to create count-down loops with +loop.

-do is an immediate and compile-only word.

Usage example:

 : -count-down (limit start --)
 -do i . -1 +loop ;

0 0 -count-down \ prints nothing
4 0 -count-down \ prints nothing
0 4 -count-down \ prints 4 3 2 1

\ Compare to:

: ?count-down (limit start --)
 ?do i . -1 +loop ;

0 0 ?count-down \ prints nothing
4 0 ?count-down \ prints 0 -1..-32768 32767..4
0 4 ?count-down \ prints 4 3 2 1 0

: count-down (limit start --)
 do i . -1 +loop ;

0 0 count-down \ prints 0
4 0 count-down \ prints 0 -1..-32768 32767..4
0 4 count-down \ prints 4 3 2 1 0

Origin: Gforth.

Source file: <src/lib/flow.do.fs>.

-dup

 -dup (x -- x x | x) "minus-dup"

Duplicate x if it’s negative.

See also: dup, 0dup.

Source file: <src/lib/data_stack.fs>.

-exit

 -exit (n --) (R: nest-sys | -- nest-sys |) "minus-exit"

If n is negative, return control to the calling
definition, specified by nest-sys.

-exit is not intended to be used within a
loop. Use 0< if unloop exit then instead.

-exit can be used in interpretation mode to stop the
interpretation of a block.

See also: exit, ?exit, 0exit, +exit, -if, -while,
-until.

Source file: <src/lib/flow.conditionals.negative.fs>.

-if

 -if "minus-if"
 Compilation: (C: -- orig)
 Run-time: (f --)

Faster and smaller alternative to the idiom 0< if.

-if is an immediate and compile-only word.

See also: if, 0if, +if, +branch, -while, -until,
-exit.

Source file: <src/lib/flow.conditionals.negative.fs>.

-keys

 -keys (--) "minus-keys"

Remove all keys from the keyboard buffer.

See also: key?, new-key, new-key-, key, xkey.

Source file: <src/lib/keyboard.MISC.fs>.

-leading

 -leading (ca1 len1 -- ca2 len2) "minus-leading"

Adjust the start and length of a string ca1 len1 to suppress
the leading blanks, returning the result ca2 len2.

Definition:

 : -leading (ca len -- ca' len') bl skip ;

See also: -trailing, trim, bl, skip.

Source file: <src/kernel.z80s>.

-mixer

 -mixer (--) "minus-mixer"

Disable the noise and tone mixers for the three channels of
the AY-3-8912 sound generator.

See also: set-mixer, get-mixer, silence.

Source file: <src/lib/sound.128.fs>.

-move

 -move (ca n --) "minus-move"

Part of specforth-editor:
Move a line of text from ca to line n of current block.

See also: m, c/l, cmove, update.

Source file: <src/lib/prog.editor.specforth.fs>.

-order

 -order (wid --) "minus-order"

Remove all instances of word list identified by wid from
the search order.

See also: +order, >order, set-order, order.

Source file: <src/lib/word_lists.fs>.

-prefix

 -prefix (ca1 len1 ca2 len2 -- ca1 len1 | ca3 len3) "minus-prefix"

Remove prefix ca2 len2 from string ca1 len1.

See also: -suffix, /string, 1/string, -leading.

Source file: <src/lib/strings.MISC.fs>.

-rem

 -rem (n1 n2 -- n3) "dash-rem"

Divide n1 by n2 (doing a symmetric division), giving the
remainder n3.

See also: /-rem, /, /_mod.

Source file: <src/lib/math.operators.1-cell.fs>.

-rot

 -rot (x1 x2 x3 -- x3 x1 x2) "minus-rot"

Rotate the top three stack entries in reverse order.

See also: rot, over, tuck, swap, roll, pick, unpick.

Source file: <src/kernel.z80s>.

-seclusion

 -seclusion (wid1 wid2 -- wid1 wid2) "minus-seclusion"

Start the public definitions of a seclusion module.

See also: +seclusion, end-seclusion.

Source file: <src/lib/modules.MISC.fs>.

-suffix

 -suffix (ca1 len1 ca2 len2 -- ca1 len1 | ca3 len3) "minus-suffix"

Remove suffix ca2 len2 from string ca1 len1.

See also: -prefix, string/, chop, -trailing.

Source file: <src/lib/strings.MISC.fs>.

-tape-filename

 -tape-filename (--) "minus-tape-filename"

Blank tape-filename in tape-header.

Source file: <src/lib/tape.fs>.

-text

 -text (ca1 len1 ca2 -- f) "minus-text"

Part of specforth-editor:
Return a non-zero f if string ca1 len1 exactly
match string ca2 len1, else return a false flag.

See also: match.

Source file: <src/lib/prog.editor.specforth.fs>.

-trailing

 -trailing (ca1 len1 -- ca2 len2) "minus-trailing"

Adjust the length of a string ca1 len1 to suppress the
trailing blanks, returning the result ca2 len2.

If len is greater than zero, len2 is equal to len1
less the number of spaces at the end of the character string
specified by ca1 len1. If len1 is zero or the entire
string consists of spaces, len2 is zero.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (STRING), Forth-2012 (STRING).

See also: -leading, trim.

Source file: <src/kernel.z80s>.

-until

 -until "minus-until"
 Compilation: (C: dest --)
 Run-time: (f --)

Faster and smaller alternative to the idiom 0< until.

-until is an immediate and compile-only word.

See also: until, 0until, +until, +branch, -if,
-while, -exit.

Source file: <src/lib/flow.conditionals.negative.fs>.

-while

 -while "minus-while"
 Compilation: (C: dest -- orig dest)
 Run-time: (f --)

Faster and smaller alternative to the idiom 0< while.

-while is an immediate and compile-only word.

See also: while, 0while, +while, -if, -until, -exit.

Source file: <src/lib/flow.conditionals.negative.fs>.

.

.

 . (n --) "dot"

Display signed integer n according to current base,
followed by one blank.

See also: ?, u., d., f..

Source file: <src/kernel.z80s>.

."

 ." "dot-quote"
 Compilation: ("ccc<quote>" --)
 Run-time: (--)

Parse "ccc" delimited by a double-quote and compile the
corresponding string and the execution procedure (.", which
will display it at run-time.

." is an immediate and compile-only word.

Definition:

 : ." ("ccc<quote> --) compile (." ," ; immediate

Origin: Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: s", .(, ,".

Source file: <src/kernel.z80s>.

.(

 .(("ccc<paren>" --) "dot-paren"

Parse and display ccc delimited by a right parenthesis.

.(is an immediate word.

Origin: Forth-83 (Required Word Set), Forth-94 (CORE EXT),
Forth-2012 (CORE EXT).

See also: .", (.

Source file: <src/kernel.z80s>.

.00

 .00 (+n --) "dot-zero-zero"

Display +n with two digits.

See also: .0000, .time, .date.

Source file: <src/lib/display.numbers.fs>.

.0000

 .0000 (+n --) "dot-zero-zero-zero-zero"

Display +n with four digits.

See also: .00, .date.

Source file: <src/lib/display.numbers.fs>.

.\"

 .\"
 Compilation: ("ccc<quote>" --)
 Run-time: (-- ca len)
"dot-backslash-quote"

.\" is an immediate and compile-only word.

When .\" is loaded, esc-standard-chars-wordlist
is set as the only word list by set-esc-order. That is
the standard behaviour. Alternative escaped chars can be
configured with esc-block-chars-wordlist and
esc-udg-chars-wordlist.

See also: parse-esc-string, set-esc-order, s\".

Source file: <src/lib/strings.escaped.fs>.

.acat

 .acat (n --) "dot-a-cat"

Display n entries from cat-buffer, in abbreviated
format.

.acat is a factor of wacat.

See also: .filename, .cat.

Source file: <src/lib/dos.plus3dos.fs>.

.cat

 .cat (n --) "dot-cat"

Display n entries from cat-buffer.

.cat is a factor of wcat.

See also: .cat-entry, .acat.

Source file: <src/lib/dos.plus3dos.fs>.

.cat-entry

 .cat-entry (ca --) "dot-cat-entry"

Display a catalogue entry stored at ca. Format of the
entry:

	
Bytes 0..7: Base filename (left justified, space filled)

	
Bytes 8..10: Filename extension (left justified, space filled)

	
Bytes 11..12: File size in kibibytes (binary)

The file size is the amount of disk space allocated to the
file, not necessarily the same as the amount used by the
file.

.cat-entry is a factor of .cat.

See also: .filename.

Source file: <src/lib/dos.plus3dos.fs>.

.context

 .context (--) "dot-context"

Display the word lists in the search order in their search
order sequence, from first searched to last searched.

See also: get-order, .wordlist, order.

Source file: <src/lib/tool.list.word_lists.fs>.

.current

 .current (--) "dot-current"

Display the compilation word list.

See also: get-current, .wordlist, order.

Source file: <src/lib/tool.list.word_lists.fs>.

.date

 .date (day month year --) "dot-date"

Display the given time in ISO 8601 extended format.

See also: .time, .time&date, time&date, .0000, .00.

Source file: <src/lib/time.fs>.

.depth

 .depth (n --)

Display n with the format used by .s and u.s to
display the depth of the data stack`.

See also: .r, depth.

Source file: <src/lib/tool.list.stack.fs>.

.error-word

 .error-word (--) "dot-error-word"

Display the string identified by the cell pair stored in
parsed-name, followed by a question mark.

Definition:

 : .error-word (--) parsed-name 2@ cr type ." ? " ;

See also: error, .throw.

Source file: <src/kernel.z80s>.

.filename

 .filename (ca --) "dot-filename"

Display the filename whose characters are stored at ca,
in two parts: /base-filename characters (left justified,
space filled) followed by /filename-ext characters (left
justified, space filled). The dot that separates the base
filename from the filename extension is not included in the
string at ca, but it’s printed.

See also: .filename-ext.

Source file: <src/lib/dos.plus3dos.fs>.

.filename-ext

 .filename-ext (-- ca) "dot-filename-ext"

Display the filename extension whose /filename-ext
characters (left justified, space filled) are stored at
ca. A dot separator is printed first, which is not
included in the string at ca.

See also: .filename.

Source file: <src/lib/dos.plus3dos.fs>.

.fs

 .fs (F: i*r -- i*r)

See also: dump-fs, f..

Source file: <src/lib/math.floating_point.rom.fs>.

.gil-heap

 .gil-heap (--) "dot-gil-heap"

Print the map of the current memory heap, in the
implementation based on code written by Javier Gil, whose
words are defined in gil-heap-wordlist.

Occupied chunks are marked with a 'x'; free chunks are
marked with a '-'.

Source file: <src/lib/memory.allocate.gil.fs>.

.index

 .index (u --) "dot-index"

Display the first line of the block u, which
conventionally contains a comment with a title.

Source file: <src/lib/tool.list.blocks.fs>.

.l

 .l (--) "dot-l"

Dump the contents of the tables pointed by labels and
l-refs.

.l is a debugging tool for assembler labels defined
by l:.

Source file: <src/lib/assembler.labels.fs>.

.line

 .line (n1 n2 --) "dot-line"

Display line n1 from block n2, without trailing spaces.

Origin: fig-Forth.

See also: .line#, blk-line.

Source file: <src/lib/tool.list.blocks.fs>.

.line#

 .line# (n --) "dot-line-number-sign"

Display line number n right-aligned in a field whose
width depends on the current radix (decimal, hex or
binary).

See also: /line#.

Source file: <src/lib/tool.list.blocks.fs>.

.menu

 .menu (--) "dot-menu"

Display the current menu, which has been set by set-menu
and can be activated by menu.

See also: new-menu, .menu-banner, .menu-options,
.menu-border.

Source file: <src/lib/menu.sinclair.fs>.

.menu-banner

 .menu-banner (--) "dot-menu-banner"

Display the banner of the current menu.

See also: menu-banner-attr, menu-title, menu-width,
.sinclair-stripes, .menu, .menu-options,
.menu-border, type-left-field, menu-xy.

Source file: <src/lib/menu.sinclair.fs>.

.menu-border

 .menu-border (--) "dot-menu-border"

Draw a 1-pixel border around the current menu options,
preserving the attributes.

See also: .menu, .menu-options, .menu-banner, ortholine,
menu-xy, xy>gxy.

Source file: <src/lib/menu.sinclair.fs>.

.menu-option

 .menu-option (n --) "dot-menu-option"

Display menu option n of the current menu.

See also: .menu-options, .menu.

Source file: <src/lib/menu.sinclair.fs>.

.menu-options

 .menu-options (--) "dot-menu-options"

Display the options of the current menu.

See also: .menu, .menu-option, .menu-border,
.menu-banner.

Source file: <src/lib/menu.sinclair.fs>.

.name

 .name (nt --) "dot-name"

Display the name of the word identified by nt.

.name is called .id or id. in other Forth
systems.

See also: name>string, type, space.

Source file: <src/lib/compilation.fs>.

.ok

 .ok (--) "dot-ok"

Display "ok". .ok is the default action of ok.

Source file: <src/kernel.z80s>.

.os-chans

 .os-chans (--) "dot-o-s-chans"

Display the contents of os-chans.

See also: .os-strms.

Source file: <src/lib/os.fs>.

.os-strms

 .os-strms (--) "dot-o-s-streams"

Display the contents of os-strms.

See also: .os-chans, first-stream, last-stream, stream?.

Source file: <src/lib/os.fs>.

.r

 .r (n1 n2 --) "dot-r"

Display n1 right aligned in a field n2 characters wide. If
the number of characters required to display n1 is greater
than n2, all digits are displayed with no leading spaces in
a field as wide as necessary.

Definition:

 : .r (n1 n2 --) >r s>d r> d.r ;

Origin: Forth-79 (Reference Word Set)[4],
Forth-83 (Controlled Reference Word)[5], Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: u.r, d.r, 0.r, s>d.

Source file: <src/kernel.z80s>.

.s

 .s (--)

Display, using ., the values currently on the data stack.

See also: u.s, depth, .depth.

Source file: <src/lib/tool.list.stack.fs>.

.sinclair-stripes

 .sinclair-stripes (--) "dot-sinclair-stripes"

Display the Sinclair stripes by using sinclair-stripes as
UDG font and typing sinclair-stripes$. The current UDG
font is preserved.

See also: set-udg, get-udg.

Source file: <src/lib/menu.sinclair.fs>.

.throw

 .throw (n --) "dot-throw"

Display a message giving information about the condition
associated with the throw code n.

.throw is executed by error. It’s a deferred word (see
defer) whose default action is .throw#, which displays
only the number. An alternative action is .throw-message,
which displays also the description.

Source file: <src/kernel.z80s>.

.throw#

 .throw# (n --) "dot-throw-number-sign"

Display the number of throw code n, as a decimal number,
prefixed with a '#' and followed by a space.

.throw# is the default action of .throw. Its alternative
action .throw-message displays also the error description.

Source file: <src/kernel.z80s>.

.throw-message

 .throw-message (n --) "dot-throw-message"

Alternative action of the deferred word .throw (see
defer): Display the description of the throw exception
code n. The variable errors-block contains the number
of the first block where messages are hold. If
errors-block contains zero, only the error number is
displayed.

For convenience, loading .throw-message makes it the
action of .throw.

The error descriptions are not stored in memory, but
read from the library every time. Therefore the library
must be accessible.

See also: .throw#, error>line.

Source file: <src/lib/exception.fs>.

.time

 .time (second minute hour --) "dot-time"

Display the given time in ISO 8601 extended format.

See also: .date, .time&date, time&date, .00.

Source file: <src/lib/time.fs>.

.time&date

 .time&date (second minute hour day month year --) "dot-time-and-date"

Display the given time and date in ISO 8601 extended
format.

See also: .date, .time, time&date.

Source file: <src/lib/time.fs>.

.unused

 .unused (--) "dot-unused"

Display the total RAM in the system, and the amount of
space remaining in the regions addressed by here and
np, in bytes.

See also: unused, farunused, .words.

Source file: <src/lib/tool.debug.MISC.fs>.

.version

 .version (--) "dot-version"

Display the Solo Forth version.

Source file: <src/kernel.z80s>.

.word

 .word (nt --) "dot-word"

A deferred word (see defer) whose default action is
(.word. This word is used by words, words-like and
wordlist-words, therefore their output can be changed by
the user in special cases, for example when more details
are needed for debugging.

Source file: <src/lib/tool.list.words.fs>.

.wordlist

 .wordlist (wid --) "dot-wordlist"

If the wordlist identified by wid has an associated
name, display it; else display wid.

See also: wordlists, dump-wordlist, wordlist>name.

Source file: <src/lib/tool.list.word_lists.fs>.

.wordname

 .wordname (nt --) "dot-wordname"

An alternative action for the deferred word .word (see
defer), which is used by words, words-like and
wordlist-words. .wordname prints nt and its
correspondent name.

Source file: <src/lib/tool.list.words.fs>.

.words

 .words (--) "dot-words"

Display a message informing about the number of words
defined in the system.

See also: #words, greeting, .unused.

Source file: <src/lib/tool.debug.MISC.fs>.

.xs

 .xs (--) "dot-x-s"

Display the number of items on the current xstack, followed
by a list of the items, if any; TOS is the right-most item.

See also: xdepth ,(.xs.

Source file: <src/lib/data.xstack.fs>.

4 In Forth-79, if n2 is less than 1, no leading blanks are supplied.

5 In Forth-83, if the number of characters required to display n1 is greater than n2, an error condition exists, which depends on the system.

/

/

 / (n1 n2 -- n3) "slash"

Divide n1 by n2, giving the quotient n3.

Definition:

 : / (n1 n2 -- n3) /mod nip ;

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-94
(CORE), Forth-2012 (CORE).

See also: m/, /mod, /_, /-, gcd.

Source file: <src/kernel.z80s>.

/!

 /! (n a --) "slash-store"

Divide n by the single-cell number stored at a and store
the quotient in a

See also: 2/!, *!, +!, -!.

Source file: <src/lib/memory.MISC.fs>.

/-

 /- (n1 n2 -- n3) "slash-dash"

Divide n1 by n2 (doing a symmetric division), giving the
symmetric quotient n4.

See also: /-rem, /, /_, sm/rem.

Source file: <src/lib/math.operators.1-cell.fs>.

/-rem

 /-rem (n1 n2 -- n3 n4) "slash-dash-rem"

Divide n1 by n2 (doing a symmetric division), giving the
remainder n3 and the symmetric quotient n4.

See also: /mod, /_mod, sm/rem.

Source file: <src/lib/math.operators.1-cell.fs>.

/_

 /_ (n1 n2 -- n3) "slash-underscore"

Divide n1 by n2 (doing a floored division), giving the
floored quotient n4.

See also: /_mod, /, /-, fm/mod.

Source file: <src/lib/math.operators.1-cell.fs>.

/_mod

 /_mod (n1 n2 -- n3 n4) "slash-underscore-mode"

Divide n1 by n2 (doing a floored division), giving the
remainder n3 and the floored quotient n4.

See also: /mod, /-rem, fm/mod.

Source file: <src/lib/math.operators.1-cell.fs>.

/bank

 /bank (-- n) "slash-bank"

n is the size in bytes of a memory bank: $4000.

See also: bank-start.

Source file: <src/lib/memory.far.fs>.

/base-filename

 /base-filename (-- n) "slash-basefilename"

Return the maximum length of a +3DOS base filename, i.e.,
a filename without drive, user area and extension.

See also: /filename-ext, /filename, >filename.

Source file: <src/lib/dos.plus3dos.fs>.

/cat-buffer

 /cat-buffer (-- len) "slash-cat-buffer"

Return the current length len of the cat-buffer, using
the values of cat-entries and /cat-entry.

Source file: <src/lib/dos.plus3dos.fs>.

/cat-entry

 /cat-entry (-- n) "slash-cat-entry"

A cconstant. Return size n, in bytes, of every entry of
the cat-buffer used by (cat and prepared by >cat.

See also: cat-entries.

Source file: <src/lib/dos.plus3dos.fs>.

/counted-string

 /counted-string (-- n) "slash-counted-string"

n is the maximum size of a counted string, in characters.

See also: max-char, environment?.

Source file: <src/lib/environment-question.fs>.

/filename

 /filename (-- n) "slash-filename"

Return the maximum length of a +3DOS filename, including
drive, user area and filename extension.

See also: /base-filename, >filename.

Source file: <src/lib/dos.plus3dos.fs>.

/filename-ext

 /filename-ext (-- n) "slash-filename-ext"

Return the maximum length of a +3DOS filename extension
excluding the dot.

See also: /filename, /base-filename.

Source file: <src/lib/dos.plus3dos.fs>.

/first-name

 /first-name (ca1 len1 -- ca2 len2 ca3 len3) "slash-first-name"

Get the first name ca3 len3 from string ca2 len2,
returning also the remaining string ca3 len3.

See also: first-name, /name.

Source file: <src/lib/strings.MISC.fs>.

/heap

 /heap (-- n) "slash-heap"

Size of the current heap, in bytes.

See also: get-heap.

Source file: <src/lib/memory.allocate.COMMON.fs>.

/hold

 /hold (-- len) "slash-hold"

A 'cconstant`. len is the length of the pictured
output string buffer, which is located right below pad.

The default value of /hold is 80. It may be changed by
c!>.

See also: hld, <#, /pad.

Source file: <src/kernel.z80s>.

/kk

 /kk (-- n) "slash-k-k"

n is the number of bytes ocuppied by every key stored in
kk-ports: 3 (smaller and slower table) or 4 (bigger and
faster table).

There are two versions of kk, and kk@. They depend on
the value of /kk.

The application can define /kk before needing kk-ports;
otherwise it will be defined as a cconstant with value 4.

Source file: <src/lib/keyboard.MISC.fs>.

/l-ref

 /l-ref (-- n) "slash-l-ref"

n is the size in bytes of each assembler label
reference stored in the l-refs table.

See also: /l-refs.

Source file: <src/lib/assembler.labels.fs>.

/l-refs

 /l-refs (-- n) "slash-l-refs"

n is the size in bytes of the l-refs table.

See also: max-l-refs, /l-ref, /labels.

Source file: <src/lib/assembler.labels.fs>.

/labels

 /labels (-- n) "slash-labels"

n is the size in bytes of the labels table.

See also: max-labels, /l-refs.

Source file: <src/lib/assembler.labels.fs>.

/line#

 /line# (-- n) "slash-line-number-sign"

Maximum length of a line number in the current radix.
It works for decimal, hex and binary.

See also: .line#.

Source file: <src/lib/tool.list.blocks.fs>.

/mod

 /mod (n1 n2 -- n3 n4) "slash-mod"

Divide n1 by n2, giving the remainder n3 and the
quotient n4.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-94
(CORE), Forth-2012 (CORE).

See also: m/, du/mod, /, mod, /-rem, /_mod.

Source file: <src/kernel.z80s>.

/name

 /name (ca1 len1 -- ca2 len2 ca3 len3) "slash-name"

Split string ca1 len1 into ca2 len2 (from the start of
the first name in ca1 len1) and ca3 len3 (from the char
after the first name in _ca1 len1). A name is a substring
separated by spaces.

See also: first-name, /string, -prefix, -suffix,
string/.

Source file: <src/lib/strings.MISC.fs>.

/octave

 /octave (-- c) "slash-octave"

A cconstant that returns the number of notes in one
octave: 12.

See also: middle-octave.

Source file: <src/lib/sound.48.fs>.

/pad

 /pad (-- n) "slash-pad"

n is the size of the scratch area pointed to by pad, in
characters.

See also: /hold, environment?.

Source file: <src/lib/environment-question.fs>.

/qx

 /qx (-- n) "slash-q-x"

n is the number of header lines shown on a quick index.
It depends on the rows and columns of the current screen
mode.

See also: qx.

Source file: <src/lib/tool.list.blocks.fs>.

/qx-column

 /qx-column (-- n) "slash-q-x-column"

n is the width of a column of the quick index. It depends
on the columns (32, 42, 64…​) of the current screen mode.

See also: qx, qx-columns.

Source file: <src/lib/tool.list.blocks.fs>.

/sinclair-stripes

 /sinclair-stripes (-- len)

A cconstant. len is the size of sinclair-stripes$ in
graphic characters, i.e. the visible length of the string
when displayed.

/sinclair-stripes is used by set-menu and other menu
words.

Source file: <src/lib/menu.sinclair.fs>.

/sound

 /sound (-- b) "slash-sound"

A character constant that returns 14, the number of
sound registers used by ZX Spectrum 128.

See also: !sound, @sound, sound, play.

Source file: <src/lib/sound.128.fs>.

/string

 /string (ca1 len1 n -- ca2 len2) "slash-string"

Adjust the character string ca1 len1 by n characters. The
resulting character string ca2 len2 begins at ca1 plus n
characters and is len1 minus n characters long.

/string is written in Z80. Equivalent definitions in Forth
are the following:

 : /string (ca1 len1 n -- ca2 len2) rot over + -rot - ;

 : /string (ca1 len1 n -- ca2 len2) dup >r - swap r> + swap ;

Origin: Forth-94 (STRING), Forth-2012 (STRING).

See also: 1/string, -prefix, string/.

Source file: <src/kernel.z80s>.

/stringer

 /stringer (-- len) "slash-stringer"

A constant. len is the maximum size of the stringer, in
characters. See how to configure it in the documentation of
stringer.

See also: +stringer, empty-stringer, `default-stringer'.

Source file: <src/kernel.z80s>.

/tabulate

 /tabulate (-- ca) "slash-tabulate"

ca is the address of a byte containing the number of
spaces that tabulate counts for. Its default value is 8.

See tabulate.

Source file: <src/lib/display.control.fs>.

/tape-filename

 /tape-filename (-- n) "slash-tape-filename"

n is the maximum length of a tape filename, which is 10
characters.

See also: tape-filename. /filename.

Source file: <src/lib/tape.fs>.

/tape-header

 /tape-header (-- n) "slash-tape-header"

n is the length of a tape-header: 17 bytes.

Source file: <src/lib/tape.fs>.

/tib

 /tib (-- b) "slash-t-i-b"

A cconstant. b is the maximum size of tib, the terminal
input buffer,

See also: #tib.

Source file: <src/kernel.z80s>.

/udg

 /udg (-- b) "slash-u-d-g"

b is the size of a UDG (User Defined Graphic), in bytes.

See also: udg-width, udg!, /udg*, /udg+.

Source file: <src/lib/graphics.udg.fs>.

/udg*

 /udg* (n1 -- n2) "slash-u-d-g-star"

Multiply n1 by /udg, resulting n2. Used by udg>.

/udg* is equivalent to /udg * but faster: it’s an
alias of 8*.

See also: /udg+.

Source file: <src/lib/graphics.udg.fs>.

/udg+

 /udg+ (n1 -- n2) "slash-u-d-g-plus"

Add /udg to n1, resulting n2.

/udg+ is useful when UDG are referenced by address,
e.g. with emit-udga and ,udg-block.

/udg+ is equivalent to /udg + but faster: it’s an
alias of 8+.

See also: /udg*.

Source file: <src/lib/graphics.udg.fs>.

/user

 /user (-- n) "slash-user"

A constant. n is the length of the user area.

See also: up.

Source file: <src/kernel.z80s>.

/window

 /window (-- n) "slash-window"

A cconstant. n is the size in bytes of a window data
structure.

See also: current-window.

Source file: <src/lib/display.window.fs>.

/wordlist

 /wordlist (-- n)

A cconstant. n is the length in bytes of a wordlist
data structure, created by wordlist,.

Source file: <src/lib/word_lists.fs>.

/wtype

 /wtype (ca len len1 n -- ca' len') "slash-w-type"

Display the first len1 characters of string ca len in
the current-window, then remove the first n characters
from the string, returning the result string ca' len'.

/wtype is a factor of wltype.

See also: free/wtype.

Source file: <src/lib/display.window.fs>.

0

0

 0 (-- 0)

Return 0. 0 is not a constant, but a code word,
which is faster.

See also: -1, 1, 2, false.

Source file: <src/kernel.z80s>.

0.r

 0.r (n --) "zero-dot-r"

Display n according to current base, with no leading or
trailing spaces. 0.r is a faster alternative to the idiom
0 .r.

0.r is written in Z80. Its equivalent definition in Forth
is the following:

 : 0.r (n --) 0 .r ;

See also: .r, 0d.r.

Source file: <src/kernel.z80s>.

0<

 0< (x -- f) "0-less"

f is true if and only if n is less than zero.

Origin: Forth-79 (Required Word Set), Forth-83 (Required Word
Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: 0>, 0<=, 0=, 0<>.

Source file: <src/kernel.z80s>.

0<=

 0<= (n -- f) "zero-less-or-equal"

f is true if and only if n is less than or equal to
zero.

See also: 0>=, <=, u<=.

Source file: <src/lib/math.operators.1-cell.fs>.

0<>

 0<> (x -- f) "zero-not-equals"

f is true if and only if x is not equal to zero.

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: 0=.

Source file: <src/kernel.z80s>.

0=

 0= (x -- f) "zero-equals"

f is true if and only if x is equal to zero.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: 0<>, 0<, 0>, negate, invert.

Source file: <src/kernel.z80s>.

0>

 0> (n -- f) "zero-greater"

f is true if and only if n is greater than zero.

Origin: Forth-79 (Required Word Set), Forth-83 (Required Word
Set), Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: 0<, 0>=, 0=, 0<>.

Source file: <src/kernel.z80s>.

0>=

 0>= (n -- f) "zero-greater-or_equal"

f is true if and only if n is greater than or equal
to zero.

See also: 0<=, >=, u>=.

Source file: <src/lib/math.operators.1-cell.fs>.

0branch

 0branch (f --) "zero-branch"

A run-time procedure to branch conditionally. If f
is false (zero), the following in-line address is copied to IP
to branch forward or backward.

Origin: fig-Forth.

See also: branch, ?branch, -branch, +branch.

Source file: <src/kernel.z80s>.

0d.r

 0d.r (d --) "zero-d-dot-r"

Display d according to current base, with no leading or
trailing spaces. d0.r is a faster alternative to the
idiom 0 d.r.

0d.r is written in Z80. Its equivalent definition in Forth
is the following:

 : 0d.r (d --) 0 d.r ;

See also: d.r, 0.r.

Source file: <src/kernel.z80s>.

0dup

 0dup (x -- x | 0 0) "zero-dup"

Duplicate x if it’s zero.

See also: dup, -dup.

Source file: <src/lib/data_stack.fs>.

0exit

 0exit (f --) (R: nest-sys | -- nest-sys |) "zero-exit"

If f is zero, return control to the calling definition,
specified by nest-sys.

0exit is not intended to be used within a
loop. Use 0= if unloop exit then instead.

0exit can be used in interpretation mode to stop the
interpretation of a block.

See also: ?exit, exit, -exit ,+exit, 0if, 0while,
0until, unloop.

Source file: <src/kernel.z80s>.

0if

 0if "zero-if"
 Compilation: (C: -- orig)
 Run-time: (f --)

Faster and smaller alternative to the idiom 0= if.

0if is an immediate and compile-only word.

See also: if, -if, +if, 0while, 0until, 0exit.

Source file: <src/lib/flow.conditionals.zero.fs>.

0leave

 0leave (f --) (R: loop-sys -- | loop-sys) "question-leave"

If f is zero, discard the loop-control parameters for
the current nesting level and continue execution
immediately following the innermost syntactically enclosing
loop or +loop.

See also: ?leave, leave, unloop, do, ?do.

Source file: <src/lib/flow.MISC.fs>.

0max

 0max (n -- n | 0) "zero-max"

If n is negative, return 0; else return n. 0max is
a faster alternative to the idiom 0 max.

See also: max, min, 0.

Source file: <src/lib/math.operators.1-cell.fs>.

0repeat

 0repeat "zero-repeat"
 Compilation: (dest -- dest)
 Run-time: (f --)

An alternative exit point for begin …​ until loops: If
f is zero, continue execution at begin, otherwise
continue execution after until.

0repeat is an immediate word.

Usage example:

 : test (--)
 begin
 ...
 flag 0repeat \ Go back to ``begin`` if flag is zero
 ...
 flag ?repeat \ Go back to ``begin`` if flag is non-zero
 ...
 flag until \ Go back to ``begin`` if flag is false
 ...
 ;

See also: ?repeat.

Source file: <src/lib/flow.MISC.fs>.

0until

 0until "zero-until"
 Compilation: (C: dest --)
 Run-time: (f --)

Faster and smaller alternative to the idiom 0= until.

0until is an immediate and compile-only word.

See also: until, -until, +until, 0if, 0while, 0exit.

Source file: <src/lib/flow.conditionals.zero.fs>.

0while

 0while "zero-while"
 Compilation: (C: dest -- orig dest)
 Run-time: (f --)

Faster and smaller alternative to the idiom 0= while.

0while is an immediate and compile-only word.

See also: while, -while, +while, 0if, 0until, 0exit.

Source file: <src/lib/flow.conditionals.zero.fs>.

1

1

 1 (-- 1)

Return 1. 1 is not a constant, but a code word,
which is faster.

See also: -1, 0, 2.

Source file: <src/kernel.z80s>.

1+

 1+ (n1 -- n2) "one-plus"

Add 1 to n1, according to the operation of +, giving n2.

1+ is equivalent to 1 + but faster.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set).

See also: 1-, 2+, 8+, c@1+, 1, +.

Source file: <src/kernel.z80s>.

1+!

 1+! (a -) "one-plus-store"

Increment the single-cell number stored at a.

See also: c1+!, 1-!, +!.

Source file: <src/lib/memory.MISC.fs>.

1-

 1- (n1 -- n2) "one-minus"

Subtract 1 from n1, according to the operation of -,
giving n2.

1- is equivalent to 1 - but faster.

Origin: Forth-79 (Required Word Set), Forth-83 (Required Word
Set).

See also: 1+, 2-, 8-, c@1-, 1, -.

Source file: <src/kernel.z80s>.

1-!

 1-! (a -) "one-minus-store"

Decrement the single-cell number stored at a.

See also: 1+!, c1-!, -!.

Source file: <src/lib/memory.MISC.fs>.

1-line-(located

 1-line-(located (ca len -- block | 0) "one-line-paren-located"

Locate the first block whose single-line header contains
the string ca len (surrounded by spaces), and return its
number. If not found, return zero. The search is
case-sensitive.

Only the blocks delimited by first-locatable and
last-locatable are searched.

1-line-(located is an alternative, deprecated action of
(located.

Source file: <src/lib/002.need.fs>.

1/string

 1/string (ca1 len1 -- ca1+1 len1-1) "one-slash-string"

Adjust the character string ca1 len1 by 1 character.

1/string is equivalent to the idiom 1 /string but
faster (0.9 the execution time).

See also: /string.

Source file: <src/kernel.z80s>.

16bin.

 16bin. (n --) "16-bin-dot"

Display n as an unsigned 16-bit binary number.

See also: 16bin., 32bin., 8bin., bin., binary.

Source file: <src/lib/display.numbers.fs>.

16hex.

 16hex. (d --) "16-hex-dot"

Display d as an unsigned 16-bit hexadecimal number.

See also: 16bin., 32hex., 8hex., hex., hex.

Source file: <src/lib/display.numbers.fs>.

1array

 1array (n1 n2 "name" --) "one-array"

Define a 1-dimension array name with n1 items of
n2 bytes each.

See also: }, array>items, 2array.

Source file: <src/lib/data.array.noble.fs>.

1line

 1line (-- f) "1-line"

Part of specforth-editor:
Scan the cursor line for a match to pad text. Return flag
and update the cursor r# to the end of matching text, or
to the start of the next line if no match is found.

See also: #lag, match.

Source file: <src/lib/prog.editor.specforth.fs>.

2

2

 2 (-- 2)

Return 2. 2 is not a constant, but a code word,
which is faster.

See also: -1, 0, 1, cell.

Source file: <src/kernel.z80s>.

2!

 2! (x1 x2 a --) "two-store"

Store the cell pair x1 x2 at a, with x2 at a and x1
at the next consecutive cell. It is equivalent to the sequence
swap over ! cell+ !.

Origin: Forth-79 (Double Number Word Set), Forth-83 (Double
Number Extension Word Set), Forth-94 (CORE), Forth-2012
(CORE).

See also: 2@, !, c!.

Source file: <src/kernel.z80s>.

2!>

 2!>
 Interpretation: (xd "name" --)
 Compilation: ("name" --)
 Run-time: (xd --)
"two-store-to"

A simpler and faster alternative to standard to and
2value.

2!> is an immediate word.

Interpretation:

Parse name, which is the name of a word created by
2constant or 2const, and make xd its value.

Compilation:

Parse name, which is a word created by 2constant or
2const, and append the run-time semantics given below to
the current definition.

Run-time:

Make xd the current value of double-cell constant name.

Origin: IsForth’s !>.

See also: !>, c!>.

Source file: <src/lib/data.store-to.fs>.

2*

 2* (x1 -- x2) "two-star"

x2 is the result of shifting x1 one bit toward the
most-significant bit, filling the vacated least-significant
bit with zero.

2* is equivalent to 1 lshift, but faster.

Origin: Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: lshift, 8*, 3*, *.

Source file: <src/kernel.z80s>.

2*!

 2*! (a --) "two-star-store"

Do a 2* shift to the single-cell number stored at a.

See also: 2/!, 2*.

Source file: <src/lib/memory.MISC.fs>.

2+

 2+ (n1 -- n2) "two-plus"

Add 2 to n1, according to the operation of +, giving n2.

2+ is equivalent to 2 + but faster.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set).

See also: 2-, 1+, 8+, c@2+, 2, +.

Source file: <src/kernel.z80s>.

2,

 2, (x1 x2 --) "2-comma"

Definition:

 : 2, (x1 x2 --) here 2! [2 cells] literal allot ;

Reserve two cells of data space and store x1 x2 in them.
x2 is stored in the first cell, and x1 is stored in the
second cell.

See also: ,, c,, here, 2!, cells, literal,
allot.

Source file: <src/kernel.z80s>.

2-

 2- (n1 -- n2) "two-minus"

Subtract 2 from n1, according to the operation of -,
giving n2.

2- is equivalent to 2 - but faster.

Origin: Forth-79 (Required Word Set), Forth-83 (Required Word
Set).

See also: 2+, 1-, 8-, c@2-, 2, -.

Source file: <src/kernel.z80s>.

2-block-drives

 2-block-drives (--)

Set all drives as block drives, in normal order: "A" and
"B".

For convenience, when this word is loaded, it’s also
executed.

See also: set-block-drives.

Source file: <src/lib/dos.plus3dos.fs>.

2/

 2/ (x1 -- x2) "two-slash"

x2 is the result of shifting x1 one bit toward the
least-significant bit, leaving the most-significant bit
unchanged.

2/ is equivalent to s>d 2 fm/mod swap drop. 2/ is not
the same as 2 /, nor is it the same as 1 rshift.

Origin: Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: /, rshift, s>d, fm/mod, 2.

Source file: <src/lib/math.operators.1-cell.fs>.

2/!

 2/! (a --) "two-slash-store"

Do a 2/ shift to the single-cell number stored at a.

See also: 2*!, 2/.

Source file: <src/lib/memory.MISC.fs>.

2>bstring

 2>bstring (x1 x2 -- ca len) "two-to-b-string"

Convert xd to a 2-cell binary string in the stringer.
ca len contains x2 x1, i.e. in the usual order in
memory.

See also: >bstring, char>string, chars>string.

Source file: <src/lib/strings.MISC.fs>.

2>false

 2>false (x1 x2 -- false) "two-to-false"

Replace x1 x2 with false.

See also: 2>true, >false.

Source file: <src/lib/data_stack.fs>.

2>r

 2>r (x1 x2 --) (R: -- x1 x2) "two-to-r"

Move x1 x2 from the data stack to the return stack.
Semantically equivalent to swap >r >r.

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: 2r>, 2r@, >r.

Source file: <src/kernel.z80s>.

2>true

 2>true (x1 x2 -- true) "two-to-true"

Replace x1 x2 with true.

See also: 2>false, >true.

Source file: <src/lib/data_stack.fs>.

2>x

 2>x (x1 x2 --) (X: -- x1 x2) "two-to-x"

Move the cell pair x1 x2 from the data stack to the
current xstack.

See also: 2x>, 2x@, >x.

Source file: <src/lib/data.xstack.fs>.

2?

 2? (ca --) "two-question"

Display the double-cell signed integer stored at a, using
the format of d..

See also: ?, c?, 2@.

Source file: <src/lib/memory.MISC.fs>.

2@

 2@ (a -- x1 x2) "two-fetch"

Fetch the cell pair x1 x2 stored at a. x2 is stored at
a and x1 is stored at the next consecutive cell. It is
equivalent to the sequence dup cell+ @ swap @.

Origin: Forth-79 (Double Number Word Set), Forth-83 (Double
Number Extension Word Set), Forth-94 (CORE), Forth-2012
(CORE).

See also: 2!, @, c@.

Source file: <src/kernel.z80s>.

2@+

 2@+ (a -- a' xd) "two-fetch-plus"

Fetch xd from a. Return a', which is a incremented
by two cells. This is handy for stepping through
double-cell arrays.

See also: 2@, @+, c@+.

Source file: <src/lib/memory.MISC.fs>.

2array

 2array (n1 n2 n3 "name" --) "two-array"

Define a 2-dimension array name with n1 x n2 items of
n3 bytes each.

See also: }}, 1array.

Source file: <src/lib/data.array.noble.fs>.

2array<

 2array< (a1 n -- a2) "two-array-from"

Return address a2 of element n of a 1-dimension
double-cell array a1.

2array< is written in Z80. Its equivalent definition in
Forth is the following:

 : 2array< (a1 n -- a2) [2 cells] literal * + ;

See also: 2array>, array<.

Source file: <src/lib/data.array.COMMON.fs>.

2array>

 2array> (n a1 -- a2) "two-array-to"

Return address a2 of element n of a 1-dimension
double-cell array a1. 2array> is a common factor of
2avalue and 2avariable.

2array> is written in Z80. Its equivalent definition in
Forth is the following:

 : 2array> (n a1 -- a2) swap [2 cells] literal * + ;

See also: 2array<, array>.

Source file: <src/lib/data.array.COMMON.fs>.

2ato

 2ato (xd n "name" --) "two-a-to"

Store xd into element n of 1-dimension double-cell
values array name.

2ato is an immediate word.

See also: 2avalue, (2ato.

Source file: <src/lib/data.array.value.fs>.

2avalue

 2avalue (n "name" --) "two-a-value"

Create a 1-dimension double-cell values array name
with n elements and the execution semantics defined
below.

name execution:

name (n — xd)

Return contents xd of element n.

See also: 2ato.

Source file: <src/lib/data.array.value.fs>.

2avariable

 2avariable (n "name" --) "two-a-variable"

Create a 1-dimension double-cell variables array name
with n elements and the execution semantics defined
below.

name execution:

name (n — a)

Return address a of element n.

See also: avariable, cavariable, far2avariable.

Source file: <src/lib/data.array.variable.fs>.

2const

 2const (x1 x2 "name" --) "two-const"

Create a double fast constant name, with value x1 x2.

A double fast constant works like an ordinary 2constant,
except its value is compiled as a literal.

Origin: IsForth’s const.

See also: [2const], const, cconst.

Source file: <src/lib/data.const.fs>.

2constant

 2constant (x1 x2 "name" --) "two-constant"

Parse name. create a definition for name that will place
x1 x2 on the stack. name is referred to as a
"two-constant".

Origin: Forth-79 (Double Number Word Set), Forth-83 (Double
Number Extension Word Set), Forth-94 (DOUBLE), Forth-2012
(DOUBLE).

See also: constant, cconstant, 2!>, 2const,
[2const], 2value, 2variable.

Source file: <src/kernel.z80s>.

2drop

 2drop (x1 x2 --) "two-drop"

Remove cell pair x1 x2 from the stack.

Origin: Forth-79 (Double Number Word Set), Forth-83 (Double
Number Extension Word Set), Forth-94 (CORE), Forth-2012
(CORE).

See also: drop, nip.

Source file: <src/kernel.z80s>.

2dup

 2dup (x1 x2 -- x1 x2 x1 x2) "two-dup"

Duplicate cell pair x1 x2.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: dup, 2over, 2drop, 3dup, 4dup.

Source file: <src/kernel.z80s>.

2entry:

 2entry: (dx wid "name" --) "two-entry-colon"

Create a double-cell entry name in the associative-list
wid, with value dx.

See also: entry:, centry:, sentry:, create-entry.

Source file: <src/lib/data.associative-list.fs>.

2field:

 2field: (n1 "name" -- n2) "two-field-colon"

Parse name. offset is the first double-cell aligned
value greater than or equal to n1. n2 = offset + 2
cells.

Create a definition for name with the execution semantics
defined below.

name execution: (a1 -- a2)

Add the offset calculated during the compile-time action
to a1 giving the address a2.

See also: begin-structure, +field.

Source file: <src/lib/data.begin-structure.fs>.

2lit

 2lit (-- x1 x2) "two-lit"

Return x1 x2, which was compiled by 2literal after
2lit.

2lit is a compile-only word.

See also: lit, clit.

Source file: <src/kernel.z80s>.

2literal

 2literal (x1 x2 --) "two-literal"

Compile x1 x2 in the current definition.

2literal is an immediate and compile-only word.

Definition:

 : 2literal (x1 x2 --) postpone 2lit 2, ; immediate compile-only

See also: 2lit, literal, cliteral, xliteral,]2l.

Source file: <src/kernel.z80s>.

2local

 2local (a --)

Save the value of double-cell variable a, which will be
restored at the end of the current definition.

2local is a compile-only word.

Usage example:

 2variable v
1. v 2! v 2@ d. \ default value

: test (--)
 v 2local
 v 2@ u. 1887. v 2! v 2@ d. ;

v 2@ d. \ default value

See also: local, clocal, arguments, anon.

Source file: <src/lib/locals.local.fs>.

2ndrop

 2ndrop (dx1...dxn n --) "two-n-drop"

Drop n double cell items from the stack.

See also: ndrop, drop, 2drop.

Source file: <src/lib/data_stack.fs>.

2nip

 2nip (x1 x2 x3 x4 -- x3 x4) "two-nip"

See also: nip.

Source file: <src/lib/data_stack.fs>.

2over

 2over (x1 x2 x3 x4 -- x1 x2 x3 x4 x1 x2) "two-over"

Copy cell pair x1 x2 on top of the stack.

Origin: Forth-79 (Double Number Word Set), Forth-83 (Double
Number Extension Word Set), Forth-94 (CORE), Forth-2012
(CORE).

See also: over, 2swap.

Source file: <src/kernel.z80s>.

2r>

 2r> (-- x1 x2) (R: x1 x2 --) "two-r-from"

Move x1 x2 from the return stack to the data stack.
Semantically equivalent to r> r> swap.

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: 2>r, 2r@, r>.

Source file: <src/kernel.z80s>.

2r@

 2r@ (-- x1 x2) (R: x1 x2 -- x1 x2) "two-r-fetch"

Copy x1 x2 from the return stack to the data stack.
Semantically equivalent to r> r> 2dup >r >r swap.

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: 2>r, 2r>, r@.

Source file: <src/kernel.z80s>.

2rdrop

 2rdrop (R: x1 x2 --) "two-r-drop"

Remove x1 x2 from the return stack.

See also: rdrop, 2drop.

Source file: <src/lib/return_stack.fs>.

2rot

 2rot (x1 x2 x3 x4 x5 x6 -- x3 x4 x5 x6 x1 x2) "two-rot"

Source file: <src/lib/data_stack.fs>.

2storer

 2storer (xd a "name" --) `two-storer"

Define a word name which, when executed, will cause that
xd be stored at a.

Origin: variant of the word set found in Forth-79
(Reference Word Set) and Forth-83 (Appendix B. Uncontrolled
Reference Words).

Source file: <src/lib/data.storer.fs>.

2swap

 2swap (x1 x2 x3 x4 -- x3 x4 x1 x2) "two-swap"

Exchange the top two cell pairs.

Origin: Forth-79 (Double Number Word Set), Forth-83 (Double
Number Extension Word Set), Forth-94 (CORE), Forth-2012
(CORE).

See also: swap, 2over.

Source file: <src/kernel.z80s>.

2switch

 2switch (xd switch --) "two-switch"

Execute the switch switch for the key xd.

See also: switch:, :2clause.

Source file: <src/lib/flow.switch-colon.fs>.

2toval

 2toval (--) "two-to-val"

Change the default behaviour of words created by 2val:
make them store a new value instead of returning its actual
one.

2toval and 2val are a non-parsing alternative to the
standard to and 2value.

See also: toval, ctoval.

Source file: <src/lib/data.val.fs>.

2user

 2user ("name" --) "two-user"

Parse name. Create a user double-cell variable name in
the first available offset within the user area. When
name is later executed, its absolute user area storage
address is placed on the stack.

See also: user, ucreate, uallot, ?user.

Source file: <src/lib/data.user.fs>.

2val

 2val (x1 x2 "name" --) "two-val"

Create a definition for name that will place x1 x2 on
the stack (unless 2toval is used first) and then will
execute init-2val.

2val is an alternative to the standard 2value.

See also: val, cval, 2variable, 2constant.

Source file: <src/lib/data.val.fs>.

2value

 2value (x1 x2 "name" --) "two-value"

Create a definition name with initial value x1 x2. When
name is later executed, x1 x2 will be placed on the
stack. to can be used to assign a new value to name.

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: cvalue, value, 2constant, 2variable, 2val.

Source file: <src/lib/data.value.fs>.

2variable

 2variable ("name" --) "two-variable"

Parse name. create a definition for name, which is
referred to as a "two-variable". allot two cells of data
space, the data field of name, to hold the contents of
the two-variable. When name is later executed, the
address of its data field is placed on the stack.

The program is responsible for initializing the contents of
the two-variable.

Origin: Forth-79 (Double Number Word Set), Forth-83 (Double
Number Extension Word Set), Forth-94 (DOUBLE), Forth-2012
(DOUBLE).

See also: cells, literal, variable, 2variable,
2constant.

Source file: <src/lib/data.MISC.fs>.

2x>

 2x> (-- x1 x2) (X: x1 x2 --) "two-x-from"

Move the cell pair x1 x2 from the current xstack to
the data stack.

See also: 2>x, 2x@, x>.

Source file: <src/lib/data.xstack.fs>.

2x@

 2x@ (-- x1 x2) (X: x1 x2 -- x1 x2) "two-x-fetch"

Copy the cell pair x1 x2 from the current xstack to the
data stack.

Source file: <src/lib/data.xstack.fs>.

2xdrop

 2xdrop (X: x1 x2 --) "two-x-drop"

Remove the cell pair x1 x2 from the current xstack.

See also: xdrop.

Source file: <src/lib/data.xstack.fs>.

2xdup

 2xdup (X: x1 x2 -- x1 x2 x1 x2) "two-x-dup"

Duplicate the cell pair x1 x2 in the current xstack.

See also: xdup.

Source file: <src/lib/data.xstack.fs>.

3

3*

 3* (n1 -- n2) "three-plus"

Multiply n1 by 3 giving n2.

3* is equivalent to 3 * or dup dup + +, but
faster.

See also: 2*, 8*, *, +.

Source file: <src/lib/math.operators.1-cell.fs>.

32bin.

 32bin. (d --) "32-bin-dot"

Display d as an unsigned 32-bit binary number.

See also: 32hex., 16bin., 8bin., bin., binary.

Source file: <src/lib/display.numbers.fs>.

32hex.

 32hex. (d --) "32-hex-dot"

Display d as an unsigned 32-bit hexadecimal number.

See also: 32bin., 16hex., 8hex., hex., hex.

Source file: <src/lib/display.numbers.fs>.

3drop

 3drop (x1 x2 x3 --) "three-drop"

See also: 3dup, drop, 2drop, 4drop.

Source file: <src/lib/data_stack.fs>.

3dup

 3dup (x1 x2 x3 -- x1 x2 x3 x1 x2 x3) "three-dup"

3dup is written is Z80. An equivalent definition in
Forth is the following:

 : 3dup (x1 x2 x3 -- x1 x2 x3 x1 x2 x3) dup 2over rot ;

See also: 3drop, dup, 2dup, 4dup.

Source file: <src/lib/data_stack.fs>.

4

4drop

 4drop (x1 x2 x3 x4 --) "four-drop"

See also: 4dup, drop, 2drop, 3drop.

Source file: <src/lib/data_stack.fs>.

4dup

 4dup (x1 x2 x3 x4 -- x1 x2 x3 x4 x1 x2 x3 x4) "four-dup"

See also: 4drop, dup, 2dup, 3dup.

Source file: <src/lib/data_stack.fs>.

8

8*

 8* (x1 -- x2) "eight-star"

x2 is the result of shifting x1 three bits toward the
most-significant bit, filling the vacated least-significant
bit with zero.

8* is equivalent to 3 lshift or 2* 2* 2*, but
faster.

See also: 2*, 3*, lshift, 8+, 8-, *.

Source file: <src/lib/math.operators.1-cell.fs>.

8+

 8+ (n1 -- n2) "eight-plus"

Add 8 to n1, according to the operation of +, giving
n2.

8+ is equivalent to 8 + but faster.

See also: 8-, 1+, 2+, 8*, +.

Source file: <src/lib/math.operators.1-cell.fs>.

8-

 8- (n1 -- n2) "eight-minus"

Subtract 8 from n1, according to the operation of -,
giving n2.

8- is equivalent to 8 - but faster.

See also: 8+, 1-, 2-, 8*, -.

Source file: <src/lib/math.operators.1-cell.fs>.

8bin.

 8bin. (n --) "8-bin-dot"

Display n as an unsigned 8-bit binary number.

See also: 8hex., 32bin., 16bin., bin., binary.

Source file: <src/lib/display.numbers.fs>.

8hex.

 8hex. (d --) "8-hex-dot"

Display d as an unsigned 8-bit hexadecimal number.

See also: 8bin., 16hex., hex., hex.

Source file: <src/lib/display.numbers.fs>.

:

:

 : ("name" --) "colon"

Parse name. Create a definition for name, called a "colon
definition". Enter compilation state and start the
current definition. Append the initiation semantics given
below to the current definition.

Initiation: (i*x -- i*x) (R: -- nest-sys)

Save implementation-dependent information nest-sys about
the calling definition. The stack effects i*x represent
arguments to name.

name execution: (i*x -- j*x)

Execute the definition name. The stack effects i*x and
j*x represent arguments to and results from name,
respectively.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: ;, does>, header.

Source file: <src/kernel.z80s>.

:2clause

 :2clause (xd switch --) "colon-two-clause"

Start the definition of a switch clause xd for switch
switch.

See also: switch:, 2switch.

Source file: <src/lib/flow.switch-colon.fs>.

::

 :: (class "name" --) "colon-colon"

Compile the method for the selector name of the class
class (not immediate!).

Source file: <src/lib/objects.mini-oof.fs>.

:cclause

 :cclause (switch --) "colon-c-clause"

Start the definition of a switch clause c for switch
switch.

See also: switch:, cswitch.

Source file: <src/lib/flow.switch-colon.fs>.

:clause

 :clause (x switch --) "colon-clause"

Start the definition of a switch clause x for switch
switch.

See also: switch:, switch.

Source file: <src/lib/flow.switch-colon.fs>.

:noname

 :noname (-- xt) "colon-no-name"

Create an execution token xt. Enter compilation state
and start the current definition, which can be executed
later by using xt.

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: nextname.

Source file: <src/lib/define.MISC.fs>.

:switch

 :switch (xt "name" -- a) "colon-switch"

Create a code switch name whose default action is given
by xt. Leave the address a of the head of its list on
the stack.

The head a of the switch structure is the address of a
2-cell structure, with the following contents:

	
Link to the last clause of the switch

	
Execution token of the default action

Usage example:

 : one (--) ." unu " ;
: two (--) ." du " ;
: three (--) ." tri " ;
 \ clauses of the switch

: many (n --) . ." is too much! " ;
 \ default action of the switch

' many :switch .number

 ' one 1 <switch
 ' two 2 <switch
 ' three 3 <switch drop

cr 1 .number 2 .number 3 .number 4 .number

' .number >body :noname ." kvar " ; 4 <switch drop
 \ add a new nameless clause for number 4

cr 1 .number 2 .number 3 .number 4 .number

[switch is the syntactic-sugar variant of
:switch.

Origin: SwiftForth.

See also: <switch, [switch, switcher.

Source file: <src/lib/flow.bracket-switch.fs>.

;

;

 ; "semicolon"
 Compilation: (--)
 Run-time: (--) (R: nest-sys --)

Compilation: Append the run-time semantics below to the
current definition. End the current definition, allow it to be
found in the dictionary and enter interpretation state.

Run-time: Return to the calling definition specified by
nest-sys.

; is an immediate and compile-only word.

Definition:

 : ; \ Compilation: (--)
 \ Run-time: (--) (R: nest-sys --)
 postpone exit finish-code ;

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: exit, :, finish-code, ;code.

Source file: <src/kernel.z80s>.

;]

 ;] "semicolon-bracket"
 Compilation: (orig xt1 --)
 Run-time: (-- xt2)

End a quotation started by [:.

;] is an immediate and compile-only word.

Compilation:

End the current nested definition, and resume compilation
to the previous (containing) current definition, identified
by xt1. Resolve the branch from orig left by [:.
Append the following run-time to the (containing) current
definition:

Run-time:

xt2 is the execution token of the nested definition.

Source file: <src/lib/flow.bracket-colon.fs>.

;and

 ;and (--) "colon-and"

Allow continuation of a definition where make is used.

 doer flashes
cls \ does nothing
: activate (--) make cls page ;and ." cls is ready" ;
activate \ reconfigure ``cls`` and display "cls is ready"
cls \ do ``page``

;and is an immediate word.

See also: undo.

Source file: <src/lib/flow.doer.fs>.

;code

 ;code "semicolon-code"
 Compilation: (--)
 Run-time: (--) (R: nest-sys --)

Define the execution-time action of a word created by a
low-level defining word. Used in the form:

 : namex ... create ... ;code ... end-code

namex name

where create could be also any user defined word which
executes create.

;code marks the termination of the defining part of the
defining word namex and then begins the definition of the
execution-time action for words that will later be defined
by namex. When name is called, its parameter field
address is in register HL and the assembler code compiled
between ;code and end-code is executed.

Detailed description:

Compilation:

Append the run-time semantics below to the current
definition. End the current definition, allow it to be
found in the dictionary, and enter interpretation state.

Enter assembler mode by executing asm, until end-code
is executed.

Run-time:

Replace the execution semantics of the most recent
definition, which should be defined with create or a
user-defined word that calls create, with the name
execution semantics given below. Return control to the
calling definition specified by nest-sys.

Initiation: (i*x -- i*x dfa) (R: -- nest-sys2)

Save information nest-sys2 about the calling definition.
Place name's data field address dfa on the stack. The
stack effects i*x represent arguments to name.

name execution:

Perform the machine code sequence that was generated
following ;code and finished by end-code.

;code is an immediate and compile-only word.

Usage example:

 : border-changer (n --)
 create c, ;code (--) m a ld, FE out, jpnext, end-code

0 border-changer black-border
1 border-changer blue-border
2 border-changer red-border

Which is equivalent to:

 : border-changer (n --)
 create c, does> (--) (dfa) c@ border ;

0 border-changer black-border
1 border-changer blue-border
2 border-changer red-border

Origin: fig-Forth, Forth-79 (Assembler Word Set), Forth-83
(Assembler Extension Word Set), Forth-94 (TOOLS EXT),
Forth-2012 (TOOLS EXT).

See also: (;code, does>, asm, create.

Source file: <src/lib/assembler.MISC.fs>.

<

<

 < (n1 n2 -- f) "less-than"

f is true if and only if n1 is less than n2.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: >, u<, 0<, min.

Source file: <src/kernel.z80s>.

<#

 <# (--) "less-number-sign"

Initialize the pictured numeric output process:
Set hld to its initial value, right below pad.

Definition:

 : <# (--) pad hld ! ;

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: /hold, #>, #, #s, hold, holds, sign.

Source file: <src/kernel.z80s>.

<<

 << (-- ca +n) "less-than-less-than"

Mark the start of a code zone to be dumped by >>. ca
is the current data-pointer and +n is the current
depth. Both of them are used by >>. See >> for a
usage example.

Origin: Pygmy Forth.

Source file: <src/lib/assembler.MISC.fs>.

<=

 <= (n1 n2 -- f) "less-or-equal"

f is true if and only if n1 is less than or
equal to n2.

See also: >=, u<=, 0<=.

Source file: <src/lib/math.operators.1-cell.fs>.

<=>

 <=> (n1 n2 -- -1|0|1) "less-or-equal-or-greater"

If n1 equals n2, return zero.
If n1 is less than n2, return negative one.
If n1 is greater than n2, return positive one.

See also: polarity, <, =, >.

Source file: <src/lib/math.operators.1-cell.fs>.

<>

 <> (x1 x2 -- f) "not-equals"

f is true only and only if x1 is not bit-for-bit the
same as x1.

Origin: Forth-79 (Reference Word Set), Forth-83 (Uncontrolled
Reference Words), Forth-94 (CORE), Forth-2012 (CORE).

See also: =, >, <.

Source file: <src/kernel.z80s>.

<bin

 <bin (--) "start-bin"

Start a code zone where binary radix is the default, by
saving the current value of base to base' and executing
binary. The zone is finished by bin>.

See also: <hex.

Source file: <src/lib/display.numbers.fs>.

<hex

 <hex (--) "start-hex"

Start a code zone where hexadecimal radix is the default,
by save the current value of base to base' and
executing hex. The zone is finished by hex>.

Origin: lina.

See also: <bin.

Source file: <src/lib/display.numbers.fs>.

<is>

 <is> (xt "name" --) "less-is"

Set name, which was defined by defer, to execute xt.

<is> is a factor of is.

Origin: Gforth.

See also: [is].

Source file: <src/lib/define.deferred.fs>.

<mark

 <mark (C: -- dest) "backward-mark"

dest is the current data-space pointer, to be used as the
destination of a backward branch. dest is typically only
used by <resolve to compile a branch address.

<mark is an alias of here.

Origin: Forth-83 (System Extension Word Set).

See also: >mark, begin.

Source file: <src/kernel.z80s>.

<resolve

 <resolve (C: dest --) "backward-resolve"

Resolve a backward branch. Compile a branch address using
dest, the address left by <mark, as the destination
address. Used at the source of a backward branch after either
branch or ?branch or 0branch.

<resolve is an alias of ,.

Origin: Forth-83 (System Extension Word Set).

Source file: <src/kernel.z80s>.

<rresolve

 <rresolve (dest --) "less-than-r-resolve"

Resolve a Z80 assembler backward relative branch
reference dest.

See also: >rresolve, rresolve.

Source file: <src/lib/assembler.fs>.

<switch

 <switch (a xt n -- a) "start-switch"

Define a new clause of a :switch structure whose head is
a to execute xt when the key n is matched.

The switch clauses are 3-cell structures:

	
Link to the previous clause of the switch

	
Key

	
Execution token

Origin: SwiftForth.

Source file: <src/lib/flow.bracket-switch.fs>.

=

=

 = (x1 x2 -- f) "equals"

f is true only and only if x1 is bit-for-bit the same as
x1.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: <>, >, <.

Source file: <src/kernel.z80s>.

>

>

 > (n1 n2 -- f) "greater-than"

f is true if and only if n1 is greater than n2.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: <, u>, 0>, max.

Source file: <src/kernel.z80s>.

>=

 >= (n1 n2 -- f) "greater-or-equal"

f is true if and only if n1 is greater than or
equal to n2.

See also: <=, u>=, 0>=.

Source file: <src/lib/math.operators.1-cell.fs>.

>>

 >> (ca +n --) "greater-than-greater-than"

Display starting address ca as a 16-bit hexadecimal
number. Then dump the code compiled in data space from ca
to the current data-space pointer, in hexadecimal. +n is
used for error checking. ca and +n were left by <<.

<< and >> allow you to dump short (or long) snippets
of assembly code to the screen for your inspection. If you
want to see how a piece of assembly code gets assembled,
just put it between the brackets.

Usage example:

 create useless-code-routine (-- a)
 asm << C9 c, >> end-asm

need assembler

code useless-code-word (n1 -- n1)
 << h pop, h incp, h decp, h push, jpnext, >>
end-code

Origin: Pygmy Forth.

See also: dump, wdump, assembler.

Source file: <src/lib/assembler.MISC.fs>.

>>link

 >>link (xtp -- lfa) "to-to-link"

Convert xtp into its corresponding lfa.

See also: >>name, name>link.

Source file: <src/lib/compilation.fs>.

>>name

 >>name (xtp -- nt) "to-to-name"

Convert xtp into its corresponding nt.

See also: name>>, >>link, >name.

Source file: <src/lib/compilation.fs>.

>action

 >action (xt -- a) "to-action"

Return the address a that contains the execution token
currently associated to the deferred word xt.

See also: defer, action-of, defer!, defer@.

Source file: <src/kernel.z80s>.

>amark

 >amark (-- a) "greater-than-a-mark"

Leave the address of a Z80 assembler absolute forward
reference.

Source file: <src/lib/assembler.fs>.

>aresolve

 >aresolve (orig --) "greater-than-a-resolve"

Resolve a Z80 assembler forward absolute branch reference
orig.

See also: >amark.

Source file: <src/lib/assembler.fs>.

>body

 >body (xt -- dfa) "to-body"

Convert xt into its corresponding dfa.

If xt is for a word defined by create, dfa is the
address that here would have returned had it been
executed immediately after the execution of the create
that defined xt.

If xt is for a word defined by variable, 2variable,
cvariable, constant, 2constant and cconstant, dfa
is the address containing their value.

If xt is for a word defined by :, dfa is the address
of its compiled definition.

If xt is for a word defined by code, dfa makes no
sense.

dfa is always in data space.

Origin: Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: body>, name>body, >name.

Source file: <src/lib/compilation.fs>.

>bstring

 >bstring (x -- ca len) "to-b-string"

Convert x to a 1-cell binary string ca len in the
stringer. ca len contains x "as is", as stored in
memory.

See also: 2>bstring, chars>string, char>string.

Source file: <src/lib/strings.MISC.fs>.

>cat

 >cat (ca len -- ca1 ca2 x) "to-cat"

Convert filename ca len (wildcards permitted) to the
parameters needed by (cat:

	

ca1

	
address of $FF-terminated filename (wildcards permitted)

	

ca2

	
address of buffer

	

x (low byte)

	
filter: bit 0 set if system files are
included (configurable by full-cat)

	

x (high byte)

	
size of the buffer in entries, plus one (>=2)

See also: wcat, cat, cat-entries.

Source file: <src/lib/dos.plus3dos.fs>.

>cat-entry

 >cat-entry (n -- ca) "to-cat-entry"

Convert cat-buffer entry n to its address ca.

See also: /cat-entry.

Source file: <src/lib/dos.plus3dos.fs>.

>digit

 >digit (n -- c) "to-digit"

Convert a number to its character digit: 0 .. 9A .. Z.

>digit is written in Z80. Its equivalent definition if
Forth is the following:

 : >digit (n -- c)
 dup 9 > ['A' '0' - 1+] literal and + '0' + ;

Source file: <src/kernel.z80s>.

>drive-block

 >drive-block (u1 -- u2) "to-drive-block"

Convert block u1 to its equivalent u2 in its corresponding
disk drive, which is set the current drive.

>drive-block is a deferred word (see defer) whose
default action is noop. Its action is set to
(>drive-block when block-drives is loaded.

Source file: <src/kernel.z80s>.

>e

 >e (x a --) "to-e"

Move x to the extra stack a defined with estack.

See also: e>, e@.

Source file: <src/lib/data.estack.fs>.

>esc-order

 >esc-order (wid --) "to-esc-order"

Push wid on the escaped strings search order.

See also: set-esc-order, get-esc-order,
esc-standard-chars-wordlist,
esc-block-chars-wordlist,
esc-udg-chars-wordlist.

Source file: <src/lib/strings.escaped.fs>.

>false

 >false (x -- false) "to-false"

Replace x with false.

See also: >true, 2>false.

Source file: <src/lib/data_stack.fs>.

>filename

 >filename (ca1 len1 -- ca2) "to-filename"

Convert the filename ca1 len1 to a $FF-terminated string
at ca2 in the stringer.

See also: /filename.

Source file: <src/lib/dos.plus3dos.fs>.

>form

 >form (cols rows --) "to-form"

Adapt the cursor position of the current display mode to a
display mode whose form is cols rows.

>form is used by the display modes, e.g. mode-32 and
mode-64ao.

When >form is executed, the action of at-xy
must be that of the new mode, but xy, rows and
columns must still return the values of the current (old)
mode.

Source file: <src/lib/display.mode.COMMON.fs>.

>graphic-ascii-char

 >graphic-ascii-char (c1 -- c1 | c2)

If character c1 is a printable ASCII character, return
it, else return the character returned by
default-graphic-ascii-char.

See also: graphic-ascii-char?.

Source file: <src/lib/chars.fs>.

>in

 >in (-- a) "to-in"

A user variable. a is the address of a cell containing the
offset in characters from the start of the input buffer to the
start of the parse area.

Source file: <src/kernel.z80s>.

>in/l

 >in/l (-- n) "to-in-slash-l"

Return number n of characters already interpreted in the
current line of the block being interpreted. No check is done
whether any block is actually being interpreted.

Definition:

 : >in/l (-- n) >in @ c/l mod ;

See also: blk-line, ->in/l, >in, c/l.

Source file: <src/kernel.z80s>.

>l

 >l (b -- a) "to-l"

a is the address of label b in the labels table.

Source file: <src/lib/assembler.labels.fs>.

>mark

 >mark (C: -- orig) "forward-mark"

Compile space in the dictionary for a branch address which
will later be resolved by >resolve.

Used at the source of a forward branch. Typically used after
either branch, 0branch or ?branch.

Definition:

 : >mark (C: -- orig) here 0 , ;

Origin: Forth-83 (System Extension Word Set).

See also: <mark.

Source file: <src/kernel.z80s>.

>name

 >name (xt -- nt | 0) "to-name"

Try to find the name token nt of the word represented by
execution token xt. Return 0 if it fails.

>name searches all word lists, from newest to
oldest; and the searching of every word list is done also
from the newest to the oldest definition. The first header
whose execution token pointer contains xt is a match.
Therefore, when a word has additional headers created by
alias or synonym, the nt of its latest alias or
synonym is found first.

Origin: Gforth.

See also: >name/order, >oldest-name, >oldest-name/order,
>oldest-name/fast, name>, >body, name>body,
name>name, >>name.

Source file: <src/lib/compilation.fs>.

>name/order

 >name/order (xt -- nt | 0) "to-name-slash-order"

Try to find the name token nt of the word represented by
execution token xt, in the current search order. Return
0 if it fails.

>name/order searches all word lists in the
current search order, and the searching of every word
list is done from the newest to the oldest definition. The
first header whose execution token pointer contains xt is
a match. Therefore, when a word has additional headers
created by alias or synonym, the nt of its latest
alias or synonym in the current search order is found
first.

See also: >name, >oldest-name/order, >oldest-name,
>oldest-name/fast, name>, >body, name>body,
name>name, name>>.

Source file: <src/lib/compilation.fs>.

>number

 >number (ud1 ca1 len1 -- ud2 ca2 len2) "to-number"

ud2 is the unsigned result of converting the characters
within the string specified by ca1 len1 into digits, using
the number in base, and adding each into ud1 after
multiplying ud1 by the number in base. Conversion
continues left-to-right until a character that is not
convertible, including any "+" or "-", is encountered or the
string is entirely converted. ca2 is the location of the
first unconverted character or the first character past the
end of the string if the string was entirely converted. len2
is the number of unconverted characters in the string.

Definition:

 : >number (d1 ca1 len1 -- d2 ca2 len2)
 begin dup while
 over c@ base @ digit? while
 >r 2swap r> swap base @ um* drop rot base @
 um* d+ 2swap 1 /string
 repeat then ;

Origin: Forth-94 (CORE), Forth-2012 (CORE).

See also: number?, number.

Source file: <src/kernel.z80s>.

>oldest-name

 >oldest-name (xt -- nt | 0) "to-oldest-name"

Try to find the oldest name token nt of the word
represented by execution token xt, in the current search
order. Return 0 if it fails.

>oldest-name searches all word lists, from newest
to oldest; and the searching of every word list is done
also from the newest to the oldest definition. The oldest
header whose execution token pointer contains xt is a
match. Therefore, when a word has additional headers
created by alias or synonym, the nt of the original
word is returned.

See also: >oldest-name/order, >oldest-name/fast, >name,
>name/order, name>, >body, name>body, name>name,
name>>.

Source file: <src/lib/compilation.fs>.

>oldest-name/fast

 >oldest-name/fast (xt -- nt | 0) "to-oldest-name-slash-fast"

Try to find the name token nt of the word represented by
execution token xt. Return 0 if it fails.

>oldest-name/fast searches the whole dictionary, from
the oldest definition to the newest one, for the first
definition whose execution token pointer contains xt.
This way, when a word has additional headers created by
alias or synonym, its original name is found first.

>oldest-name/fast is not absolutely reliable,
because it uses name>name to calculate the address of the
next header. If something other than definition headers
was compiled in name space or the name-space pointer np
was altered between two definitions, the linking will fail
and the algorithm probably will enter and endless loop.

Origin: Gforth.

See also: >oldest-name, >oldest-name/order, >name,
>name/order, name>, >body, name>body, name>name,
>>name.

Source file: <src/lib/compilation.fs>.

>oldest-name/order

 >oldest-name/order (xt -- nt | 0) "to-oldest-name-slash-order"

Try to find the oldest name token nt of the word
represented by execution token xt, in the current search
order. Return 0 if it fails.

>oldest-name/order searches all word lists in the
current search order, and the searching of every word
list is done from the newest to the oldest definition. The
oldest header whose execution token pointer contains xt
is a match. Therefore, when a word has additional headers
created by alias or synonym, the nt of the original
word is returned.

See also: >oldest-name, >oldest-name/fast, >name,
>name/order, name>, >body, name>body, name>name,
name>>.

Source file: <src/lib/compilation.fs>.

>order

 >order (wid --) "to-order"

Push word list identifier wid on the search order.

Definition:

 : >order (wid --) also context ! ;

Origin: Gforth.

See also: previous, also, set-order, context.

Source file: <src/kernel.z80s>.

>r

 >r (x --) (R: -- x) "to-r"

Move x from the data stack to the return stack.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: r>, r@, 2>r`, dup>r.

Source file: <src/kernel.z80s>.

>resolve

 >resolve (C: orig --) "forward-resolve"

Resolve a forward branch by placing the address of the current
data-space pointer into the space compiled by >mark.

Definition:

 : >resolve (C: orig --) here swap ! ;

Origin: Forth-83 (System Extension Word Set).

See also: here, <resolve.

Source file: <src/kernel.z80s>.

>rmark

 >rmark (-- orig) "greater-than-r-mark"

Leave the origin address of a Z80 assembler forward
relative branch just compiled, to be resolved by
>rresolve.

Source file: <src/lib/assembler.fs>.

>rresolve

 >rresolve (orig --) "greater-than-r-resolve"

Resolve a Z80 assembler forward relative branch reference
orig.

See also: <rresolve, rresolve.

Source file: <src/lib/assembler.fs>.

>stringer

 >stringer (ca1 len1 -- ca2 len1) "to-stringer"

Copy string ca1 len1 to the stringer and return it as ca2
len1.

Definition:

 : >stringer (ca1 len1 -- ca2 len1)
 dup allocate-stringer swap 2dup 2>r move 2r> ;

See also: allocate-stringer, far>stringer.

Source file: <src/kernel.z80s>.

>tape-file

 >tape-file (ca1 len1 ca2 len2 --) "to-tape-file"

Write a memory region ca1 len1 into a tape file ca2
len2.

See also: tape-file>, (>tape-file

Source file: <src/lib/tape.fs>.

>true

 >true (x -- true) "to-true"

Replace x with true.

See also: >false, 2>true.

Source file: <src/lib/data_stack.fs>.

>x

 >x (x --) (X: -- x) "to-x"

Move x from the data stack to the xstack.

See also: x>, x@.

Source file: <src/lib/data.xstack.fs>.

?

?

 ? (a --) "question"

Display the 1-cell signed integer stored at a, using the
format of ..

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-94
(TOOLS), Forth-2012 (TOOLS).

See also: c?, 2?, @.

Source file: <src/lib/memory.MISC.fs>.

?(

 ?((f "ccc<space><question><paren><space>" --) "question-paren"

If f is not zero, parse and discard until "?)" is found or
until the end of the parse area is reached. ?(cannot be
used across blocks.

?(is used for conditional compilation, as a simpler but
more compact alternative to the standard [if].

?(is an immediate word.

Definition:

 : ?((f "ccc<space><question><paren><space>" --)
 0exit begin parse-name dup
 while s" ?)" str= ?exit repeat 2drop ; immediate

See also: ?\, ?-->, (.

Source file: <src/kernel.z80s>.

?)

 ?) (--) "question-right-paren"

Do nothing. ?(parses until ?) is found.

?) is an immediate word.

Source file: <src/kernel.z80s>.

?-->

 ?--> (f --) "question-next-block"

If f is not false, continue interpretation on the next
sequential block. parse area. ?--> is used for
conditional compilation.

?--> is an immediate word.

See also: -->, ?(, ?\.

Source file: <src/lib/blocks.fs>.

??

 ?? "question-question"
 Compilation: ("name" --)
 Run-time: (f --)

?? is an immediate and compile-only word.

Compilation:

Parse name and search the current search order for it.
If not found, throw an exception #-13. If found and it’s
an immediate word, execute it, else compile it.

Run-time:

If f is not zero, execute name, which was compiled.

Source file: <src/lib/flow.MISC.fs>.

?\

 ?\ (f "ccc<eol>" --) "question-backslash"

If f is not zero, execute \, else do nothing.

?\ is an immediate word.

?\ is a conditional version of \, used for conditional
compilation, as a simpler but more compact alternative to the
standard [if].

Definition:

 : ?\ ("ccc<eol>" --) 0exit postpone \ ; immediate

See also: ?(, ?-->, \.

Source file: <src/kernel.z80s>.

?block-drive

 ?block-drive (u --) "question-block-drive"

If u is not-block-drive, throw an exception #-35
("invalid block number").

See also: (>drive-block, block-drives, ?drive#, ?drives.

Source file: <src/lib/dos.COMMON.fs>.

?branch

 ?branch (f --) "question-branch"

A run-time procedure to branch conditionally. If f is not
not zero, the following in-line address is copied to IP to
branch forward or backward.

This ?branch is not Forth-83’s ?branch, which is
equivalent to fig-Forth’s 0branch, which is a more logical
name for the "branch if zero" action. Solo Forth borrows
0branch from fig-Forth, and completes the branches after a
logical naming convention shared with optional control flow
words, e.g. ?exit, 0exit, -exit…​

See also: branch, -branch, +branch.

Source file: <src/kernel.z80s>.

?c1-!

 ?c1-! (ca -) "question-c-one-minus-store"

If the character stored at ca is not zero, decrement it.

See also: c1-!, c1+!, c-!, 1-!.

Source file: <src/lib/memory.MISC.fs>.

?call,

 ?call, (a op --) "question-call-comma"

Compile a Z80 assembler conditional absolute-call
instruction to address a, being op the identifier of
the condition, which was put on the stack by z?, nz?,
c?, nc?, po?, pe?, p?, or m?.

See also: call,, ?ret,, ?jp,.

Source file: <src/lib/assembler.fs>.

?ccase

 ?ccase "question-c-case"
 Compilation: (C: -- orig)
 Run-time: (c ca len --)

Start a ?ccase..end?ccase structure. If c is in the
string ca len, execute the n-th word compiled after
?ccase, where n is the position of the first c in
the string (0..len-1), then continue after end?ccase. If
c is not in ca len, just continue after end?ccase.

?ccase is an immediate and compile-only word.

Usage example:

 : .a (--) ." Letter A" ;
: .b (--) ." Letter B" ;
: .c (--) ." Letter C" ;

: letter (c --)
 s" abc" ?ccase .a .b .c end?ccase ." The End" cr ;

See also: ccase, ccase0.

Source file: <src/lib/flow.ccase.fs>.

?compiling

 ?compiling (--) "question-compiling"

If not compiling, throw exception #-14 ("interpreting a
compile-only word").

See also: compile-only, ?executing.

Source file: <src/lib/exception.fs>.

?csp

 ?csp (--) "question-c-s-p"

If the current data stack position does not match the value
saved by !csp, throw an exception #-264 ("definition not
finished").

Origin: fig-Forth.

Source file: <src/kernel.z80s>.

?defined

 ?defined (f --) "question-defined"

If f is false, throw exception code #-13 (not found).

Source file: <src/kernel.z80s>.

?depth

 ?depth (--) "question-depth"

If depth is not zero, set base to decimal, display
the stack on a new line with .s and finally throw
exception #-258 (stack imbalance).

See also: ?csp.

Source file: <src/lib/tool.debug.MISC.fs>.

?dnegate

 ?dnegate (d1 n -- d1|d2) "question-d-negate"

If n is negative, negate d1, giving its arithmetic inverse
d2. Otherwise return d1.

?dnegate is written in Z80. Its equivalent definition in
Forth is the following:

 : ?dnegate (d1 n -- d1|d2) 0< if dnegate then ;

Origin: fig-Forth’s d+-.

See also: dnegate, ?negate.

Source file: <src/kernel.z80s>.

?do

 ?do "question-do"
 Compilation: (-- do-sys)

Compile (?do and leave do-sys to be consumed by loop or
+loop.

?do is an immediate and compile-only word.

Definition:

 : ?do (-- do-sys)
 postpone (?do >mark ; immediate compile-only

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: do, -do, times, executions.

Source file: <src/kernel.z80s>.

?drive#

 ?drive# (u --) "question-drive-number-sign"

If u is greater than the maximum number of disk drives,
throw an exception #-35 ("invalid block number").

See also: (>drive-block, block-drives, ?block-drive,
?drives.

Source file: <src/lib/dos.COMMON.fs>.

?drives

 ?drives (n --) "question-drives"

If n is greater than the maximum number of disk drives,
throw an exception #-287 ("wrong number of drives").

See also: set-block-drives. ?block-drive, ?drive#.

Source file: <src/lib/dos.COMMON.fs>.

?dup

 ?dup (x -- 0 | x x) "question-dup"

Duplicate x if it is non-zero.

Origin: Forth-79 (Required Word Set), Forth-83 (Required Word
Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: dup, 0dup, -dup.

Source file: <src/kernel.z80s>.

?esc-order

 ?esc-order (n --) "question-esc-order"

Check if n is a valid size for the escaped strings search
order, else throw an exception #-281 ("escaped strings
search-order overflow").

See also: #esc-order, esc-context, >esc-order,
set-esc-order, get-esc-order.

Source file: <src/lib/strings.escaped.fs>.

?executing

 ?executing (--) "question-executing"

If not executing, throw exception #-263 ("execution
only").

See also: ?compiling.

Source file: <src/lib/exception.fs>.

?exit

 ?exit (f --) (R: nest-sys | -- nest-sys |) "question-exit"

If f is zero, do nothing. Otherwise return control to the
calling definition, specified by nest-sys.

?exit is the conditional version of exit.

?exit cannot be used within a loop. Use if unloop exit
then instead.

?exit can be used in interpretation mode to stop the
interpretation of a block.

See also: exit, 0exit, -exit, +exit.

Source file: <src/kernel.z80s>.

?index-block

 ?index-block (block --) "question-index-block"

Index block block, if not done before.

See also: use-fly-index.

Source file: <src/lib/blocks.indexer.fly.fs>.

?jp,

 ?jp, (a op --) "question-j-p-comma"

Compile a Z80 assembler conditional absolute-jump
instruction to the address a, being op the identifier
of the condition, which was put on the stack by z?,
nz?, c?, nc?, po?, pe?, p?, or m?.

See also: jp,, ?jr,, ?ret,, ?call,.

Source file: <src/lib/assembler.fs>.

?jr,

 ?jr, (a op --) "question-j-r-comma"

Compile a Z80 assembler conditional relative-jump
instruction to address a, being op the identifier of
the condition, which was put on the stack by z?, nz?,
c?, or nc?.

See also: jr,, ?jp,, djnz,, jp>jr, (jr,.

Source file: <src/lib/assembler.fs>.

?l#

 ?l# (n --) "question-l-number-sign"

If assembler label n is out of range, throw exception
#-283.

See also: max-labels.

Source file: <src/lib/assembler.labels.fs>.

?leave

 ?leave (f --) (R: loop-sys -- | loop-sys) "question-leave"

If f is non-zero, discard the loop-control parameters for
the current nesting level and continue execution
immediately following the innermost syntactically enclosing
loop or +loop.

See also: 0leave, leave, unloop, do, ?do.

Source file: <src/lib/flow.MISC.fs>.

?load

 ?load (u f --) "question-load"

Load block u if flag f is true, else do nothing.

Origin: Pygmy Forth.

See also: load.

Source file: <src/lib/blocks.fs>.

?loading

 ?loading (--) "question-loading"

If a block is not being loaded, i.e., if the content of
blk is zero, throw exception code #-265 ("loading only").

See also: loading?, load.

Source file: <src/kernel.z80s>.

?located

 ?located (n --) "question-located"

If n is zero, store needed-word into parsed-name (in
order to make needed-word displayed) and throw an
exception #-268 ("needed, but not located"). Otherwise do
nothing.

Source file: <src/lib/002.need.fs>.

?negate

 ?negate (n1 n2 -- n1|n3) "question-negate"

If n2 is negative, negate n1, giving its arithmetic
inverse n3. Otherwise return n1.

?negate is written in Z80. Its equivalent definition in
Forth is the following:

 : ?negate (n1 n2 -- n1|n3) 0< if negate then ;

Origin: fig-Forth’s +-.

See also: negate, ?dnegate.

Source file: <src/kernel.z80s>.

?next-bank

 ?next-bank (a -- a|a') "question-next-bank"

If the actual far-memory address a ($C000 .. $FFFF) has
increased to the next bank ($0000 .. $3FFF), convert it to the
corresponding actual address a' ($C000 .. $FFFF) in the next
bank and page in the next bank. Otherwise return a.

See also: ?next-bank_, ?previous-bank.

Source file: <src/kernel.z80s>.

?next-bank_

 ?next-bank_ (-- a) "question-next-bank-underscore"

Address of the question_next_bank routine of the
kernel, which does the following:

If the actual far-memory address ($C000..$FFFF) in the HL
register has increased to the next bank ($0000..$3FFF),
convert it to the corresponding actual address
($C000..$FFFF) in the next bank and page in the next bank,
else do nothing.

This is the routine called by ?next-bank. ?next-bank_
is used in code words.

Input:

	
HL = address in a paged bank ($C000..$FFFF) or higher
($0000..$BFFF).

Output when HL is above the paged bank:

	
HL = corresponding address in the next bank, which is paged in

	
A corrupted

	
D = 0

	
E = bank

Output when HL is an address in a paged bank:

	
HL preserved

	
A corrupted

Source file: <src/lib/memory.far.fs>.

?order

 ?order (n --) "question-order"

If n is not a valid size for the search order, throw an
exception #-49 ("search-order overflow").

Definition:

 : ?order (n --)
 dup 0< #-50 ?throw max-order < ?exit #-49 throw ;

See also: #order, set-order, >order, order.

Source file: <src/kernel.z80s>.

?os-unused

 ?os-unused (u --) "question-o-s-unused"

If u is less than the the amount of unused space by the
OS and the BASIC interpreter, throw exception code #-291
(out of OS memory).

See also: os-unused.

Source file: <src/lib/os.fs>.

?pairs

 ?pairs (x1 x2 --) "question-pairs"

If x1 not equals x2 throw an exception #-22 (control
structure mismatch).

Source file: <src/lib/compilation.fs>.

?previous-bank

 ?previous-bank (a -- a|a') "question-previous-bank"

If the actual far-memory address a ($C000 .. $FFFF) has
decreased to the previous bank ($8000 .. $BFFF), convert it to
the corresponding actual address a' ($C000 .. $FFFF) in the
previous bank and page in the next bank. Otherwise return
a.

See also: ?previous-bank_, ?next-bank.

Source file: <src/kernel.z80s>.

?previous-bank_

 ?previous-bank_ (-- a) "question-previous-bank-underscore"

Address of the question_previous_bank routine of the
kernel, which does the followig:

If the actual far-memory address ($C000..$FFFF) in the HL
register has decreased to the previous bank ($8000..$BFFF),
convert it to the corresponding actual address
($C000..$FFFF) in the previous bank and page in the next
bank, else do nothing.

This is the routine called by ?previous-bank.
?previous-bank_ is used in code words.

Input:

	
HL = address in a paged bank ($C000..$FFFF) or lower
($8000..$BFFF).

Output when HL is below the paged bank:

	
HL = corresponding address in the previous bank, which is paged in

	
A corrupted

	
D = 0

	
E = bank

Output when HL is an address in a paged bank:

	
HL preserved

	
A corrupted

Source file: <src/lib/memory.far.fs>.

?rel

 ?rel (n --) "question-rel"

If Z80 assembler relative branch n is too long, throw
exception #-269 (relative jump too long).

Source file: <src/lib/assembler.fs>.

?repeat

 ?repeat "question-repeat"
 Compilation: (dest -- dest)
 Run-time: (f --)

An alternative exit point for begin …​ until loops: If
f is non-zero, continue execution at begin, otherwise
continue execution after until.

?repeat is an immediate and compile-only word.

Usage example:

 : test (--)
 begin
 ...
 flag ?repeat \ Go back to ``begin`` if flag is non-zero
 ...
 flag 0repeat \ Go back to ``begin`` if flag is zero
 ...
 flag until \ Go back to ``begin`` if flag is false
 ...
 ;

See also: 0repeat.

Source file: <src/lib/flow.MISC.fs>.

?ret,

 ?ret, (op --) "question-ret-comma"

Compile a Z80 assembler conditional return instruction,
being op the identifier of the condition, which was put
on the stack by z?, nz?, c?, nc?, po?, pe?,
p?, or m?.

See also: ret,, ?jp,, ?call,.

Source file: <src/lib/assembler.fs>.

?retry

 ?retry "question-retry"
 Compilation: (--)
 Run-time: (f --)

If f is zero, do nothing. Otherwise do a branch to the
start of the word.

?retry is an immediate and compile-only word.

See also: retry, ?repeat, 0repeat.

Source file: <src/lib/flow.MISC.fs>.

?rstack

 ?rstack (--) "question-r-stack"

throw an error if the return stack is out of bounds.

Origin: fig-Forth’s ?stack.

See also: ?stack.

Source file: <src/kernel.z80s>.

?seconds

 ?seconds (u --) "question-seconds"

Wait at least u seconds or until a key is pressed.

See also: seconds, ms, ?ticks-pause.

Source file: <src/lib/time.fs>.

?set-drive

 ?set-drive (c -- ior)

If drive c is not equal to the current default drive,
returned by get-drive, use set-drive to make c the
current default drive, returning I/O result code ior.
Otherwise do nothing, and ior is zero.

?set-drive is used by (>drive-block, in order to
update the current default drive only when needed, i.e.
when the desired block is not in the current default drive.

That is especially useful on +3DOS, whose set-drive is
slow because it has to do additional operations in order to
make transfer-sector use the current default drive.

Source file: <src/lib/dos.COMMON.fs>.

?set-tape-filename

 ?set-tape-filename (ca len --) "question-set-tape-filename"

If filename ca len is not empty, store it into the tape
header by executing set-tape-filename; else use a
wildcard instead, by executing any-tape-filename.

Source file: <src/lib/tape.fs>.

?shift

 ?shift (x1 n -- x1 | x2) "question-shift"

If n is zero, drop it and return x1. If n is
negative, convert it to its absolute value and execute
rshift, returning x2. If n is positive execute
lshift, returning x2.

Source file: <src/lib/math.operators.1-cell.fs>.

?stack

 ?stack (--) "question-stack"

throw an error if the data stack is out of bounds.

Origin: fig-Forth.

See also: ?rstack.

Source file: <src/kernel.z80s>.

?stringer

 ?stringer (len --) "question-stringer"

If len is greater than /stringer, then throw error
#-293 (string too long). Otherwise do nothing.

?stringer is provided as an optional check. for
allocate-stringer.

Source file: <src/lib/strings.MISC.fs>.

?throw

 ?throw (f n --) "question-throw"

If f is non-zero, throw exception code n

Definition:

 : ?throw (f n --) swap if throw else drop then ;

Source file: <src/kernel.z80s>.

?ticks-pause

 ?ticks-pause (u --) "question-ticks-pause"

Stop execution during at least u clock ticks, or until a
key is pressed.

See also: ticks-pause, basic-pause, ?seconds,
ticks/second.

Source file: <src/lib/time.fs>.

?user

 ?user (--) "question-user"

throw an exception if the user area pointer is out of
bounds.

See also: udp, /user.

Source file: <src/lib/data.user.fs>.

?warn

 ?warn (ca len -- ca len | ca len xt) "question-warn"

Check if a warning about the redefinition of the word name
ca len is needed. If no warning is needed, unnest the
calling definition and return ca len. If a warning is
needed, return ca len and the xt of the word found in
the current compilation wordlist.

?warn is factor of error-code-warn, message-warn and
error-warn.

See also: no-warnings?, not-redefined?, message-warn,
error-code-warn, error-warn.

Source file: <src/lib/compilation.fs>.

?wcr

 ?wcr (--) "question-w-c-r"

If the column cursor coordinate of the current-window is not
zero, cause subsequent output to the current window appear
at the beginning of the next line.

When the end of the window is reached, the
cursor is set to the top left corner with whome. In a
future version of the code, the window will be scrolled.

See also: wcr.

Source file: <src/lib/display.window.fs>.

@

@

 @ (a -- x) "fetch"

x is the value stored at a.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: !, 2@, c@.

Source file: <src/kernel.z80s>.

@+

 @+ (a -- a' x) "fetch-plus"

Fetch x from a. Return a', which is a incremented
by one cell. This is handy for stepping through cell
arrays.

See also: @, 2@+, c@+.

Source file: <src/lib/memory.MISC.fs>.

@a

 @a (-- x) "fetch-a"

Fetch cell x stored at the address register.

See also: a, !a.

Source file: <src/lib/memory.address_register.fs>.

@a+

 @a+ (-- x) "fetch-a-plus"

Fetch cell x stored at the address register and increment
the address register by one cell.

See also: a, !a+.

Source file: <src/lib/memory.address_register.fs>.

@bank

 @bank (a n -- x) "fetch-bank"

Fetch x from address a ($C000..$FFFF) of bank n.

@bank is written in Z80. Its equivalent definition in
Forth is the following:

 : @bank (a n -- x) bank @ default-bank ;

See also: !bank, c@bank.

Source file: <src/lib/memory.far.fs>.

@bit

 @bit (b ca -- f) "fetch-bit"

Fetch f from an element of a bit-array, represented by
address ca and bitmask b.

@bit is an alias of c@and?.

See also: !bit, bit-array.

Source file: <src/lib/data.array.bit.fs>.

@order

 @order (a --)

Restore the search order stored at a by executing nn@
and set-order.

@order is a useful factor of unmarker.

See also: order,, @wordlists.

Source file: <src/lib/tool.marker.fs>.

@p

 @p (a -- b) "fetch-p"

Input byte b from port a.

See also: !p, @, c@.

Source file: <src/lib/memory.ports.fs>.

@sound

 @sound (b1 -- b2) "fetch-sound"

Get the contents b2 of sound register b1 (0…​13).

See also: !sound, sound, play, sound-register-port.

Source file: <src/lib/sound.128.fs>.

@volume

 @volume (b1 -- b2) "fetch-volume"

Fetch b2 from the volume register of channel b1 (0..2,
equivalent to notation 'A'..'C').

Registers 8..10 (Channels A..C Volume)

	

Bits 0-4

	
Channel volume level.

	

Bit 5

	
1=Use envelope defined by register 13 and ignore the volume setting.

	

Bits 6-7

	
Not used.

~ Disassembly of the ZX Spectrum 128k ROM0

See also: !volume, @sound.

Source file: <src/lib/sound.128.fs>.

@wordlists

 @wordlists (a --) "fetch-wordlists"

Fetch the wordlist definitions from a.

@wordlists is a factor of unmarker.

See also: wordlists,, last-wordlist, @order.

Source file: <src/lib/tool.marker.fs>.

[

[

 [(--) "left-bracket"

Enter interpretation state.

[is an immediate word.

Definition:

 : [(--) state off ; immediate

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also:].

Source file: <src/kernel.z80s>.

['']

 ['']
 Compilation: ("name" --) "bracket-tick-tick"

If name is found in the current search order, compile its
execution-token pointer as a literal, else throw an
exception.

[''] is an immediate and compile-only word.

See also: literal, '', ['].

Source file: <src/lib/compilation.fs>.

[']

 ['] "bracket-tick"
 Compilation: ("name" --)

Compilation: If name is found in the current search order,
compile its execution token as a literal, else throw an
exception.

['] is an immediate and compile-only word.

Definition:

 : ['] \ Compilation: ("name" --)
 ' postpone literal ; immediate

Origin: Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: literal, ', [''].

Source file: <src/kernel.z80s>.

[+switch

 [+switch ("name" -- a) "bracket-plus-switch"

Open the [switch structure name to include additional
clauses. The default behavior remains unchanged. The
additions, like the original clauses, are terminated by
switch]. Leave the head a of the given [switch
name, for clauses to append to.

Origin: SwiftForth.

See also: runs, run:.

Source file: <src/lib/flow.bracket-switch.fs>.

[2const]

 [2const] ("name" --) "bracket-two-const"

Evaluate name. Then compile the double-cell value left on
the stack.

[2const] is intented to compile double-cell constants
as literals, in order to gain execution speed.

Usage example:

 48. 2constant zx
: test (--) [2const] zx d. ;

[2const] is an immediate and compile-only word.

See also: 2const, [const], [xconst], [cconst], eval.

Source file: <src/lib/compilation.fs>.

[:

 [: "bracket-colon"
 Compilation: (-- orig xt)

Start a quotation.

Suspend compiling to the current definition, start a new
nested definition and compilation continues with this
nested definition. Return orig and the execution token
xt of of the host definition, both to be consumed by
;].

Locals are not supported yet.

[: is an immediate and compile-only word.

Source file: <src/lib/flow.bracket-colon.fs>.

[cconst]

 [cconst] ("name" --) "bracket-c-const"

Evaluate name. Then compile the char left on the stack.

[cconst] is intented to compile char constants as
literals, in order to gain execution speed.

Usage example:

 48 cconstant zx
: test (--) [cconst] zx emit ;

[cconst] is an immediate and compile-only word.

See also: cconst, [2const], [const], [xconst], eval.

Source file: <src/lib/compilation.fs>.

[char]

 [char]
 Compilation: ("name" --)
 Run-time: (-- c)
"bracket-char"

Compilation: ("name" — )

Parse name and append the run-time semantics given below
to the current definition.

Run-time: ( — c)

Place c, the value of the first character of name, on
the stack.

[char] is an immediate and compile-only word.

Solo Forth recognizes the standard notation for
characters, so [char] is not needed:

 : test (--) 'x' emit ." equals " [char] x emit ;

Origin: Forth-94 (CORE), Forth-2012 (CORE).

See also: char.

Source file: <src/lib/parsing.fs>.

[comp']

 [comp'] "bracket-comp-tick"
 Compilation: ("name" --)
 Run-time: (-- x xt)

Compilation token x xt represents the compilation
semantics of name.

[comp'] is an immediate and compile-only word.

Origin: Gforth.

See also: comp', '.

Source file: <src/lib/compilation.fs>.

[compile]

 [compile] ("name" --) "bracket-compile"

Parse name. Find name. If name has other than default
compilation semantics, append them to the current
definition; otherwise append the execution semantics of
name.

In other words: Force compilation of name. This allows
compilation of an immediate word when it would otherwise
have been executed.

[compile] is an immediate word.

[compile] has been be superseded by postpone.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE EXT), Forth-2012 (CORE
EXT, obsolescent).

See also: compile, compile,.

Source file: <src/lib/compilation.fs>.

[const]

 [const] ("name" --) "bracket-const"

Evaluate name. Then compile the single-cell value left on
the stack.

[const] is intented to compile constants as literals,
in order to gain execution speed. name can be any word,
as long as its execution returns a single-cell value on the
stack.

Usage example:

 48 constant zx
: test (--) [const] zx . ;

[const] is an immediate and compile-only word.

See also: const, [2const], [xconst], [cconst], eval.

Source file: <src/lib/compilation.fs>.

[defined]

 [defined] ("name" -- f) "bracket-defined"

Parse name. Return a true flag if name is the name of a
word that can be found in the current search order; else
return a false flag.

[defined] is an immediate word.

Origin: Forth-2012 (TOOLS EXT).

See also: defined, [undefined].

Source file: <src/lib/compilation.fs>.

[else]

 [else] ("ccc" --) "bracket-else"

Parse and discard space-delimited words from the parse
area, including nested occurrences of [if] …​ [then],
and [if] …​ [else] …​ [then], until either the word
[else] the word [then] (case ignored) has been
parsed and discarded. If the parse area becomes exhausted,
it is refilled as with refill.

Origin: Forth-94 (TOOLS EXT), Forth-2012 (TOOLS EXT).

See also: [if].

Source file: <src/lib/compilation.fs>.

[false]

 [false] (-- false) "bracket-false"

[false] is an immediate word.

See also: [true], false.

Source file: <src/lib/compilation.fs>.

[if]

 [if] (f "ccc" --) "bracket-if"

If flag is true, do nothing. Otherwise, parse and discard
space-delimited words from the parse area, including nested
occurrences of [if] …​ [then], and [if] …​ [else]
…​ [then], until either the word [else] or the word
[then] (case ignored) has been parsed and discarded. If
the parse area becomes exhausted, it is refilled as with
refill.

[if] is an immediate word.

Origin: Forth-94 (TOOLS EXT), Forth-2012 (TOOLS EXT).

See also: ?\, ?(.

Source file: <src/lib/compilation.fs>.

[is]

 [is] "bracket-is"
 Compilation: (xt "name" --)
 Run-time: (xt --)

Compilation: ("name" — )

Append the run-time semantics given below to the current
definition.

Run-time: (xt — )

Set name, which was defined by defer, to execute xt.

[is] is an immediate and compile-only factor of
is.

Origin: Gforth.

See also: <is>.

Source file: <src/lib/define.deferred.fs>.

[switch

 [switch ("name1" "name2" -- a) "bracket-switch"

Start the definition of a switch structure name1
consisting of a linked list of single-precision numbers and
associated behaviors, with its default action name2. The
head a of the switch is left on the stack for defining
clauses. The switch definition will be terminated by
switch], and can be extended by [+switch.

Usage example:

 : one (--) ." unu " ;
: two (--) ." du " ;
: three (--) ." tri " ;
 \ clauses

: many (n --) . ." is too much! " ;
 \ default action

[switch .number many
 1 runs one 2 runs two 3 runs three switch]

cr 1 .number 3 .number 4 .number

: four ." kvar " ;

[+switch .number 4 runs four switch]
 \ add a new clause for number 4

cr 1 .number 3 .number 4 .number

[+switch .number 5 run: ." kvin" ; switch]
 \ add a new unnamed clause for number 5

cr 1 .number 4 .number 5 .number

[switch is the syntactic-sugar variant of
:switch.

Origin: SwiftForth.

See also: runs, run:.

Source file: <src/lib/flow.bracket-switch.fs>.

[then]

 [then] (--) "bracket-then"

Do nothing. [then] is parsed and recognized by [if].

[then] is an immediate word.

Origin: Forth-94 (TOOLS EXT), Forth-2012 (TOOLS EXT).

Source file: <src/lib/compilation.fs>.

[true]

 [true] (-- true) "bracket-true"

[true] is an immediate word.

See also: [false], true.

Source file: <src/lib/compilation.fs>.

[undefined]

 [undefined] ("name" -- f) "bracket-undefined"

Parse name. Return a false flag if name is the name of a
word that can be found in the current search order; else
return a true flag.

[undefined] is an immediate word.

Origin: Forth-2012 (TOOLS EXT).

See also: [defined].

Source file: <src/lib/compilation.fs>.

[xconst]

 [xconst] ("name" --) "bracket-x-const"

Evaluate name. Then compile the single-cell value left on
the stack, using xliteral.

[xconst] is intented to compile constants as literals,
when it’s uncertain if the literal is a character or a
cell, in order to gain execution speed. name can be any
word, as long as its execution returns a single-cell value
on the stack.

Usage example:

 48 constant zx
: test (--) [xconst] zx . ;

[xconst] is an immediate and compile-only word.

See also: [2const], [const], [cconst], eval.

Source file: <src/lib/compilation.fs>.

\

\

 \ ("ccc<eol>" --) "backslash"

If blk contains zero, parse and discard the remainder of the
parse area; otherwise parse and discard the portion of the
parse area corresponding to the remainder of the current line.

\ is an immediate word.

Definition:

 : \ ("ccc" --)
 loading? if ->in/l parsed exit then #tib @ >in ! ;

Origin: Forth-94 (BLOCK EXT), Forth-2012 (BLOCK EXT).

See also: (, ->in/l.

Source file: <src/kernel.z80s>.

]

]

] (--) "right-bracket"

Enter compilation state.

Definition:

 :] (--) state on ;

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: [,]l,]2l,]cl,]xl.

Source file: <src/kernel.z80s>.

]2l

]2l (xd --) "right-bracket-two-l"

A short form of the idiom] 2literal.

]2l is an immediate and compile-only word.

See also:], 2literal,]l,]xl,]cl.

Source file: <src/lib/compilation.fs>.

]cl

]cl (x --) "right-bracket-c-l"

A short form of the idiom] cliteral.

]cl is an immediate and compile-only word.

See also:], cliteral,]2l,]l,]xl.

Source file: <src/lib/compilation.fs>.

]l

]l (x --) "right-bracket-l"

A short form of the idiom] literal.

]l is an immediate and compile-only word.

See also:], literal,]2l,]xl,]cl.

Source file: <src/lib/compilation.fs>.

]options

]options (a1 a2 a3 --) "right-bracket-options"

End a options[…​]options structure. Resolve the
addresses left by options[:

	
a1 = address of exit point

	
a2 = address of default option xt

	
a3 = address of number of options

See options[for a usage example.

Source file: <src/lib/flow.options-bracket.fs>.

]xl

]xl (x --) "right-bracket-x-l"

A short form of the idiom] xliteral.

]xl is an immediate and compile-only word.

See also:], xliteral,]2l,]l,]cl.

Source file: <src/lib/compilation.fs>.

_

_mod

 _mod (n1 n2 -- n3) "underscore-mod"

Divide n1 by n2 (doing a floored division), giving the
remainder n3.

See also: /_mod, /, -rem.

Source file: <src/lib/math.operators.1-cell.fs>.

a

a

 a (-- reg)

Return the identifier reg of the Z80 assembler register
"A", which is interpreted as register pair "AF" by
assembler words that use register pairs (for example
push, and pop,).

See also: b,
c, d,
e, h,
l, m,
ix, iy, sp.

Source file: <src/lib/assembler.fs>.

a

 a (-- a)

A variable. a is the address of a cell containing the
address register.

See also: a!, a@, !a, @a, c!a, c@a, !a+, @a+,
c!a+, c@a+.

Source file: <src/lib/memory.address_register.fs>.

a

 a (--)

A command of gforth-editor:
Go to marked position, marking the current position first.

See also:
m,
h,
d,
f,
r.

Source file: <src/lib/prog.editor.gforth.fs>.

a!

 a! (a --) "a-store"

Set the address register.

See also: a, a@.

Source file: <src/lib/memory.address_register.fs>.

a@

 a@ (-- a) "a-fetch"

Get the address register.

See also: a, a!.

Source file: <src/lib/memory.address_register.fs>.

aagain

 aagain (dest cs-id --) "a-again"

aagain is part of the assembler absolute-address
control-flow structure abegin .. aagain.

See also: ragain.

Source file: <src/lib/assembler.fs>.

abase

 abase (-- a) "a-base"

A variable. a is the address of a cell where the current
value of base is preserved by asm.

Source file: <src/kernel.z80s>.

abegin

 abegin (-- dest cs-id) "a-begin"

abegin is part of the assembler absolute-address
control-flow structure abegin .. awhile ..
arepeat.

See also: rbegin.

Source file: <src/lib/assembler.fs>.

abort

 abort (--)

Empty the data stack and perform the function of quit, which
includes emptying the return stack, without displaying a
message.

Definition:

 abort (--) -1 throw ;

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE, EXCEPTION EXT),
Forth-2012 (CORE, EXCEPTION EXT).

See also: (abort, abort", throw, error.

Source file: <src/kernel.z80s>.

abort"

 abort" "abort-quote"
 Compilation: ("ccc<quote>" --)
 Run-time: (x --)

Compile (abort", parse ccc delimited by a double
quote and compile it.

abort" is an immediate and compile-only word.

Origin: Forth-79 (Reference Word Set), Forth-83 (Required
Word Set), Forth-94 (EXCEPTION EXT), Forth-2012 (EXCEPTION
EXT).

See also: abort-message, abort, throw, warning".

Source file: <src/lib/exception.fs>.

abort-message

 abort-message (-- a)

A 2variable. a is the address of a cell pair
containing the address and length of the abort" message.

Source file: <src/kernel.z80s>.

aborted?

 aborted? (c -- f) "aborted-question"

If no key is pressed return false. If a key is pressed,
discard it and wait for a second key. Then return true if
it’s c, else return false.

aborted? is a useful factor of nuf?.

Usage example:

 : listing (--)
 begin ." bla " bl aborted? until ." Aborted" ;

Source file: <src/lib/keyboard.MISC.fs>.

abs

 abs (n -- u)

Leave the absolute value u of a number n.

Definition:

 : abs (n -- u) dup ?negate ;

Source file: <src/kernel.z80s>.

acat

 acat (--) "a-cat"

Show an abbreviated disk catalogue of the current drive.

See also: wacat, cat, set-drive.

Source file: <src/lib/dos.plus3dos.fs>.

accept

 accept (ca1 len1 -- len2)

Receive a string of at most len1 characters. No characters
are received or transferred if len1 is zero. Display
graphic characters as they are received.

Input terminates when an implementation-defined line
terminator is received. When input terminates, nothing is
appended to the string or displayed on the screen.

len2 is the length of the string stored at ca1.

In Solo Forth accept is a deferred word (see defer). Its
default action is simple-accept, which provides only the
basic editing options. Alternative definitions are provided in
the library.

Origin: Forth-94 (CORE), Forth-2012 (CORE).

Source file: <src/kernel.z80s>.

action-of

 action-of (--)
 Interpretation: ("name" -- xt)
 Compilation: ("name" --)
 Run-time: (-- xt)

Interpretation. Parse name, which is a word defined by
defer. Return xt, which is the execution token that
name is set to execute.

Compilation. Parse name, which is a word defined by
defer. Append the runtime semantics given below to the
current definition.

Runtime. Return xt, which is the execution token that
name is set to execute.

action-of is an immediate word.

Origin: Forth-2012 (CORE EXT).

See also: defer@, defers.

Source file: <src/lib/define.deferred.fs>.

actions-table

 actions-table (-- a)

A variable, a is the address of a cell containing the
address of a cell array which holds the execution tokens of
the current menu options. actions-table is set by
set-menu.

See also: options-table.

Source file: <src/lib/menu.sinclair.fs>.

adc#,

 adc#, (b --) "a-d-c-number-sign-comma"

Compile the Z80 assembler instruction ADC A,b.

Source file: <src/lib/assembler.fs>.

adc,

 adc, (reg --) "a-d-c-comma"

Compile the Z80 assembler instruction ADC reg.

See also: add,, sub,, sbc,, addp,.

Source file: <src/lib/assembler.fs>.

adcp,

 adcp, (regp1 regp2 --) "a-d-c-p-comma"

Compile the Z80 assembler instruction ADC
regp2,regp1.

See also: adcp,.

Source file: <src/lib/assembler.fs>.

adcx,

 adcx, (disp regpi --) "a-d-c-x-comma"

Compile the Z80 assembler instruction ADC
A,(regpi+disp).

See also: addx,, sbcx,.

Source file: <src/lib/assembler.fs>.

add#,

 add#, (b --) "add-number-sign-comma,"

Compile the Z80 assembler instruction ADD A,b.

Source file: <src/lib/assembler.fs>.

add,

 add, (reg --) "add-comma"

Compile the Z80 assembler instruction ADD reg.

See also: sub,, sbc,, addp,.

Source file: <src/lib/assembler.fs>.

addix,

 addix, (regp --) "add-i-x-comma"

Compile the Z80 assembler instruction ADD IX,regp.

See also: addiy,, addp,.

Source file: <src/lib/assembler.fs>.

addiy,

 addiy, (regp --) "add-i-y-comma"

Compile the Z80 assembler instruction ADD IY,regp.

See also: addiy,, addp,.

Source file: <src/lib/assembler.fs>.

addp,

 addp, (regp --) "add-p-comma"

Compile the Z80 assembler instruction ADD HL,regp.

See also: add,.

Source file: <src/lib/assembler.fs>.

address-unit-bits

 address-unit-bits (-- n)

n is the size of one address unit, in bits.

See also: max-char, environment?.

Source file: <src/lib/environment-question.fs>.

addx,

 addx, (disp regpi --) "add-x-comma"

Compile the Z80 assembler instruction ADD
A,(regpi+disp).

See also: adcx,, subx,.

Source file: <src/lib/assembler.fs>.

adraw176

 adraw176 (gx gy --) "a-draw-176"

Draw a line from the current coordinates to the given
absolute coordinates gx gy, using only the top 176 pixel
rows of the screen (the lower 16 pixel rows are not used).
gx is 0..255; gy is 0..175.

See also: rdraw176.

Source file: <src/lib/graphics.lines.fs>.

aelse

 aelse (orig1 cs-id -- orig2 cs-id) "a-else"

Check the Z80 assembler control-flow structure identifier
cs_id, and resolve the forward reference orig1, both
left by aif; then compile a Z80 assembler unconditional
absolute-address jump, putting its unresolved forward
reference orig2 and control-flow structure identifier
cs-id on the stack, to be resolved by athen.

Also put the location of a new unresolved forward reference
orig2 and the control-structure identifier cs_id onto
the stack, to be consumed by athen.

aelse is part of the assembler absolute-address
control-flow structure aif .. aelse .. athen,
equivalent to Forth if .. else .. then.

See also: relse, ?pairs, (aif.

Source file: <src/lib/assembler.fs>.

again

 again
 Compilation: (C: dest --)
 Run-time: (--)

Compilation: Compile an unconditional branch
to the backward reference dest, usually left by begin.

Run-time: Continue execution at the location specified by
dest.

again is an immediate and compile-only word.

Definition:

 : again \ Compilation: (C: dest --)
 \ Run-time: (--)
 compile branch <resolve ; immediate compile-only

Origin: fig-Forth, Forth-79 (Reference Word Set), Forth-83
(Uncontrolled Reference Words), Forth-94 (CORE EXT),
Forth-2012 (CORE EXT).

See also: until, repeat.

Source file: <src/kernel.z80s>.

ahead

 ahead
 Compilation: (C: -- orig)
 Run-time: (--)

Compilation: Compile an unconditional branch and put the
location orig of its unresolved destination on the
control-flow stack.

Run-time: Continue execution at the location specified by the
resolution of orig.

ahead is an immediate and compile-only word.

Definition:

 : ahead \ Compilation: (C: -- orig)
 \ Run-time: (--)
 compile branch >mark ; immediate compile-only

Origin: Forth-94 (TOOLS EXT), Forth-2012 (TOOLS EXT).

Source file: <src/kernel.z80s>.

aif

 aif (op -- orig cs-id) "a-if"

Compile the Z80 assembler absolute-jump instruction op and
put the location of a new unresolved forward reference
orig and the control-structure identifier cs_id onto
the stack, to be consumed by aelse or athen.

op was left by any of the following assembler
conditions: nz?, z?, nc?, c?, po?, pe?, p?,
m?.

aif is part of the assembler absolute-address
control-flow structure aif .. aelse .. athen,
equivalent to Forth if .. else .. then.

See also: rif, (aif, inverse-cond.

Source file: <src/lib/assembler.fs>.

al#

 al# (--) "a-l-number-sign"

Create an absolute reference to an assembler label defined
by l:. The label number has been compiled in the last
cell of the latest Z80 instruction. If the corresponding
label is already defined, its value is patched into the
latest Z80 instruction. Otherwise it will be patched when
the label is defined by l:.

Usage example:

 code my-code (--)
 #2 call, al# \ a call to label #2
 nop,
 #2 l: \ definition of label #2
 ret,
end-code

al# is used after the Z80 command, while its
counterpart rl# is used before the Z80 command.

Source file: <src/lib/assembler.labels.fs>.

al-id

 al-id (-- b) "a-l-i-d"

b is the identifier of absolute references created by
al#. al-id is used as a bitmask added to the
assembler label number stored in l-refs.

See also: rl-id.

Source file: <src/lib/assembler.labels.fs>.

alias

 alias (xt "name" --)

Create an alias name that will execute xt.

Aliases have the execution token xt of the original word,
but, contrary to synonyms created by synonym, don’t
inherit its attributes (immediate and compile-only).

See realias, alias!, synonym.

Origin: Gforth.

Source file: <src/lib/define.alias.fs>.

alias!

 alias! (xt nt --) "alias-store"

Set the alias nt to execute xt.

See alias, realias.

Source file: <src/lib/define.alias.fs>.

align

 align (--)

If the data-space pointer is not aligned, reserve enough
space to align it.

In Solo Forth, align does nothing (it’s an immediate
alias of noop).

Origin: Forth-94 (CORE), Forth-2012 (CORE).

See also: dp, aligned.

Source file: <src/lib/memory.MISC.fs>.

aligned

 aligned (a1 -- a2)

a2 is the first aligned address greater than or equal to
a1.

In Solo Forth, aligned does nothing (it’s an
immediate alias of noop).

Origin: Forth-94 (CORE), Forth-2012 (CORE).

See also: align.

Source file: <src/lib/memory.MISC.fs>.

aline176

 aline176 (gx gy --) "a-line-176"

Draw a line from the current coordinates to the given
absolute coordinates gx gy, using only the top 176 pixel
rows of the screen (the lower 16 pixel rows are not used)
and preserving the current attributes of the screen. gx
is 0..255; gy is 0..175.

aline176 is faster than adraw176.

See also: rdraw176.

Source file: <src/lib/graphics.lines.fs>.

allocate

 allocate (u -- a ior)

Allocate u bytes of contiguous data space. The data-space
pointer is unaffected by this operation. The initial
content of the allocated space is undefined.

If the allocation succeeds, a is the starting address of
the allocated space and ior is zero.

If the operation fails, a does not represent a valid
address and ior is the I/O result code.

allocate is a deferred word (see defer) whose action
can be charlton-allocate or gil-allocate, depending on
the heap implementation used by the application.

Origin: Forth-94 (MEMORY), Forth-2012 (MEMORY).

See also: free, resize, empty-heap.

Source file: <src/lib/memory.allocate.COMMON.fs>.

allocate-cat

 allocate-cat (--)

Allocate space in the stringer and update cat-buffer
with its address.

See also: /cat-buffer.

Source file: <src/lib/dos.plus3dos.fs>.

allocate-stringer

 allocate-stringer (len -- ca)

Allocate len characters in the stringer and return the
address ca of the allocated space. If len is greater than
unused-stringer, empty-stringer is executed, no check is
done whether len is greater than /stringer (the maximum
capacity of the buffer).

Definition:

 : allocate-stringer (len -- ca)
 fit-stringer stringer unused-stringer + ;

See also: >stringer.

Source file: <src/kernel.z80s>.

allocate-xstack

 allocate-xstack (n -- a) "allocate-x-stack"

Create an xstack in the heap. n is the size in
cells. Return its address a.

See also: xfree, allocate-xstack.

Source file: <src/lib/data.xstack.fs>.

allot

 allot (n --)

If n is greater than zero, reserve n bytes of data space.
If n is less than zero, release n bytes of data space. If
n is zero, leave the data-space pointer unchanged.

Definition:

 : allot (n --) dp +! ;

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: allotted, dp, here`, reserve.

Source file: <src/kernel.z80s>.

allot-heap

 allot-heap (n -- a)

Create a heap of n bytes in the data space. Return its
address a.

See also: limit-heap, bank-heap, farlimit-heap,
empty-heap.

Source file: <src/lib/memory.allocate.COMMON.fs>.

allot-xstack

 allot-xstack (n -- a) "allot-x-stack"

Create an xstack in data space. n is the size in
cells. Return its address a.

See also: allocate-xstack.

Source file: <src/lib/data.xstack.fs>.

allotted

 allotted (n -- a)

Reserve n bytes of data space and return its address a.

See also: reserve, buffer:, allot, here.

Source file: <src/lib/memory.MISC.fs>.

also

 also (--)

Duplicate the word list at the top of the search order.

Definition:

 : also (--) get-order over swap 1+ set-order ;

Origin: Forth-83 (Experimental proposals), Forth-94 (SEARCH
EXT), Forth-2012 (SEARCH-EXT).

See also: previous, get-order, set-order, only,
order, >order.

Source file: <src/kernel.z80s>.

ambulance

 ambulance (n --)

Ambulance sound for ZX Spectrum 48. Make it n times.

Source file: <src/lib/sound.48.fs>.

and

 and (x1 x2 -- x3)

x3 is the bit-by-bit logical "and" of x1 with x2.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: or, xor, negate, 0=, dand.

Source file: <src/kernel.z80s>.

and#,

 and#, (b --) "and-number-sign-comma"

Compile the Z80 assembler instruction AND b.

See also: or#,, xor#,, sub#,.

Source file: <src/lib/assembler.fs>.

and,

 and, (reg --) "and-comma"

Compile the Z80 assembler instruction AND reg.

See also: xor,, or,.

Source file: <src/lib/assembler.fs>.

andif

 andif "and-if"
 Compilation: (C: -- orig)
 Run-time: (f --)

Short-circuit and variant of if.

andif is an immediate and compile-only word.

Usage example:

 : the-end? (-- f) cond won-battle? andif
 found-treasure? andif
 kill-dragon? andif
 thens ;

Compare with the following equivalent definition, where all
three conditions are always checked:

 : the-end? (-- f) won-battle?
 found-treasure? and
 kill-dragon? and ;

See also: orif, cond, thens.

Source file: <src/lib/flow.MISC.fs>.

andx,

 andx, (disp regpi --) "and-x-comma"

Compile the Z80 assembler instruction AND
(regpi+disp).

See also: xorx,, orx,, cpx,.

Source file: <src/lib/assembler.fs>.

anew

 anew ("name" --)

Parse name. If name is the name of a word in the
current search order, execute it. Then restore >in to its
value previous to the parsing of name and execute
marker.

The function of anew is to execute a name already
created by marker and then create it again.

See also: possibly.

Source file: <src/lib/tool.marker.fs>.

anon

 anon
 Compilation: (n --)
 Run-time: (-- a)

anon is an immediate and compile-only word.

Compilation:

Compile a reference to cell n (0 index) of the buffer
pointed by anon> and initialized by set-anon.

Run-time:

Return address a of cell n (0 index) of the buffer that
was pointed by anon> during the compilation.

See set-anon for a usage example.

See also: arguments, local.

Source file: <src/lib/locals.anon.fs>.

anon>

 anon> (-- a) "anon-to"

A variable. a contains the address of the buffer used by
local variables defined by set-anon and accessed by
anon.

anon> must be set by the application before compiling a
word that uses set-anon and anon. One single buffer
pointed by anon> can be shared by several words,
provided they dont’t need to use it at the same time, e.g.
because of nesting.

Source file: <src/lib/locals.anon.fs>.

any-of

 any-of
 Compilation: (C: -- of-sys)
 Run-time: (x#0 x#1 ... x#n n -- | x#0)

A variant of of.

Compilation:

Put of-sys onto the control flow stack. Append the
run-time semantics given below to the current definition.
The semantics are incomplete until resolved by a consumer
of of-sys, such as endof.

Run-time:

If x#0 equals any of x#1 …​ x#n, discard x#1 …​ x#n
n and continue execution at the location specified by the
consumer of of-sys, e.g., following the next endof.
Otherwise, consume also x0 and continue execution in
line.

any-of is an immediate and compile-only word.

Usage example:

 : test (n --)
 case
 1 of ." one" endof
 2 7 10 3 any-of ." two, seven or ten" endof
 6 of ." six" endof
 endcase ;

See also: case, or-of, (any-of.

Source file: <src/lib/flow.case.fs>.

any-tape-filename

 any-tape-filename (--)

Configure tape-header to load any filename, by replacing
the first char of tape-filename with 255, which will be
recognized as a wild card.

Source file: <src/lib/tape.fs>.

any?

 any? (x[0] x[1]..x[n] n -- f) "any-question"

Is any x[1]..x[n] equal to x[0]?

Origin: John A. Peters' tools for CP/M F83 2.1.1, 1984.

See also: either, neither, ifelse.

Source file: <src/lib/math.operators.1-cell.fs>.

arepeat

 arepeat (dest cs-id1 orig cs-id2) "a-repeat"

arepeat is part of the assembler absolute-address
control-flow structure abegin .. awhile ..
arepeat.

See also: rrepeat.

Source file: <src/lib/assembler.fs>.

arg-action

 arg-action (-- a)

A variable. a holds the execution token of the action
performed by the locals defined by arguments. Its
default value is stored in arg-default-action. The
content of arg-default-action is copied to arg-action
by arguments, and also every time a local variable is
used.

Source file: <src/lib/locals.arguments.fs>.

arg-default-action

 arg-default-action (-- a)

A variable. a holds the execution token of the default
action performed by the locals defined by arguments. Its
default value is zero, which means "no action" (noop can
be used too, but arg-default-action off is simpler than
' noop arg-defaul-action !).

toarg and +toarg change the content of
arg-default-action.

The content of arg-default-action is copied to
arg-action by arguments, and also every time a local
variable is used.

See also: arg-action.

Source file: <src/lib/locals.arguments.fs>.

arguments

 arguments (i*x +n -- j*x)

Define the number +n of arguments to take from the stack
and assign them to the first local variables from l0 to
l9. By default, local variables are manipulated with
@, ! and +!, like ordinary variables. They are
returned with results.

Example: The phrase 3 arguments assigns the names of
local variables l0 through l9 to ten stack
positions, with l0, l1 and l2 returning the
address of the top 3 stack values that were there before 3
arguments was executed. l3 through l9 are
zero-filled and the stack pointer is set to just below
l9. After all calculating is done, the phrase 3
results leaves that many results on the stack relative to
the stack position when arguments was executed. All
intermediate stack values are lost, which is good because
you can leave the stack "dirty" and it doesn’t matter.

Usage example:

 : test (length width height -- length' volume surface)
 3 arguments
 l0 @ l1 @ * l5 ! \ surface
 l5 @ l2 @ * l4 ! \ volume
 $2000 l0 +! \ length+$2000
 l4 @ l1 ! \ volume
 l5 @ l2 ! \ surface
 3 results ;

When toarg or +toarg are loaded, they change the
default behaviour of locals: Then l0 through l9
return their contents, not their addresses. To write them
you precede them with the word toarg. For example 5
toarg l4 writes a 5 into l4. Execution of l4
returns 5 to the stack. To add a number to a local
variable, you precede it with the word +toarg. For
example, 5 +toarg l4 adds 5 to the current content of
l4.

Example:

 need toarg need +toarg

: test (length width height -- length' volume surface)
 3 arguments
 l0 l1 * toarg l5 \ surface
 l5 l2 * toarg l4 \ volume
 $2000 +toarg l0 \ add $2000 to length
 l4 toarg l1 \ volume
 l5 toarg l2 \ surface
 3 results ;

The default action of local variables (either return its
address or its value) is hold in arg-default-action, as
an execution token.

arguments is a compile-only word.

See also: local, anon.

Source file: <src/lib/locals.arguments.fs>.

array<

 array< (a1 n -- a2) "array-from"

Return address a2 of element n of a 1-dimension
single-cell array a1.

array< is written in Z80. Its equivalent definition in
Forth is the following:

 : array< (a1 n -- a2) cells + ;

See also: array>, +perform.

Source file: <src/lib/data.array.COMMON.fs>.

array>

 array> (n a1 -- a2) "array-to"

Return address a2 of element n of a 1-dimension
single-cell array a1. array> is a common factor of
avalue and avariable.

array> is written in Z80. Its equivalent definition in
Forth is the following:

 : array> (n a1 -- a2) swap cells + ;

See also: 2array>, array<, +perform.

Source file: <src/lib/data.array.COMMON.fs>.

array>items

 array>items (a -- n) "array-to-items"

Convert address of array a to its number of items n.

See also: 1array.

Source file: <src/lib/data.array.noble.fs>.

ascii-char?

 ascii-char? (c -- f) "ascii-char-question"

Is character c an ASCII character, i.e. in the range
0..126?

See also: graphic-ascii-char?, control-char?.

Source file: <src/lib/chars.fs>.

ascii-ocr

 ascii-ocr (--) "ascii-o-c-r"

Set ocr to work with the current ASCII charset, pointed
by os-chars.

See also: ocr-font, ocr-first, ocr-chars,
udg-ocr, set-font.

Source file: <src/lib/graphics.ocr.fs>.

asm

 asm (--)

Enter the assembler mode. asm is executed by code and
;code.

Definition:

 : asm (--)
 !csp init-asm base @ abase ! hex assembler-wordlist >order ;

See also: end-asm, init-asm, abase, !csp, hex.

Source file: <src/kernel.z80s>.

assembler

 assembler (--)

Replace the first word list in the search order with
assembler-wordlist, which contains the assembler words
(see the main ones in section Z80 instructions).

need assembler will load the assembler from the
library, except the absolute-jump control-flow structures
(aif, athen, aelse, abegin, awhile, auntil,
aagain, arepeat), labels (l:, rl#, al#, etc.)
macros (macro, endm) and some specific words
(execute-hl,, call-xt,, hook,, prt,).

Origin: Forth-79 (Assembler Word Set), Forth-83 (Assembler
Extension Word Set), Forth-94 (TOOLS EXT), Forth-2012
(TOOLS EXT).

Source file: <src/lib/assembler.fs>.

assembler-wordlist

 assembler-wordlist (-- wid)

Return wid, the identifier of the word list that includes
the words defined as part of the assembler
(see the main ones in section Z80 instructions).

See also: wordlist, set-order, forth-wordlist,
root-wordlist.

Source file: <src/kernel.z80s>.

assert(

 assert((--) "assert-paren"

Start a normal assertion. Normal assertion are turned on
by default. assert(is equivalent to assert1(.

assert(is an immediate word.

Origin: Gforth.

See also: assert-level, assert0(, assert1(,
assert2(, assert3(,).

Source file: <src/lib/tool.debug.assert.fs>.

assert-level

 assert-level (-- a)

A variable. a is the address of a cell containing the
highest assertions that are turned on (0..3). Its default
value is 1: all assertions above 1 are turned off.

Origin: Gforth.

See also: assert(.

Source file: <src/lib/tool.debug.assert.fs>.

assert0(

 assert0((--) "assert-zero"

Start an important assertion. Important assertions should
always be turned on.

assert0(is an immediate word.

Origin: Gforth.

See also: assert-level, assert(, assert1(, assert2(,
assert3(,).

Source file: <src/lib/tool.debug.assert.fs>.

assert1(

 assert1((--) "assert-one"

Start a normal assertion. Normal assertions are turned on
by default.

assert1(is an immediate word.

Origin: Gforth.

See also: assert-level, assert(, assert0(, assert2(,
assert3(,).

Source file: <src/lib/tool.debug.assert.fs>.

assert2(

 assert2((--) "assert-two"

Start a debugging assertion.

assert2(is an immediate word.

Origin: Gforth.

See also: assert-level, assert(, assert0(, assert1(,
assert3(,).

Source file: <src/lib/tool.debug.assert.fs>.

assert3(

 assert3((--) "assert-three"

Start a slow assertion. Slow assertions are those you may
not want to turn on in normal debugging; you would turn
them on mainly for thorough checking.

assert3(is an immediate word.

Origin: Gforth.

See also: assert-level, assert(, assert0(, assert1(,
assert2(,).

Source file: <src/lib/tool.debug.assert.fs>.

assertn

 assertn (n --) "assert-n"

If the contents of assert-level is greater than n, then
parse and discard the input stream to the next right paren
(the end of the assertion); else do nothing. assertn
is the common factor of assert0(, assert1(, assert2(,
and assert3(.

Origin: Gforth.

See also: assert(.

Source file: <src/lib/tool.debug.assert.fs>.

associative-case:

 associative-case: ("name" --) "associative-case-colon"

Create an associative case definition "name":
name (i*x n -- j*x).

Usage example:

 : red ." red" ;
: blue ." blue" ;
: orange ." orange" ;
: pink ." pink" ;
: black ." black" ;

associative-case: color (n --)
 7 red 12 blue 472 orange 15 pink 0 black ;

7 color cr 472 color cr 3000 color cr

n for default must be 0 and the default pair must be
last. Numbers can be in any order except 0 must be last.
An actual zero or a no match causes the default to be
executed. Numbers can’t be constants.

See also: associative:, associative-list.

Source file: <src/lib/flow.associative-case-colon.fs>.

associative-list

 associative-list ("name" --)

Create a new associative list "name".

See also: entry:, centry:, 2entry:, sentry:, item,
item?, items, associative:, associative-case:.

Source file: <src/lib/data.associative-list.fs>.

associative:

 associative: (n "name" --) "associative-colon"

Create a table lookup name with n entries.

An associative memory word. It must be followed by a set
of values to be looked up. At runtime, the values stored
in the data field are searched for a match. If a match is
made, the index to that value is returned. If no match is
made, then the number of entries is returned. This is the
inverse of an array.

Usage example:

 1000 constant zx1
200 constant zx2
30 constant zx3

3 associative: unzx (value -- n) zx1 , zx2 , zx3 ,

1000 unzx . \ prints 0
200 unzx . \ prints 1
30 unzx . \ prints 2

See also: associative-list, associative-case:.

Source file: <src/lib/data.associative-colon.fs>.

at-wxy

 at-wxy (--) "at-w-x-y"

Set the cursor coordinates to the current-window cursor
coordinates.

See also: wat-xy, at-xy.

Source file: <src/lib/display.window.fs>.

at-x

 at-x (col --)

Set the cursor at the given column (x coordinate) col and
the current row (y coordinate).

See also: at-y, at-xy, row, column.

Source file: <src/lib/display.cursor.fs>.

at-xy

 at-xy (col row --) "at-x-y"

Set the cursor coordinates to column col and row row. The
upper left corner is column zero, row zero.

at-xy is a deferred word (see defer) whose default
action is mode-32-at-xy.

Origin: Forth-94 (FACILITY), Forth-2012 (FACILITY).

See also: home.

Source file: <src/kernel.z80s>.

at-xy-display-udg

 at-xy-display-udg (c col row --) "at-x-y-display-u-d-g"

Display UDG c at cursor coordinates col row.
at-xy-display-udg is much faster than using at-xy and
emit-udg, because no ROM routine is used, the cursor
coordinates are not updated and the screen attributtes are
not changed (only the character bitmap is displayed).

See also: udg-at-xy-display.

Source file: <src/lib/graphics.udg.fs>.

at-y

 at-y (row --)

Set the cursor at the current column (x coordinate) and the
given row (y coordinate) row.

See also: at-x, at-xy, row, column.

Source file: <src/lib/display.cursor.fs>.

athen

 athen (orig cs-id --) "a-then"

Check the assembler control-structure identifier cs_id,
then resolve the location of the unresolved forward
reference orig; both parameters were left by aif or
aelse.

athen is part of the assembler absolute-address
control-flow structure aif .. aelse .. athen,
equivalent to Forth if .. else .. then.

See also: rthen, ?pairs, >resolve.

Source file: <src/lib/assembler.fs>.

ato

 ato (x n "name" --) "a-to"

Store x into element n of 1-dimension single-cell
values array name.

ato is an immediate word.

See also: avalue, (ato.

Source file: <src/lib/data.array.value.fs>.

attr!

 attr! (b --) "attribute-store"

Set b as the current attribute.

See also: attr@, perm-attr!, set-paper, set-ink,
set-flash, set-bright.

Source file: <src/lib/display.attributes.fs>.

attr-cls

 attr-cls (b --) "attr-c-l-s"

Clear the screen with the attribute b, reset the graphic
coordinates at the lower left corner (x 0, y 0) and reset the
cursor position at the top left corner (column 0, row 0).

See also: cls, page, attr-wcls.

Source file: <src/kernel.z80s>.

attr-mask!

 attr-mask! (b --) "attribute-mask-store"

Set b as the current attribute mask.

See also: attr-mask@, perm-attr-mask!.

Source file: <src/lib/display.attributes.fs>.

attr-mask@

 attr-mask@ (-- b) "attribute-mask-fetch"

Get the current attribute mask b.

See also: attr-mask!, perm-attr-mask@.

Source file: <src/lib/display.attributes.fs>.

attr-setter

 attr-setter (b "name" --) "attribute-setter"

Create a definition name that, when executed, will
set b as the current attribute.

See also: mask+attr-setter.

Source file: <src/lib/display.attributes.fs>.

attr-wcls

 attr-wcls (b --) "attr-w-c-l-s"

Clear the current-window with color attribute b and
reset its cursor position at the upper left corner (column
0, row 0).

See also: wcolor, wcls, wblank, whome,
clear-rectangle, cls.

Source file: <src/lib/display.window.fs>.

attr>ink

 attr>ink (b1 -- b2) "attribute-to-ink"

Convert attribute b1 to its ink color number b2.

attr>ink is written in Z80. Its equivalent definition
in Forth is the following:

 : attr>ink (b1 -- b2) ink-mask and ;

See also: attr>paper, ink-mask.

Source file: <src/lib/display.attributes.fs>.

attr>paper

 attr>paper (b1 -- b2) "attribute-to-paper"

Convert attribute b1 to its paper color number b2.

attr>paper is written in Z80. Its equivalent definition
in Forth is the following:

 : attr>paper (b1 -- b2) paper-mask and 3 rshift ;

See also: attr>ink, papery, paper-mask, rshift.

Source file: <src/lib/display.attributes.fs>.

attr@

 attr@ (-- b) "attribute-fetch"

Get the current attribute b.

See also: attr!, perm-attr@.

Source file: <src/lib/display.attributes.fs>.

auntil

 auntil (dest cs-id op --) "a-until"

auntil is part of the assembler absolute-address
control-flow structure abegin .. auntil.

See also: runtil, (auntil, inverse-cond.

Source file: <src/lib/assembler.fs>.

avalue

 avalue (n "name" --) "a-value"

Create a 1-dimension single-cell values array name
with n elements and the execution semantics defined
below.

name execution:

name (n — x)

Return contents x of element n.

See also: ato, +ato.

Source file: <src/lib/data.array.value.fs>.

avariable

 avariable (n "name" --) "a-variable"

Create a 1-dimension single-cell variables array name
with n elements and the execution semantics defined
below.

name execution:

name (n — a)

Return address a of element n.

See also: 2avariable, cavariable, faravariable.

Source file: <src/lib/data.array.variable.fs>.

awhile

 awhile (op -- orig cs-id) "a-while"

Compile a Z80 assembler absolute-jump instruction op,
which was put on the stack by z?, nz?, c?, nc?,
po?, pe?, p?, or m?. Put the location of a forward
reference orig onto the stack, to be resolved by
arepeat, and the control-structure identifier cs-id.

awhile is part of the assembler absolute-address
control-flow structure abegin .. awhile .. arepeat.

See also: rwhile.

Source file: <src/lib/assembler.fs>.

b

b

 b (-- reg)

Return the identifier reg of the Z80 assembler register
"B", which is interpreted as register pair "BC" by
assembler words that use register pairs (for example
ldp,).

See also: a,
c, d,
e, h,
l, m,
ix, iy, sp.

Source file: <src/lib/assembler.fs>.

b

 b (--)

A command of specforth-editor: Used after
f to backup the cursor by
the length of the most recent text hold in pad.

See also: c,
d,
e,
f,
h,
i,
l,
m,
n,
p,
r,
s,
t,
x.

Source file: <src/lib/prog.editor.specforth.fs>.

b/buf

 b/buf (-- n) "b-slash-buf"

A constant. n is the number of bytes per block buffer:
1024.

Origin: fig-Forth[6], Forth-79 (Reference Word Set), Forth-83 (Uncontrolled
Reference Words).

See also: c/l, l/scr.

Source file: <src/kernel.z80s>.

b/sector

 b/sector (-- n) "b-slash-sector"

A constant. n is the number of bytes per sector.

See also: sectors/block, sectors/track.

Source file: <src/lib/dos.COMMON.fs>.

backspace

 backspace (--)

Emit a backspace character (character code 8).

See also: 'bs'.

Source file: <src/lib/display.control.fs>.

backspaces

 backspaces (n --)

Emit n number of backspace characters (character code 8).

See also: backspace, 'bs'.

Source file: <src/lib/display.control.fs>.

baden-sqrt

 baden-sqrt (n1 -- n2) "baden-square-root"

Integer square root n2 of radicand n1. Original code
by Wil Baden, published on Forth Dimensions (volume 18,
number 5, page 27, 1997-01). This method is 7..8 times
faster than newton-sqrt.

Loading baden-sqrt makes it the action of sqrt.

See also: (baden-sqrt.

Source file: <src/lib/math.operators.1-cell.fs>.

bank

 bank (+n --)

Page in the 16-KiB memory bank +n at $C000 .. $FFFF.

The range of +n depends on the computer:

Table 16. Range of memory banks per computer.

	Computer
	Memory banks

	ZX Spectrum 128

	0 .. 7

	ZX Spectrum +2/+2A/+2B

	0 .. 7

	ZX Spectrum +3/+3e

	0 .. 7

	Pentagon 128

	0 .. 7

	Scorpion ZS 256

	0 .. 15

	Pentagon 512

	0 .. 31

	Pentagon 1024

	0 .. 63

See also: default-bank, banks, far-banks.

Source file: <src/kernel.z80s>.

bank-heap

 bank-heap (n b a -- a)

Create a heap of n bytes at address a of bank b.
a is the actual address ($C000..$FFFF) when bank b is
paged in, which is stored in heap-bank.

allocate, resize and free page in bank b at the
start and restore the default bank at the end.

See also: heap-in, heap-out, allot-heap, limit-heap,
farlimit-heap, empty-heap.

Source file: <src/lib/memory.allocate.COMMON.fs>.

bank-index

 bank-index (-- ca)

A cvariable. ca is the address of a byte containing
the bank index (0 .. 3) calculated by the latest execution of
far.

See also: far-banks, bank, banks.

Source file: <src/kernel.z80s>.

bank-read-file

 bank-read-file (ca len1 fid +n -- len2 ior)

Read len consecutive characters to ca from the
current position of the file identified by fid with
bank +n paged in address range $C000..$FFFF.

If len1 characters are read without an exception, ior
is zero and len2 is equal to len1.

If the end of the file is reached before len1 characters
are read, ior is zero and len2 is the number of
characters actually read.

If the operation is initiated when the value returned by
file-position is equal to the value returned by
file-size for the file identified by fid, _ior is zero
and len2 is zero.

If an exception occurs ior is the I/O result code and
len2 is the number of characters transferred to ca
without an exception.

At the conclusion of the operation, file-position returns
the next file position after the last character read.

See also: bank-read-file, read-byte, open-file,
write-file.

Source file: <src/lib/dos.plus3dos.fs>.

bank-start

 bank-start (-- a)

a is the memory address where banks are paged in: $C000.

See also: /bank, bank, banks, far-banks,
default-bank.

Source file: <src/lib/memory.far.fs>.

bank-write-file

 bank-write-file (ca len fid +n -- ior)

Write len characters from address ca to the file
identified by fid starting at its current position, while
memory bank +n is paged in addresses $C000..$FFFF.
Return I/O result code ior.

See also: write-file, write-byte, bank, create-file,
open-file.

Source file: <src/lib/dos.plus3dos.fs>.

banks

 banks (-- n)

A cconstant. n is the number of 16-KiB RAM memory
banks:

Table 17. Number of memory banks per computer.

	Computer
	Banks

	ZX Spectrum 128

	8

	ZX Spectrum +2/+2A/+2B

	8

	ZX Spectrum +3/+3e

	8

	Pentagon 128

	8

	Scorpion ZS 256

	16

	Pentagon 512

	32

	Pentagon 1024

	64

See also: bank, far-banks, default-bank, ram.

Source file: <src/kernel.z80s>.

base

 base (-- a)

A user variable. a is the address of a cell containing the
current number-conversion radix.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: >number, number?, abase.

Source file: <src/kernel.z80s>.

base'

 base' (-- a) "base-tick"

A temporary variable used by <hex, hex>, <bin and
bin>. to store the current value of base.

See also: abase.

Source file: <src/lib/display.numbers.fs>.

base-execute

 base-execute (xt n --)

Execute xt with the content of base being n
and restoring the original base afterwards.

Source file: <src/lib/flow.MISC.fs>.

base>

 base> (--) "base-from"

Restore the previous value of base from base'.
base> is executed by bin> and hex>.

Source file: <src/lib/display.numbers.fs>.

basic-pause

 basic-pause (u --)

If u is zero, stop execution until a key is pressed.
Otherwise stop execution during at least u clock ticks,
or until a key is pressed.

basic-pause is a convenience that works like Sinclair
BASIC’s PAUSE.

See also: ticks-pause, ?ticks-pause, ?seconds,
ticks/second.

Source file: <src/lib/time.fs>.

beep

 beep (duration pitch --)

Produce a tone in the internal beeper, with parameters that
are equivalent to those of the homonymous Sinclair BASIC
command:

duration is in miliseconds (instead of seconds used by
BASIC).

pitch is identical to the BASIC parameter: number of
semitones from middle C (positive number for notes above,
negative number for notes below).

Here is a diagram to show the pitch values of all the notes
in one octave on the piano (extracted from the manual of
the ZX Spectrum +3 transcripted by Russell et al.):

			C#	D#			F#	G#	A#				
			Db	Eb			Gb	Ab	Bb				
-2			1	3			6	8	10			13	15
__|___| | |___|___| | |___|___|___| | |___|___|
 | | | | | | | | | | |
 -3 |-1 | 0 | 2 | 4 | 5 | 7 | 9 |11 |12 |14 |16
____|___|___|___|___|___|___|___|___|___|___|____
 C D E F G A B C

Hence, to play the A above middle C for half a second, you
would use:

 500 9 beep

And to play a scale (for example, C major) a complete
(albeit short) program is needed:

 create scale
 0 c, 2 c, 4 c, 5 c, 7 c, 9 c, 11 c, 12 c,

8 constant /scale

: play-scale (--) /scale 0 ?do
 500 scale i + c@ beep
 loop ;

play-scale

See also: beep>bleep, bleep, beep>dhz.

Source file: <src/lib/sound.48.fs>.

beep>bleep

 beep>bleep (duration1 pitch1 -- pitch2 duration2) "beep-to-bleep"

Convert duration1 and pitch1 of beep, which are
equivalent to the parameters used by Sinclair BASIC’s
BEEP command, to pitch2 and duration2, which are
the parameters required by bleep.

duration1 is in miliseconds (instead of seconds
used by Sinclair BASIC).

pitch1 is identical to the Sinclair BASIC parameter:
number of semitones from middle C (positive number for
notes above, negative number for notes below).

See also: beep>dhz, beep>note.

Source file: <src/lib/sound.48.fs>.

beep>dhz

 beep>dhz (n -- u) "beep-to-decihertz"

Convert a pitch n of beep to its corresponding
frequency in dHz (tenths of hertzs) u.

See also: beep>note, beep>bleep.

Source file: <src/lib/sound.48.fs>.

beep>note

 beep>note (n1 -- n2 +n3) "beep-to-note"

Convert a pitch n1 of beep to its corresponding note
+n3 (0..11) in octave n2, being zero the middle octave.

See also: -beep>note, +beep>note, beep>dhz, beep>bleep,
/octave.

Source file: <src/lib/sound.48.fs>.

begin

 begin
 Compilation: (C: -- dest)
 Run-time: (--)

Mark the start of a sequence for repetitive execution, leaving
dest to be resolved by the corresponding until, again or
repeat.

begin is an immediate and compile-only alias of
<mark.

Definition:

 ' <mark alias begin immediate compile-only
 \ Compilation: (C: -- dest)
 \ Run-time: (--)

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: while, do.

Source file: <src/kernel.z80s>.

begin-stringtable

 begin-stringtable ("name" -- a1 a2)

Start a named stringtable definition "name", returning a1
(containing the address of the strings index) and a2 (the
address of the compiled strings), to be consumed by
end-stringtable.

Usage example:

 begin-stringtable esperanto-number
 s" nulo" s,
 s" unu" s,
 s" du" s,
 s" tri" s,
end-stringtable

0 esperanto-number type
3 esperanto-number type

See also: sconstants.

Source file: <src/lib/data.begin-stringtable.fs>.

begin-structure

 begin-structure ("name" -- struct-sys 0)

Parse name. Create a definition for name with the
execution semantics defined below. Return a struct-sys
that will be used by end-structure and an initial offset
of 0.

name execution: (-- +n)

+n is the size in memory expressed in bytes of the data
structure.

Example usage:

 begin-structure /record
 field: ~year
 cfield: ~month
 cfield: ~day
end-structure

10 #records
create records #records /record * allot

: record> (n -- a) /record * records + ;
 \ Address _a_ of record _n_.

1887 0 record> ~year ! \ store a year into record 0
 9 record> ~month c@ \ fetch the month from record 9

begin-structure and end-structure are not
necessary to create a structure. Only the initial offset 0
is needed at the start, and saving the structure size at
the end, e.g. using a constant or a value:

 0
 field: ~the-cell
 cfield: ~the-char
constant /record

Origin: Forth-2012 (FACILITY EXT).

See also: end-structure, field:, cfield:, 2field:,
+field.

Source file: <src/lib/data.begin-structure.fs>.

bench.

 bench. (d --) "bench-dot"

Display the timing result d, which is a number of
clock ticks, in ticks and seconds.

See also: bench{, }bench, }bench..

Source file: <src/lib/time.fs>.

benched

 benched (xt n -- d)

Execute n times the benchmark xt and return the timer
result d.

See also: bench{, }bench, benched..

Source file: <src/lib/time.fs>.

benched.

 benched. (xt n -- d) "benched-dot"

Execute n times the benchmark xt and display the
result.

See also: bench{, }bench., benched.

Source file: <src/lib/time.fs>.

bench{

 bench{ (--) "bench-curly-bracket"

Start timing, setting the clock ticks to zero.

See also: }bench, reset-dticks.

Source file: <src/lib/time.fs>.

between

 between (n1|u1 n2|u2 n3|u3 -- f)

Perform a comparison of a test value n1|u1 with a lower
limit n2|u2 and an upper limit n3|u3, returning true
if either (n2|u2 ⇐ n3|u3 and (n2|u2 ⇐ n1|u1 and
n1|u1 ⇐ n3|u3)) or (n2|u2 > n3|u3 and (n2|u2 <
n1|u1 or n1|u1 < n3|u3)) is true, returning false
otherwise.

See also: within, polarity.

Source file: <src/lib/math.operators.1-cell.fs>.

between-of

 between-of
 Compilation: (C: -- of-sys)
 Run-time: (x1 x2 x3 -- | x1)

A variant of of.

Compilation:

Put of-sys onto the control flow stack. Append the
run-time semantics given below to the current definition.
The semantics are incomplete until resolved by a consumer
of of-sys, such as endof.

Run-time:

If x1 is not in range x2 x3, as calculated by
between, discard x2 x3 and continue execution at the
location specified by the consumer of of-sys, e.g.,
following the next endof. Otherwise, consume also x1
and continue execution in line.

between-of is an immediate and compile-only word.

Usage example:

 : test (n --)
 case
 1 of ." one" endof
 2 5 between-of ." between two and five" endof
 6 of ." six" endof
 endcase ;

See also: case, within-of, (between-of.

Source file: <src/lib/flow.case.fs>.

bin

 bin (fam1 -- fam2)

Modify file access method fam1 to additionally select a
"binary", i.e., not line oriented, file access method,
giving file access method fam2.

See also: r/o, w/o, r/w, s/r,
create-file, open-file.

Origin: Forth-94 (FILE), Forth-2012 (FILE).

Source file: <src/lib/dos.plus3dos.fs>.

bin.

 bin. (n --) "bin-dot"

Display n as an unsigned binary number, followed by
one space.

See also: dec., hex., u., ..

Source file: <src/lib/display.numbers.fs>.

bin>

 bin> (--) "end-bin"

End a code zone where binary radix is the default, by
restoring the value of base from base'. The zone was
started by <bin.

Source file: <src/lib/display.numbers.fs>.

binary

 binary (--)

Set contents of base to two.

See also: decimal, hex.

Source file: <src/lib/display.numbers.fs>.

bit,

 bit, (reg b --) "bit-comma"

Compile the Z80 assembler instruction BIT b,reg.

See also: res,, set,, cp#,.

Source file: <src/lib/assembler.fs>.

bit-array

 bit-array (n "name" --)

Create a bit-array name to hold n bits, with the
execution semantics defined below. The bits are stored in
order: array bit 0 is bit 7 of the first byte of the array;
array bit 7 is bit 0 of the first byte of the array; array
bit 8 is bit 7 of the second byte of the array; array bit
15 is bit 0 of the second byte of the array, etc.

name (n — b ca)

Return bitmak b and address ca of bit n of the array.

See also: @bit, !bit, bits>bytes, bitmasks.

Source file: <src/lib/data.array.bit.fs>.

bit>mask

 bit>mask (n -- b) "bit-to-mask"

Convert bit number n to a bitmask b with bit n set.

See also: bit?, set-bit, reset-bit.

Source file: <src/lib/memory.MISC.fs>.

bit?

 bit? (b n -- f) "bit-question"

Is bit n of b set?

See also: bit?, set-bit, bit>mask.

Source file: <src/lib/memory.MISC.fs>.

bitmasks

 bitmasks (-- ca)

Address of an 8-byte table containing the bitmasks for bits
0..7 as used by bit-array.

Source file: <src/lib/data.array.bit.fs>.

bits

 bits (ca len -- u)

Count the number u of bits that are set in memory zone
ca len.

See also: pixels.

Source file: <src/lib/math.operators.1-cell.fs>.

bits>bytes

 bits>bytes (n1 -- n2) "bits-to-bytes"

Return the number of bytes n2 needed to hold n1 bits.
Used by bit-array.

Source file: <src/lib/data.array.bit.fs>.

bitx,

 bitx, (disp regpi b --) "bit-x-comma"

Compile the Z80 assembler instruction BIT
b,(regpi+disp).

See also: resx,, setx,, cpx,.

Source file: <src/lib/assembler.fs>.

bl

 bl (-- c) "b-l"

A cconstant. c is the character value for a space.

Because space is used throughout Forth as the standard
delimiter, bl is the only way a program has to find and
use the character value of a space.

See also: space, emit.

Source file: <src/kernel.z80s>.

black

 black (-- b)

A cconstant that returns 0, the value that represents the
black color.

See also: blue, red, magenta, green,
cyan, yellow, white, contrast, papery,
inversely.

Source file: <src/lib/display.attributes.fs>.

blackout

 blackout (--)

Erase the screen (bitmap and the attributes) with zeros.

See also: fade-display, cls, attr-cls.

Source file: <src/lib/graphics.display.fs>.

blank

 blank (ca len --)

If len is greater than zero, store the character value for
space (bl) in len consecutive character positions of
memory beginning at ca.

Origin: Forth-94 (STRING), Forth-2012 (STRING).

Source file: <src/kernel.z80s>.

bleep

 bleep (duration pitch --)

Produce a tone in the internal beeper.

bleep calls the
BEEPER ROM routine with pitch in the HL register and
duration in the DE register.

(…​) but while there is greater flexibility than is
directly available in BASIC the system is more difficult to
use. Precalculation is necessary to obtain musical scales,
on the following basis:

To generate a frequency of F Hz, pitch must be set to:

pitch = (437500/F)-30

Looking in the opposite direction:

F = 437500/(pitch+30)

The duration of the note is determined as a number of
cycles, so duration must be set to F x T, where T is
the duration in seconds.

A point to note is that if a very low frequency is
selected, with a high duration, the system may appear to
hang up, because the BEEPER ROM routine goes on and on…​;
whithout the user being able to use BREAK.

~ Don Thomasson, Spectrum Advanced Forth (Melbourne House, 1984), page 26

Output a square wave of given duration and frequency
to the loudspeaker.

Enter with:

	
DE = #cycles - 1

	
HL = tone period as described next

The tone period is measured in T states and consists of
three parts: a coarse part (H register), a medium part
(bits 7..2 of L) and a fine part (bits 1..0 of L) which
contribute to the waveform timing as follows:

 coarse medium fine
duration of low = 118 + 1024*H + 16*(L>>2) + 4*(L&$3)
duration of hi = 118 + 1024*H + 16*(L>>2) + 4*(L&$3)
Tp = tone period = 236 + 2048*H + 32*(L>>2) + 8*(L&$3)
 = 236 + 2048*H + 8*L = 236 + 8*HL

As an example, to output five seconds of middle C (261.624
Hz):

	
Tone period = 1/261.624 = 3.822ms

	
Tone period in T-States = 3.822ms*fCPU = 13378
(where fCPU = clock frequency of the CPU = 3.5MHz)

	
Find H and L for desired tone period:
HL = (Tp - 236) / 8 = (13378 - 236) / 8 = 1643 =
$066B

	
Tone duration in cycles = 5s/3.822ms = 1308 cycles

	
DE = 1308 - 1 = $051B

The resulting waveform has a duty ratio of exactly 50%.

~ Dr. Ian Logan, Dr. Frank O'Hara et al. ZX Spectrum disassembly

See also: hz>bleep, dhz>bleep, beep.

Source file: <src/lib/sound.48.fs>.

blk

 blk (-- a) "b-l-k"

A user variable. a is the address of a cell containing zero
or the number of the disk block being interpreted. If
blk contains zero, the input source is not a block and
can be identified by source-id.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (BLOCK), Forth-2012 (BLOCK).

See also: load, loading?, ?loading.

Source file: <src/kernel.z80s>.

blk-line

 blk-line (-- ca len)

Return the current line ca len of the block being
interpreted. No check is done whether any block is
actually being interpreted.

See also: blk, block, >in/l, ->in/l, c/l.

Source file: <src/lib/tool.list.blocks.fs>.

block

 block (u -- a)

If the block u is already in memory, leave the address a
of the first cell in the disk buffer for data storage.

If the block u is not already in memory, transfer it from
disk to the buffer. If the block occupying that buffer has
been marked as updated, rewrite it to disk before block u is
read into the buffer. Finally leave the address a of the
first cell in the disk buffer for data storage.

Definition:

 : block (u -- a)
 dup buffer-block =
 if drop
 else save-buffers dup read-block disk-buffer !
 then buffer-data ;

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: buffer-block, save-buffers, read-block,
disk-buffer, buffer-data.

Source file: <src/kernel.z80s>.

block-chars

 block-chars (--)

A phoney word used only to do need block-chars. The
loading of the correspondent source block will define
characters 128..143 as block characters, with the shape
they have in Sinclair BASIC. The current value of os-udg
is used.

See also: make-block-chars, set-udg, udg!,
default-udg-chars.

Source file: <src/lib/graphics.udg.fs>.

block-drive!

 block-drive! (c n --) "block-drive-store"

Set drive c (DOS dependent) as block drive number n (0
index).

See also: block-drive@, set-block-drives.

Source file: <src/lib/dos.COMMON.fs>.

block-drive@

 block-drive@ (n -- c) "block-drive-fetch"

Get drive c (DOS dependent) currently used as block drive
number n (0 index).

See also: block-drive!, get-block-drives.

Source file: <src/lib/dos.COMMON.fs>.

block-drives

 block-drives (-- ca)

ca is the address of a character table that holds the
disk drives used as block drives. This table can be
configured manually or using set-block-drives.

The length of the table is max-drives. The first element
of the table (offset 0) is the disk drive used for blocks
from number 0 to number blocks/disk 1-; the second element
of the table (offset 1) the disk drive used for blocks from
number blocks/disk to number blocks/disk 2 * 1-; and so on.

The number of used block drives is hold in #block-drives.

The block ranges not associated to disk drives are marked
with $FF (the not-block-drive optional constant is
provided for convenience), and all of them should be at the
end of the table. In theory it’s possible to define gaps
in the whole range of blocks associated to disk drives, but
this would cause trouble with set-block-drives and
get-block-drives, which use #block-drives as the drives
count from the start of block-drives.

The default configuration of block-drives is: use only
the first disk drive for blocks.

Source file: <src/lib/dos.COMMON.fs>.

block-indexed

 block-indexed (block --)

Mark block block as indexed.

See also: use-fly-index.

Source file: <src/lib/blocks.indexer.fly.fs>.

block-sector#>dos

 block-sector#>dos (n -- x) "block-sector-number-sign-to-dos"

Convert the sequential disk sector n (0 index) of a block
disk to the disk sector id x, in the format required by
+3DOS: The high byte of x is the logical track (0 index);
its low byte is the logical sector (0 index).

In +3DOS the first sector of a block disk cannot be used for
blocks.

Definition:

 : block-sector#>dos (n -- x) 1+ sector#>dos ;

See also: sectors/track, sector#>dos, transfer-block.

Source file: <src/kernel.plus3dos.z80s>.

block>source

 block>source (u --) "block-to-source"

Set block u as the current source.

Definition:

 : block>source (u --) blk ! >in off ;

See also: terminal>source, blk, >in, set-source,
lineblock>source.

Source file: <src/kernel.z80s>.

block?

 block? (u -- f) "block-question"

f is true if u is a valid block number.

Definition:

 : block? (u -- f) max-blocks u< ;

Source file: <src/kernel.z80s>.

blocks/disk

 blocks/disk (-- n) "blocks-slash-disk"

A constant. n is the number of blocks per disk.

See also: sectors/block, sectors/track.

Source file: <src/kernel.z80s>.

blue

 blue (-- b)

A cconstant that returns 1, the value that represents the
blue color.

See also: black, red, magenta, green, cyan,
yellow, white, contrast, papery, inversely.

Source file: <src/lib/display.attributes.fs>.

body>

 body> (dfa -- xt) "body-from"

Convert dfa into its correspoding xt.

See also: >body, body>name.

Source file: <src/lib/compilation.fs>.

body>name

 body>name (dfa -- nt|0) "body-to-name"

Try to find the name token nt of the word represented by
data field address dfa. Return 0 if it fails.

body>name searches all word lists, from newest to
oldest; and the searching of every word list is done also
from the newest to the oldest definition. The first header
whose execution token pointer contains the xt associated
to dfa is a match. Therefore, when a word has additional
headers created by alias or synonym, the nt of its
latest alias or synonym is found first.

See also: name>body, link>name, >name.

Source file: <src/lib/compilation.fs>.

boot

 boot (--)

A deferred word (see defer) executed by abort. By default
it does nothing. It is changed by turnkey.

See also: cold.

Source file: <src/kernel.z80s>.

border

 border (n --)

Set the border of the screen to color to n. Only the 3
lower bits of n are used (for colors 0 .. 7).

Source file: <src/kernel.z80s>.

bounds

 bounds (ca len -- ca2 ca)

Convert the string identifier ca len to ca2 ca, being
ca2 the address after the last character of the string.
ca2 ca are the parameters needed by do or ?do to
traverse the string ca len.

bounds is written in Z80. Its equivalent definition in
Forth is the following:

 : bounds (ca len -- ca2 ca) over + swap ;

Origin: Comus.

See also: count.

Source file: <src/kernel.z80s>.

branch

 branch (--)

The run-time procedure to branch unconditionally. The
following in-line address is copied to IP to branch forward or
backward.

Origin: Forth-83 (System Extension Word Set).

See also: ?branch, 0branch, -branch, +branch.

Source file: <src/kernel.z80s>.

break-key?

 break-key? (-- f) "break-key-question"

f is true if the break key is pressed. break-key? is a
deferred word (see defer) whose default action is
default-break-key?.

See also: key?.

Source file: <src/kernel.z80s>.

bright-mask

 bright-mask (-- b)

A cconstant. b is the bitmask of the bit used to indicate
the bright status in an attribute byte.

See also: unbright-mask, brighty, set-bright, attr!,
flash-mask, paper-mask, ink-mask.

Source file: <src/lib/display.attributes.fs>.

bright.

 bright. (n --) "bright-dot"

Set bright n by printing the corresponding control
characters. If n is zero, turn bright off; if n is one,
turn bright on; if n is eight, set transparent bright. Other
values of n are converted as follows:

	
2, 4 and 6 are converted to 0.

	
3, 5 and 7 are converted to 1.

	
Values greater than 8 or less than 0 are converted to 8.

bright. is much slower than set-bright or attr!,
but it can handle pseudo-color 8 (transparent), setting the
corresponding system variables accordingly.

See also: flash., (0-1-8-color..

Source file: <src/lib/display.attributes.fs>.

brighty

 brighty (b1 -- b2)

Convert attribute b1 to its brighty equivalent b2.

brighty is written in Z80. Its equivalent definition in
Forth is the following:

 : brighty (b1 -- b2) bright-mask or ;

See also: bright-mask, papery, flashy, inversely.

Source file: <src/lib/display.attributes.fs>.

buffer

 buffer (u -- a)

Assign the block buffer to block u. If the contents of the
buffer were marked as updated, it is written to the disk. The
block u is not read from the disk. The address a left on
stack is the first cell in the buffer for data storage.

Definition:

 : buffer (u -- a)
 dup buffer-block =
 if drop else free-buffer then buffer-data ;

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: buffer-block, free-buffer, buffer-data.

Source file: <src/kernel.z80s>.

buffer-block

 buffer-block (-- n)

Return the block n associated with the disk buffer.

: buffer-block ( — n) buffer-id $7FFF literal and ;

See also: buffer-id, buffer, block.

Source file: <src/kernel.z80s>.

buffer-data

 buffer-data (-- ca)

A constant. ca is the address of the disk buffer data.

See also: disk-buffer, b/buf.

Source file: <src/kernel.z80s>.

buffer-id

 buffer-id (-- x) "buffer-i-d"

x is the identifier of the disk buffer.

See also: disk-buffer.

Source file: <src/kernel.z80s>.

buffer:

 buffer: (u "name" --) "buffer-colon"

Define a named uninitialized buffer as follows: Reserve u
bytes of data space. Create a definition for name that
will return the address of the space reserved by
buffer: when it defined name. The program is
responsible for initializing the contents.

Origin: Forth-2012 (CORE EXT).

See also: reserve, allotted, create, allot.

Source file: <src/lib/data.MISC.fs>.

bye

 bye (--)

Return control to the host OS.

Definition:

 : bye (--) save-mode default-mode (bye ;

Origin: Forth-94 (TOOLS EXT), Forth-2012 (TOOLS EXT).

See also: save-mode, default-mode, (bye, warm,
cold.

Source file: <src/kernel.z80s>.

byte?

 byte? (x -- f) "byte-question"

f is true if x is an 8-bit number. Used by xliteral.

Source file: <src/kernel.z80s>.

6 In fig-Forth the size of each disk buffer was the size of a disk sector, usually 128 bytes by the time.

c

c

 c (-- reg)

Return the identifier reg of the Z80 assembler register
"C".

See also: a,
b, d,
e, h,
l, m,
ix, iy, sp.

Source file: <src/lib/assembler.fs>.

c

 c (n --)

A command of gforth-editor:
Move cursor by n chars.

See also:
a,
g,
n,
p,
t.

Source file: <src/lib/prog.editor.gforth.fs>.

c

 c ("ccc<eol>" --)

A command of specforth-editor: Copy in ccc to the
cursor line at the cursor position.

See also: b,
d,
e,
f,
h,
i,
l,
m,
n,
p,
r,
s,
t,
x, (c, text.

Source file: <src/lib/prog.editor.specforth.fs>.

c!

 c! (c ca --) "c-store"

Store c at ca.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: !, 2!, c@.

Source file: <src/kernel.z80s>.

c!>

 c!>
 Interpretation: (c "name" --)
 Compilation: ("name" --)
 Run-time: (c --)
"c-store-to"

A simpler and faster alternative to standard to and
value.

c!> is an immediate word.

Interpretation:

Parse name, which is the name of a word created by
cconstant or cconst, and make c its value.

Compilation:

Parse name, which is a word created by cconstant or
cconst, and append the run-time semantics given below to
the current definition.

Run-time:

Make c the current value of the character constant
name.

Origin: IsForth’s !>.

See also: !>, 2!>.

Source file: <src/lib/data.store-to.fs>.

c!a

 c!a (c --) "c-fetch-a"

Store c at the address register.

See also: a, c@a.

Source file: <src/lib/memory.address_register.fs>.

c!a+

 c!a+ (c --) "c-store-a-plus"

Store c at the address register and increment the address
register by one address unit.

See also: a, c@a+.

Source file: <src/lib/memory.address_register.fs>.

c!bank

 c!bank (c ca n --) "c-store-bank"

Store c into address ca ($C000..$FFFF) of bank n.

c!bank is written in Z80. Its equivalent definition in
Forth is the following:

 : c!bank (c ca n --) bank c! default-bank ;

See also: c@bank, !bank.

Source file: <src/lib/memory.far.fs>.

c!exchange

 c!exchange (c1 ca -- c2) "c-store-exchange"

Store c1 into ca and return its previous contents c2.

c!exchange is written in Z80. An equivalent definition
in Forth is the following:

 : c!exchange (c1 ca -- c2) dup c@ rot rot c! ;

See also: !exchange, cexchange.

Source file: <src/lib/memory.MISC.fs>.

c"

 c"
 Compilation: ("ccc<quote>" --)
 Run-time: (-- ca)
"c-quote"

Parse a string ccc delimited by double quotes and compile it
into the current definition. At run-time the string will
be returned as a counted string ca.

c" is an immediate and compile-only word.

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: csliteral.

Source file: <src/lib/strings.c-quote.fs>.

c#

 c# ("name" -- c) "c-number-sign"

Parse name and return the code c of the its first
character.

c# is a short and state-smart alternative to the
standard words char and [char].

c# is an immediate word.

c# is a state-smart word (see: state).

Source file: <src/lib/math.number.prefix.fs>.

c+!

 c+! (c ca -) "c-plus-store"

Add c to the character stored at ca

See also: c-!, c1+!, +!.

Source file: <src/lib/memory.MISC.fs>.

c,

 c, (c --) "c-comma"

Reserve space for one character in the data space and store
c in the space.

Definition:

 : c, (c --) here c! 1 allot ;

Origin: fig-Forth, Forth-79 (Reference Word Set), Forth-83
(Controlled Reference Words), Forth-94 (CORE), Forth-2012
(CORE).

See also: ,, 2,, here, c!, allot.

Source file: <src/kernel.z80s>.

c-!

 c-! (c ca -) "c-minus-store"

Subtract c from the character stored at ca

See also: c+!, c1-!, -!.

Source file: <src/lib/memory.MISC.fs>.

c/l

 c/l (-- b) "c-slash-l"

A cconstant. b is the number of characters per line in a
block source: 64.

See also: l/scr.

Source file: <src/kernel.z80s>.

c1+!

 c1+! (ca -) "c-one-plus-store"

Increment the character stored at ca.

See also: c1-!, c+!, 1+!.

Source file: <src/lib/memory.MISC.fs>.

c1-!

 c1-! (ca -) "c-one-minus-store"

Decrement the character stored at ca.

See also: ?c1-!, c1+!, c-!, 1-!.

Source file: <src/lib/memory.MISC.fs>.

c?

 c? (-- op) "c-question"

Return the opcode op of the Z80 assembler instruction
jp c, to be used as condition and consumed by ?ret,,
?jp,, ?call,, ?jr,, aif, rif, awhile, rwhile,
auntil or runtil.

See also: z?, nz?, nc?, po?, pe?, p?, m?.

Source file: <src/lib/assembler.fs>.

c?

 c? (ca --) "c-question"

Display the 1-byte unsigned integer stored at ca, using
the format of ..

See also: ?, 2?, c@.

Source file: <src/lib/memory.MISC.fs>.

c@

 c@ (ca -- c) "c-fetch"

Fetch the character c stored at ca.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: @, 2@, c!, c@1+, c@1-, c@2+, c@2-.

Source file: <src/kernel.z80s>.

c@+

 c@+ (ca -- ca' c) "c-fetch-plus"

Fetch the character c at ca. Return ca', which is
ca incremented by one character. This is handy for
stepping through character arrays.

c@+ is an alias of count.

See also: c@, 2@+, @+.

Source file: <src/lib/memory.MISC.fs>.

c@1+

 c@1+ (ca -- c) "c-fetch-one-plus"

Fetch the character stored at ca, add 1 to it, according
to the operation of +, giving c.

c@1+ is a faster alternative to c@ 1+.

See also: c@1-, c@2+, c@, 1+.

Source file: <src/lib/memory.MISC.fs>.

c@1-

 c@1- (ca -- c) "c-fetch-one-minus"

Fetch the character stored at ca, subtract 1 from it,
according to the operation of -, giving c.

c@1- is a faster alternative to c@ 1-.

See also: c@1+, c@2-, c@, 1-.

Source file: <src/lib/memory.MISC.fs>.

c@2+

 c@2+ (ca -- c) "c-fetch-two-plus"

Fetch the character stored at ca, add 2 to it, according
to the operation of +, and return the result c.

c@2+ is a faster alternative to c@ 2+.

See also: c@2-, c@1+, c@, 2+.

Source file: <src/lib/memory.MISC.fs>.

c@2-

 c@2- (ca -- c) "c-fetch-two-minus"

Fetch the character stored at ca, subtract 2 from it,
according to the operation of -, and giving c.

c@2- is a faster alternative to c@ 2-.

See also: c@2+, c@1-, c@, 2-.

Source file: <src/lib/memory.MISC.fs>.

c@a

 c@a (-- c) "c-fetch-a"

Fetch the character c stored at the address register.

See also: a, c!a.

Source file: <src/lib/memory.address_register.fs>.

c@a+

 c@a+ (-- c) "c-fetch-a-plus"

Fetch character c stored at the address register and
increment the address register by one address unit.

See also: a, c!a+.

Source file: <src/lib/memory.address_register.fs>.

c@and

 c@and (b1 ca -- b2) "c-fetch-and"

Fetch the caracter at ca and do a bit-by-bit logical
and of it with b1, returning the result b2.

See also: c@and?, ctoggle, cset, creset.

Source file: <src/lib/memory.MISC.fs>.

c@and?

 c@and? (b ca -- f) "c-fetch-and-question"

Fetch the caracter at ca and do a bit-by-bit logical "and"
of it with b. Return false if the result is zero, else
true.

c@and is written in Z80. Its equivalent definition in Forth
is the following:

 : c@and? (b ca -- f) c@ and 0<> ;

See also: c@and.

Source file: <src/kernel.z80s>.

c@bank

 c@bank (ca n -- c) "c-fetch-bank"

Fetch c from address ca ($C000..$FFFF) of bank n.

c@bank is written in Z80. Its equivalent definition in
Forth is the following:

 : c@bank (ca n -- c)
 bank c@ default-bank ;

See also: c!bank, @bank.

Source file: <src/lib/memory.far.fs>.

calculator

 calculator (--)

Start compilation of ROM calculator commands: Add
calculator-wordlist to the search order and compile the
following assembly instructions to start the ROM
calculator:

 push bc ; save the Forth IP
rst $28 ; call the ROM calculator

See also: end-calculator.

Source file: <src/lib/math.calculator.fs>.

calculator-command

 calculator-command (b --)

Compile the assembly instructions needed to execute the
b command of the ROM calculator.

See also: end-calculator-flag.

Source file: <src/lib/math.floating_point.rom.fs>.

calculator-command>flag

 calculator-command>flag (b --) "calculator-command-to-flag"

Compile the assembly instructions needed to execute the
b command of the ROM calculator and to return the
floating-point result as a flag on the data stack.

Source file: <src/lib/math.floating_point.rom.fs>.

calculator-wordlist

 calculator-wordlist (-- wid)

The word list that contains the calculator commands.

Source file: <src/lib/math.calculator.fs>.

call

 call (a --)

Call a machine code subroutine at a.

See also: execute-hl,, call-xt,.

Source file: <src/lib/flow.MISC.fs>.

call,

 call, (a --) "call-comma"

Compile the Z80 opcode to call a.

Definition:

 : call, (a --) $CD c, , ;

See also: jp,.

Source file: <src/kernel.z80s>.

call-xt,

 call-xt, (xt --) "call-x-t-comma"

Compile a Z80 assembler call to xt, by compiling the
Z80 instruction that loads the HL register with xt, and
then executing execute-hl, to compile the rest of the
necessary code.

call-xt, is the low-level equivalent of execute: it’s
used to call a colon word from a code word.

See also: call, call,.

Source file: <src/lib/assembler.fs>.

capslock

 capslock (-- b ca)

Return address ca of system variable FLAGS2 and bitmask
b of the bit that controls the status of capslock.

See also: set-capslock, unset-capslock, capslock?,
os-flags2.

Source file: <src/lib/keyboard.caps_lock.fs>.

capslock?

 capslock? (-- f)

Is capslock set?

See also: set-capslock, unset-capslock, toggle-capslock,
capslock, c@and?.

Source file: <src/lib/keyboard.caps_lock.fs>.

case

 case
 Compilation: (C: -- case-sys)
 Run-time: (--)

Compilation: Mark the start of a case …​ endcase
structure.

Run-time: Continue execution.

case is an immediate and compile-only word.

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: of, endof, default-of, less-of,
greater-of, between-of, within-of, or-of, any-of,
cond, thens.

Source file: <src/lib/flow.case.fs>.

case-sensitive

 case-sensitive (-- a)

A variable. a is the address of a cell containing a flag
that turns case-sensitive mode on and off.

When the contents of case-sensitive are zero, case-sensitive
mode is off (this is the default): the name of new words
defined will be stored in lowercase into the dictionary; and
any name searched for in the dictionary will be converted to
lowercase first (the conversion is done at low level, not
affecting the name string passed as parameter).

When the contents of case-sensitive are non-zero,
case-sensitive mode is on: the name of new words defined will
be stored as they are parsed from the input stream, without
modification; and any name searched for in the dictionary will
not be modified, therefore it will be found only if it’s
identical to the name stored in the definition header.

Words that are defined when case-sensitive mode is
on, and that have uppercase characters in their names, will
not be found when case-sensitive mode is off.

Source file: <src/kernel.z80s>.

case-sensitive-esc-chars

 case-sensitive-esc-chars (-- a)

A variable. a is the address of a cell containing a flag
that turns case-sensitive mode on and off only during the
parsing of escaped strings, e.g. s\" and .\". The
contents of this variable are temporarily stored into
case-sensitive by parse-esc-string. The current
contents of case-sensitive are preserved and restored at
the end.

When the contents of case-sensitive are non-zero, escaped
characters case-sensitive mode is on (this is the default):
any escaped character searched for in the configured word
list will not be modified, therefore it will be found only
if it’s identical to the name stored in the definition
header.

When the contents of case-sensitive-esc-chars are zero,
escaped characters case-sensitive mode is off: any escaped
character searched for in the correspondent word list will
be converted to lowercase first (the conversion is done at
low level, not affecting the name string passed as
parameter).

In order to create upper-case case-sensitive escaped
chars, their correspondent words must be created when
case-sensitive is on. See the words defined in
esc-udg-chars-wordlist.

Source file: <src/lib/strings.escaped.fs>.

case>

 case> (orig counter selector "name" -- orig counter') "case-from"

Compile an option into a cases: structure. The given
selector will cause the word name to be executed.

See cases: for an usage example.

Source file: <src/lib/flow.cases-colon.fs>.

cases:

 cases: ("name" -- orig 0) "cases-colon"

Define a cases: structure "name", built as an array of
pairs (value and associated vector).

Usage example:

 : say-10 ." dek" ;
: say-100 ." cent" ;
: say-1000 ." mil" ;
: say-other ." alia" ;

cases: say (n --)
 10 case> say-10
 100 case> say-100
 1000 case> say-1000
 othercase> say-other

10 say 100 say 1000 say 1001 say

Source file: <src/lib/flow.cases-colon.fs>.

cat

 cat (--)

Show a disk catalogue of the current drive.

See also: wcat, acat, set-drive.

Source file: <src/lib/dos.plus3dos.fs>.

cat-buffer

 cat-buffer (-- a)

A variable. a is the address of a cell containing the
address of the buffer used by (cat , .cat, .acat and
other words.

Every time cat or acat are executed, the value
of cat-buffer is updated with the address of a new
space allocated in the stringer by >cat. Depending on
the value of cat-entries, the current contents of the
stringer (whose maximum length is /stringer) could be
overwritten.

See also: /cat-entry.

Source file: <src/lib/dos.plus3dos.fs>.

cat-entries

 cat-entries (-- ca)

A cvariable. ca is the address of a character
containing the number of entries of the cat-buffer used
by (cat. Its default value is 4. The length of each
entry is /cat-entry and cannot be changed.

Every time cat or acat are executed, a new
cat-buffer is allocated in the stringer by >cat.
Depending on the value of cat-entries, this can
overwrite the current contents of the stringer, whose
maximum length is /stringer.

Source file: <src/lib/dos.plus3dos.fs>.

catch

 catch (i*x xt -- j*x 0 | i*x n)

Push an exception frame on the exception stack and then
execute xt (as with execute) in such a way that control
can be transferred to a point just after catch if
throw is executed during the execution of xt.

If the execution of xt completes normally (i.e., the
exception frame pushed by this catch is not popped by an
execution of throw) pop the exception frame and return
zero on top of the data stack, above whatever stack items
would have been returned by the execution of xt.
Otherwise, the remainder of the execution semantics are
given by throw.

Solo Forth uses the return stack as exception stack. An
exception frame includes the source specification saved by
nest-source, the stack pointer returned by sp@ and the
contents of the previous catcher, which item is pointed
by catcher.

Origin: Forth-94 (EXCEPTION), Forth-2012 (EXCEPTION).

Source file: <src/lib/exception.fs>.

catcher

 catcher (-- a)

A user variable. a is the address of a cell containing the
return stack pointer for error handling. Used by throw and
catch.

Source file: <src/kernel.z80s>.

cato

 cato (c n "name" --) "c-a-to"

Store c into element n of 1-dimension character
values array name.

cato is an immediate word.

See also: cavalue, (cato.

Source file: <src/lib/data.array.value.fs>.

cavalue

 cavalue (n "name" --) "c-a-value"

Create a 1-dimension character values array name with
n elements and the execution semantics defined below.

name execution:

name (n — c)

Return contents c of element n.

See also: cato, +cato.

Source file: <src/lib/data.array.value.fs>.

cavariable

 cavariable (n "name" --) "c-a-variable"

Create a 1-dimension character variables array name with
n elements and the execution semantics defined below.

name execution:

name (n — ca)

Return address ca of element n.

See also: avariable, 2avariable, farcavariable.

Source file: <src/lib/data.array.variable.fs>.

ccase

 ccase "c-case"
 Compilation: (C: -- orig1 orig2)
 Run-time: (c ca len --)

Start a ccase..endccase structure. If c is in the
string ca len, execute the n-th word compiled after
ccase, where n is the position of the first c in the
string (0..len-1) plus 1, then continue after endccase.
If c is not in ca len, execute the word compiled right
before endccase, then continue after endccase.

ccase is an immediate and compile-only word.

Usage example:

 : .a (--) ." Letter A" ;
: .b (--) ." Letter B" ;
: .c (--) ." Letter C" ;
: .nope (--) ." Nope!" ;

: letter (c --)
 s" abc" ccase .a .b .c .nope endccase
 ." The End" cr ;

See also: ccase0, ?ccase.

Source file: <src/lib/flow.ccase.fs>.

ccase0

 ccase0 "c-case-zero"
 Compilation: (C: -- orig)
 Run-time: (c ca len --)

Start a ccase0..endccase structure. If c is in the
string ca len, execute the n-th word compiled after
ccase0, where n is the position of the first c in
the string (0..len-1) plus 1, then continue after
endccase0. If c is not in ca len, execute the word
compiled right after ccase0, then continue after
endccase0.

ccase0 is an immediate and compile-only word.

Usage example:

 : .a (--) ." Letter A" ;
: .b (--) ." Letter B" ;
: .c (--) ." Letter C" ;
: .nope (--) ." Nope!" ;

: letter (c --)
 s" abc" ccase0 .nope .a .b .c endccase0
 ." The End" cr ;

See also: ccase ?ccase.

Source file: <src/lib/flow.ccase.fs>.

ccf,

 ccf, (--) "c-c-f-comma"

Compile the Z80 assembler instruction CCF.

See also: cpl,, scf,, neg,, bit,, set,, cp,.

Source file: <src/lib/assembler.fs>.

cconst

 cconst (c "name" --) "c-const"

Create a character fast constant name, with value c.

A character fast constant works like an ordinary
cconstant, except its value is compiled as a literal.

Origin: IsForth’s const.

See also: [cconst], const, 2const.

Source file: <src/lib/data.const.fs>.

cconstant

 cconstant (c "name" --) "c-constant"

Parse name. Create a definition for name that will place
c on the stack. name is referred to as a "c-constant".

Origin: Comus.

See also: constant, 2constant, c!>, cconst,
[cconst], cvalue, cvariable.

Source file: <src/kernel.z80s>.

cell

 cell (-- n)

n is the size in bytes of one cell. cell returns 2 in
Solo Forth.

Origin: Comus.

See also: cells, cell+, cell-, cell/, cell-bits.

Source file: <src/kernel.z80s>.

cell+

 cell+ (a1 -- a2) "cell-plus"

Add the size in bytes of a cell to a1, giving a2.

Origin: Forth-94 (CORE), Forth-2012 (CORE).

See also: cell, cells, cell-, cell/.

Source file: <src/kernel.z80s>.

cell-

 cell- (a1 -- a2) "cell-minus"

Subtract the size in bytes of a cell from a1, giving
a2.

Origin: Comus.

See also: cell, cell+, cells, cell/.

Source file: <src/kernel.z80s>.

cell-bits

 cell-bits (-- n)

A cconstant. n is the number of bits in a cell.

See also: cell, environment?.

Source file: <src/lib/math.number.conversion.fs>.

cell/

 cell/ (n1 -- n2) "cell-slash"

Divide n1 by the size of a cell, returning the result
n2.

See also: cell, cells, cell+, cell-.

Source file: <src/lib/math.operators.1-cell.fs>.

cells

 cells (n1 -- n2)

n2 is the size in bytes of n1 cells.

Origin: Forth-94 (CORE), Forth-2012 (CORE).

See also: cell, cell+, cell-, cell/.

Source file: <src/kernel.z80s>.

centry:

 centry: (c wid "name" --) "c-entry-colon"

Create a character entry name in the associative-list
wid, with value c.

See also: entry:, 2entry:, sentry:, create-entry.

Source file: <src/lib/data.associative-list.fs>.

cenum

 cenum (n "name" -- n+1) "c-enum"

Create a cconstant name with value n and return n+1.

Usage example:

 0 cenum first
 cenum second
 cenum third
 cenum fourth
drop

See also: enum, enumcell.

Source file: <src/lib/data.MISC.fs>.

cexchange

 cexchange (ca1 ca2 --) "c-exchange"

Exchange the characters stored in ca1 and ca2.

cexchange is written in Z80. An equivalent definition
in Forth is the following:

 : cexchange (ca1 ca2 --) 2dup c@ swap c@ rot c! swap c! ;

See also: exchange, c!exchange.

Source file: <src/lib/memory.MISC.fs>.

cfield:

 cfield: (n1 "name" -- n2) "c-field-colon"

Parse name. offset is the first character aligned
value greater than or equal to n1. n2 = offset + 1
character.

Create a definition for name with the execution semantics
defined below.

name execution: (a1 -- a2)

Add the offset calculated during the compile-time action
to a1 giving the address a2.

Origin: Forth-2012 (FACILITY EXT).

See also: begin-structure, +field.

Source file: <src/lib/data.begin-structure.fs>.

chan>

 chan> (n -- a) "chan-to"

Convert channel offset n in os-chans, fetched from an
element of os-strms, to its address a.

See also: chan>id, os-chans.

Source file: <src/lib/os.fs>.

chan>id

 chan>id (n -- c) "chan-to-id"

Convert channel offset n in os-chans, fetched from an
element of os-strms, to its character identifier c.

See also: chan>, os-chans.

Source file: <src/lib/os.fs>.

change-octave

 change-octave (u n -- u')

Change the note frequency u of the middle octave (octave
zero) to its corresponding note frequency u' in octave
n. If n is zero, u' equals u.

See also: octave-changer, beep>dhz, middle-octave.

Source file: <src/lib/sound.48.fs>.

channel

 channel (n --)

Open channel n for output. Store n into current-channel.

See also: terminal, printer, printing.

Source file: <src/kernel.z80s>.

char

 char ("name" -- c)

Parse name and put the value of its first character on
the stack.

Solo Forth recognizes the standard notation for
characters, so char is not needed:

 'x' emit .(equals) char x emit

Origin: Forth-94 (CORE), Forth-2012 (CORE).

See also: [char].

Source file: <src/lib/parsing.fs>.

char+

 char+ (n1 -- n2) "char-plus"

Add the size in bytes of a character to n1, giving
n2.

char+ is an alias of 1+.

Origin: Forth-94 (CORE), Forth-2012 (CORE).

See also: char-, chars.

Source file: <src/kernel.z80s>.

char-

 char- (n1 -- n2) "char-minus"

Subtract the size in bytes of a character to n1,
giving n2.

char- is an alias of 1-.

Origin: Comus.

See also: char+.

Source file: <src/kernel.z80s>.

char-in-string?

 char-in-string? (c ca len -- f) "char-in-string-question"

Is char c in string ca len? char-in-string? is a
factor of string-char?: Its only difference is the order
of the input parameters.

See also: char-position?, contains, compare, #chars.

Source file: <src/lib/strings.MISC.fs>.

char-position?

 char-position? (ca len c -- +n true | false) "char-position-question"

If char c is in string ca len, return its first
position +n and true; else return false.

See also: char-in-string?, contains, compare.

Source file: <src/lib/strings.MISC.fs>.

char>string

 char>string (c -- ca len) "char-to-string"

Convert the char c to a string ca len in the
stringer.

See also: chars>string, ruler, u>str, d>str, ud>str,
>bstring, 2>bstring.

Source file: <src/lib/strings.MISC.fs>.

char?

 char? (ca len -- c true | false) "char-question"

If the string ca len is the representation of a character,
return the character c and true; else return false.

Definition:

 : char? (ca len -- c true | false)
 3 = if
 dup c@ ''' <> if
 dup [2 chars] cliteral + c@ ''' <>
 if char+ c@ true exit then
 then
 then
 drop false ;

Source file: <src/kernel.z80s>.

charlton-allocate

 charlton-allocate (u -- a ior)

Allocate u bytes of contiguous data space. The data-space
pointer is unaffected by this operation. The initial
content of the allocated space is undefined.

If the allocation succeeds, a is the starting
address of the allocated space and ior is zero.

If the operation fails, a does not represent a valid
address and the I/O resul code ior is #-59, the throw
code for allocate.

charlton-allocate is the action of allocate in the
memory heap implementation adapted from code written by
Gordon Charlton, whose words are defined in
charlton-heap-wordlist.

See also: charlton-resize, charlton-free.

Source file: <src/lib/memory.allocate.charlton.fs>.

charlton-empty-heap

 charlton-empty-heap (--)

Empty the current heap, which was created by
allot-heap, limit-heap, bank-heap or farlimit-heap.

charlton-empty-heap is the action of empty-heap in
the memory heap implementation adapted from code written
by Gordon Charlton, whose words are defined in
charlton-heap-wordlist.

See also: charlton-allocate, charlton-resize,
charlton-free.

Source file: <src/lib/memory.allocate.charlton.fs>.

charlton-free

 charlton-free (a -- ior)

Return the contiguous region of data space indicated by a
to the system for later allocation. a shall indicate a
region of data space that was previously obtained by
charlton-allocate or charlton-resize.

As there is no compelling reason for this to fail, ior is
zero.

charlton-free is the action of free in the memory
heap implementation adapted from code written by Gordon
Charlton, whose words are defined in
charlton-heap-wordlist.

Source file: <src/lib/memory.allocate.charlton.fs>.

charlton-heap-wordlist

 charlton-heap-wordlist (-- wid)

wid is the word-list identifier of the word list that
holds the words the memory heap implementation adapted
from code written by Gordon Charlton (1994-09-12).

need charlton-heap-wordlist is used to load the memory
heap implementation and configure allocate, resize,
free and empty-heap accordingly.

An alternative, simpler and smaller implementation of the
memory heap is provided by gil-heap-wordlist.

The actual heap must be created with allot-heap,
limit-heap, farlimit-heap or bank-heap, which are
independent from the heap implemention.

Source file: <src/lib/memory.allocate.charlton.fs>.

charlton-resize

 charlton-resize (a1 u -- a2 ior)

Change the allocation of the contiguous data space starting
at the address a1, previously allocated by
charlton-allocate or charlton-resize, to u bytes.
u may be either larger or smaller than the current size
of the region. The data-space pointer is unaffected by this
operation.

If the operation succeeds, a2 is the starting
address of u bytes of allocated memory and ior is
zero. a2 may be, but need not be, the same as a1.
If they are not the same, the values contained in the
region at a1 are copied to a2, up to the minimum size
of either of the two regions. If they are the same, the
values contained in the region are preserved to the minimum
of u or the original size. If a2 is not the same as
a1, the region of memory at a1 is returned to the
system according to the operation of free.

If the operation fails, a2 equals a1, the region of
memory at a1 is unaffected, and the I/O result code
ior is #-61, the throw code for resize.

charlton-resize is the action of resize in the memory
heap implementation adapted from code written by Gordon
Charlton, whose words are defined in
charlton-heap-wordlist.

Source file: <src/lib/memory.allocate.charlton.fs>.

chars

 chars (n1 -- n2)

n2 is the size in bytes of n1 characters. In Solo
Forth chars does nothing, therefore n1 equals n2.

chars is an immediate word.

Origin: Forth-94 (CORE), Forth-2012 (CORE).

Source file: <src/kernel.z80s>.

chars>string

 chars>string (c#1..c#n n -- ca len) "chars-to-string"

Convert n chars to a string ca len in the stringer,
being c#1 the last character of the string and c#n the
first one.

See also: char>string, 2>bstring, >bstring, ruler, s+.

Source file: <src/lib/strings.MISC.fs>.

chop

 chop (ca len -- ca' len')

Remove the last character from string ca len.

See also: -suffix, /string, string/.

Source file: <src/lib/strings.MISC.fs>.

circle

 circle (gx gy b --)

Draw a circle at center coordinates gx gy and with radius
b.

circle does not use the ROM routine and it’s much
faster.

circle does no error checking: the whole circle must
fit the screen. Otherwise, strange things will happen when
other parts of the screen bitmap, the screen attributes or
even the system variables will be altered.

By default circle does nothing. Its factor
routine circle-pixel must be configured first with
set-circle-pixel, in order to choose the routine that
creates the pixels of the circle: uncolored-circle-pixel,
colored-circle-pixel or a routine provided by the
application.

Source file: <src/lib/graphics.circle.fs>.

circle-pixel

 circle-pixel (-- a)

a is the address of a subroutine used by circle to set
its pixels. This routine does a jump to the actual
routine, which by default does nothing. The desired routine
must be set by set-circle-pixel.

Also any routine provided by the application can be used as
the action of circle-pixel, provided the following
requirements:

	
HL, DE and BC must be preserved.

	
Input parameters: B=gy and C=gx.

Source file: <src/lib/graphics.circle.fs>.

class

 class (class -- class methods vars)

Start the definition of a class.

Source file: <src/lib/objects.mini-oof.fs>.

classic-number-point?

 classic-number-point? (c -- f)
"classic-number-point-question"

Is character c a classic number point? Allowed points
are: comma, hyphen, period, slash and colon.

classic-number-point? is an alternative action for the
deferred word number-point? (see defer), which is used
in number?, and whose default action is
standard-number-point?.

See also: extended-number-point?.

Source file: <src/lib/math.number.point.fs>.

clear

 clear (n --)

A command of specforth-editor: Clear block n with
blanks and select for editing.

See also: e, l/scr.

Source file: <src/lib/prog.editor.specforth.fs>.

clear-rectangle

 clear-rectangle (column row width height color --)

Clear a screen rectangle at the given character coordinates
and of the given size in characters. The bitmap is erased
and the color attributes are changed with the given color
attribute.

clear-rectangle is written in Z80 and it combines the
functions of wipe-rectangle and color-rectangle. It may
be defined also this way (with slower but much smaller
code):

 : clear-rectangle (column row width height color --)
 >r 2over 2over wipe-rectangle r> color-rectangle ;

See also: attr-wcls.

Source file: <src/lib/graphics.rectangle.fs>.

clit

 clit (-- b) "c-lit"

Return b, which was compiled by cliteral after clit.

clit is a compile-only word.

See also: lit, 2lit.

Source file: <src/kernel.z80s>.

cliteral

 cliteral (b --) "c-literal"

Compile b in the current definition.

cliteral does the same as literal but saves one byte of
data space and b is put on the stack a bit faster (0.97 of
execution speed).

cliteral is an immediate and compile-only word.

Definition:

 : cliteral (b --) postpone clit c, ; immediate compile-only

Origin: Comus.

See also: clit, 2literal, xliteral,]cl.

Source file: <src/kernel.z80s>.

clocal

 clocal (ca --) "c-local"

Save the value of the character variable ca, which will
be restored at the end of the current definition.

clocal is a compile-only word.

Usage example:

 cvariable v
1 v c! v c? \ default value

: test (--)
 v clocal
 v c? 1887 v c! v c? ;

v c? \ default value

See also: local, 2local, arguments, anon.

Source file: <src/lib/locals.local.fs>.

close-file

 close-file (fid -- ior)

Close the file identified by fid and return the I/O
result code ior.

See also: open-file, create-file, (close-file.

Source file: <src/lib/dos.plus3dos.fs>.

clr,

 clr, (reg --) "c-l-r-comma"

Compile the Z80 assembler instruction LD reg,0.

See also: clrp,, ld#,.

Source file: <src/lib/assembler.fs>.

clrp,

 clrp, (regp --) "c-l-r-p-comma"

Compile the Z80 assembler instruction LD regp,0.

See also: clr,, ldp#,.

Source file: <src/lib/assembler.fs>.

cls

 cls (--) "c-l-s"

Clear the screen with the current attribute, reset the graphic
coordinates at the lower left corner (gx 0, gy 0) and reset
the cursor position at the upper left corner (column 0, row
0).

See also: attr!, attr-cls, page, wcls.

Source file: <src/kernel.z80s>.

cls-chars1

 cls-chars1 (--) "c-l-s-chars-one"

Clear the screen by rotating all bytes of the bitmap.

Source file: <src/lib/graphics.cls.fs>.

clshift

 clshift (b1 u -- b2) "c-l-shift"

Perform a logical left shift of u bit-places on b1,
giving b2. Put zeroes into the least significant bits
vacated by the shift.

See also: lshift.

Source file: <src/lib/math.operators.1-cell.fs>.

cmove

 cmove (ca1 ca2 u --) "c-move"

If u is greater than zero, copy u consecutive characters
from the data space starting at ca1 to that starting at
ca2, proceeding character-by-character from lower addresses
to higher addresses.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (STRING), Forth-2012 (STRING).

See also: cmove>, move.

Source file: <src/kernel.z80s>.

cmove<far

 cmove<far (ca1 ca2 len --) "c-move-from-far"

If len is greater than zero, copy len consecutive
characters from far-memory address ca1 to main-memory
address ca2.

Source file: <src/lib/memory.far.fs>.

cmove>

 cmove> (ca1 ca2 u --) "c-move-up"

If u is greater than zero, copy u consecutive characters
from the data space starting at ca1 to that starting at
ca2, proceeding character-by-character from higher addresses
to lower addresses.

Origin: Forth-83 (Required Word Set), Forth-94 (STRING),
Forth-2012 (STRING).

See also: cmove, move.

Source file: <src/kernel.z80s>.

cmove>far

 cmove>far (ca1 ca2 len --) "c-move-to-far"

If len is greater than zero, copy len consecutive
characters from main-memory address ca1 to far-memory
address ca2.

Source file: <src/lib/memory.far.fs>.

code

 code ("name --)

Parse name. Create a definition for name, called a code
definition, and execute asm to enter assembler mode.

Definition:

 : code ("name --) header asm ;

Origin: Forth-79 (Assembler Word Set), Forth-83 (Assembler
Extension Word Set), Forth-94 (TOOLS EXT), Forth-2012 (TOOLS
EXT).

Source file: <src/kernel.z80s>.

coff

 coff (ca --) "c-off"

Store false at ca.

coff is written in Z80. Its equivalent definition in
Forth is the following:

 : coff (ca --) false swap c! ;

See also: off.

Source file: <src/lib/memory.MISC.fs>.

cold

 cold (--)

Restore the Forth system to its default status, i.e. as if it
were just booted the first time, except the background picture
is not displayed.

Origin: fig-Forth.

See also: warm, greeting.

Source file: <src/kernel.z80s>.

color-rectangle

 color-rectangle (column row width height color --)

Color a screen rectangle at the given character coordinates
and of the given size in characters with the given color
attribute. Only the color attributes are changed; the
bitmap remains unchanged.

See also: wcolor, wipe-rectangle, clear-rectangle.

Source file: <src/lib/graphics.rectangle.fs>.

colored-circle-pixel

 colored-circle-pixel (-- a)

a is the address of a subroutine that circle can use to
draw its pixels. This routine sets a pixel, changing its
color attributes on the screen (like plot). Therefore
it’s slower than its alternative uncolored-circle-pixel
(1.64 its execution speed).

set-circle-pixel sets the routine used by circle. See
the requirements of such routine in the documentation of
circle-pixel.

Source file: <src/lib/graphics.circle.fs>.

column

 column (-- col)

Current column (x coordinate).

See also: row, last-column, columns.

Source file: <src/lib/display.cursor.fs>.

columns

 columns (-- n)

Return the number of columns in the current screen mode.
The default value is 32.

See also: rows, last-column`, column.

Source file: <src/lib/display.mode.COMMON.fs>.

comp'

 comp' ("name" -- x xt) "comp-tick"

Compilation token x xt represents the compilation
semantics of name.

Origin: Gforth.

See also: [comp'], name>compile, ['].

Source file: <src/lib/compilation.fs>.

compare

 compare (ca1 len1 ca2 len2 -- n)

Compare the string ca1 len1 to the string ca2 len2. The
strings are compared, beginning at the given addresses ca1
and ca2, character by character, up to the length of the
shorter string or until a difference is found. If the two
strings are identical, n is zero. If the two strings are
identical up to the length of the shorter string, n is
minus-one (-1) if len1 is less than len2 and one (1)
otherwise. If the two strings are not identical up to the
length of the shorter string, n is minus-one (-1) if the
first non-matching character in the string ca1 len1 has a
lesser numeric value than the corresponding character in the
string ca2 len2 and one (1) otherwise.

Origin: Forth-94 (STRING), Forth-2012 (STRING).

See also: str=, str<, str>.

Source file: <src/kernel.z80s>.

compilation-only

 compilation-only (--)

throw exception code #-14 ("interpreting a compile-only
word").

compilation-only is used in interpret-table.

See also: not-understood, ?compiling.

Source file: <src/kernel.z80s>.

compile

 compile (--)

Compile the cell following the compilation address of
compile into the dictionary.

compile allows specific compilation situations to be
handled in addition to simply compiling an execution token
(which the interpreter already does).

compile is a compile-only word.

Definition:

 : compile (--) r> dup cell+ >r @ compile, ;

Typically used in the form:

 : name compile namex ;

When name is executed, the execution token of namex is
compiled, not executed. name is tipically an immediate
word and namex is typically not an immediate word.

compile has been superseded by postpone.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set).

See also: [compile], compile,.

Source file: <src/kernel.z80s>.

compile,

 compile, (xt --) "compile-comma"

Append the execution semantics of the definition represented
by xt to the execution semantics of the current definition.

compile, is the compilation equivalent of execute.

Since Solo Forth is a threaded-code implementation,
compile, is an alias of ,.

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

Source file: <src/kernel.z80s>.

compile-only

 compile-only (--)

Make the most recent definition a compile-only word.

Definition:

 : compile-only (--) compile-only-mask latest lex! ;

See also: compile-only?, compile-only-mask, ?compiling,
lex!, latest, immediate.

Source file: <src/kernel.z80s>.

compile-only-mask

 compile-only-mask (-- b)

A cconstant. b is the bitmask of the compile-only
bit, set by compile-only.

See also: immediate-mask, smudge-mask, word-length-mask.

Source file: <src/kernel.z80s>.

compile-only?

 compile-only? (nt -- f) "compile-only-question"

f is true if the word nt is compile-only.

Definition:

 : compile-only? (nt -- f) compile-only-mask lex? ;

See also: compile-only, immediate?.

Source file: <src/kernel.z80s>.

compiling?

 compiling? (-- f) "compiling-question"

f is true if state is not zero, i.e. the Forth system is
in compilation state.

Definition:

 : compiling? (-- f) state @ 0<> ;

Source file: <src/kernel.z80s>.

con

 con (ca --) "c-on"

Store true at ca.

con is written in Z80. Its equivalent definition in
Forth is the following:

 : con (ca --) true swap c! ;

The value actually stored is not true, which is a
cell, but its 8-bit equivalent $FF.

See also: coff, on.

Source file: <src/lib/memory.MISC.fs>.

cond

 cond
 Compilation: (C: -- cs-mark)
 Run-time: (--)

Compilation: Mark the start of a cond …​ thens
structure. Leave cs-mark on the control-flow stack, to
be checked by thens.

Run-time: Continue execution.

cond is an immediate and compile-only word.

Generic usage example:

 : test (x --)
 cond
 test1 if action1 else
 test2 if action2 else
 test3 if action3 else
 default-action
 thens ;

The tested value must be preserved and discarded by
the application. Example:

 : test (ca len --)
 cond
 2dup s" first" str= if 2drop ." unua" else
 2dup s" second" str= if 2drop ." dua" else
 2dup s" third" str= if 2drop ." tria" else
 2dup s" fourth" str= if 2drop ." kvara" else
 type ." ?"
 thens ;

See also: case, cs-mark, andif, orif.

Source file: <src/lib/flow.MISC.fs>.

const

 const (x "name" --)

Create a fast constant name, with value x.

A fast constant works like an ordinary constant, except
its value is compiled as a literal.

Origin: IsForth.

See also: [const], cconst, 2const.

Source file: <src/lib/data.const.fs>.

constant

 constant (x "name" --)

Parse name. create a definition for name that will place
x on the stack. name is referred to as a "constant".

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: 2constant, cconstant, fconstant, !>, const,
[const], value, variable.

Source file: <src/kernel.z80s>.

contains

 contains (ca1 len1 ca2 len2 -- f)

Does string ca1 len1 contain string ca2 len2?

See also: char-position?, char-in-string?, compare,
#chars,

Source file: <src/lib/strings.MISC.fs>.

context

 context (-- a)

A user variable. a is the address of an array of cells that
represents the search order; its maximum length is hold in
the max-order constant, and its current length is hold in
the #order variable. a holds the word list at the top of
the search order.

See also: >order, get-order, set-order.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(System Extension Word Set).

Source file: <src/kernel.z80s>.

continued

 continued (u --)

Continue interpretation at block u.

Origin: Forth-79 (Reference Word Set), Forth-83 (Appendix
B. Uncontrolled Reference Words).

See also: -->, load.

Source file: <src/lib/blocks.fs>.

contrast

 contrast (b1 -- b2)

Convert color b1 to its contrast color b2. b2 is
white (7) if b1 is a dark color (black, blue, red
or magenta); b2 is black (0) if b1 is a light
colour (green, cyan, yellow or white).

See also: papery, inversely.

Source file: <src/lib/display.attributes.fs>.

control-char?

 control-char? (c -- f) "control-char-question"

Is character c a control character, i.e. in the range
0..31?

See also: ascii-char?.

Source file: <src/lib/chars.fs>.

copy

 copy (n1 n2 --)

A command of specforth-editor:
Copy block n1 to block n2.

See also: update, save-buffers.

Source file: <src/lib/prog.editor.specforth.fs>.

count

 count (ca1 -- ca2 len2)

Return the character string specification for the counted
string stored at ca1. ca2 is the address of the first
character after ca1. len is the contents of the character
at c1, which is the length in characters of the string at
c2.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: farcount.

Source file: <src/kernel.z80s>.

counted>stringer

 counted>stringer (ca1 len1 -- ca2) "counted-to-stringer"

Copy string ca1 len1 to the stringer as a counted
string and return it as ca2.

See also: >stringer, allocate-stringer.

Source file: <src/lib/strings.MISC.fs>.

cp#,

 cp#, (b --) "c-p-number-sign-comma"

Compile the Z80 assembler instruction CP b.

Source file: <src/lib/assembler.fs>.

cp,

 cp, (reg --) "c-p-comma"

Compile the Z80 assembler instruction CP reg.

See also: tstp,, cpl,.

Source file: <src/lib/assembler.fs>.

cpir,

 cpir, (--) "c-p-i-r-comma"

Compile the Z80 assembler instruction CPIR.

See also: cp,, ldir,, djnz,.

Source file: <src/lib/assembler.fs>.

cpl,

 cpl, (--) "c-p-l-comma"

Compile the Z80 assembler instruction CPL.

See also: scf,, ccf,, neg,, and,, cp,.

Source file: <src/lib/assembler.fs>.

cpx,

 cpx, (disp regpi --) "c-p-x-comma"

Compile the Z80 assembler instruction CP
(regpi+disp).

See also: addx,, adcx,, subx,, sbcx,, andx,, xorx,,
orx,, incx,, decx,.

Source file: <src/lib/assembler.fs>.

cr

 cr (--) "c-r"

Transmit a carriage return to the selected output device.

cr is a deferred word (see defer) whose default action
is (cr.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

Source file: <src/kernel.z80s>.

create

 create ("name" --)

Parse name. Create a definition for name. After name
is created, the data-space pointer (returned by here),
points to the first byte of name's data field. When
name is subsequently executed, the address of the first byte
of name's data field is left on the stack.

create does not allocate data space in name's data
field. Reservation of data field space is tipically done with
allot.

The execution semantics of name may be expanded by using
does>.

Origin: Forth-79 (Required Word Set), Forth-83 (Required Word
Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: ,, c,, 2,.

Source file: <src/kernel.z80s>.

create-entry

 create-entry (i*x wid xt "name" --)

Create an entry name in the associative-list wid,
using xt to store its value i*x.

create-entry is a factor of entry:, centry:,
2entry: and sentry:.

Source file: <src/lib/data.associative-list.fs>.

create-file

 create-file (ca len fam -- fid ior)

Create the file named in the character string specified by
ca len, and open it with file access method fam. If a
file with the same name already exists, recreate it as an
empty file.

If the file was successfully created and opened, ior
is zero, fid is the file identifier and the file has
been positioned to the start of the file. Otherwise ior
is the I/O result code and fid is undefined.

Origin: Forth-94 (FILE), Forth-2012 (FILE).

See also: open-file, r/o, w/o, r/w, s/r, bin.

Source file: <src/lib/dos.plus3dos.fs>.

create:

 create: ("name" --) "create-colon"

Create a word name which is compiled as a colon word but,
when executed, will return the address of its data field
address.

Source file: <src/lib/define.MISC.fs>.

creset

 creset (b ca --) "c-reset"

Reset the bits at ca specified by the bitmask b.

creset is written in Z80. Its equivalent definition in
Forth is the following.

 : creset (b ca --) tuck c@ swap invert and swap c! ;

See also: cset, ctoggle, c@and.

Source file: <src/kernel.z80s>.

crnd

 crnd (-- b) "c-r-n-d"

Return a random 8-bit number b (0..255).

See also: rnd.

Source file: <src/lib/random.fs>.

crs

 crs (n --) "c-r-s"

Emit n number of cr characters (character code 13).

See also: cr, 'cr'.

Source file: <src/lib/display.control.fs>.

cs-drop

 cs-drop (C: x --) "c-s-drop"

Remove x from the control-flow stack.

cs-drop is a compile-only word.

In Solo Forth the control-flow stack is implemented
using the data stack.

See also: cs-pick, cs-roll, cs-swap, cs-dup, cs-mark,
cs-test.

Source file: <src/lib/flow.stack.fs>.

cs-dup

 cs-dup (C: x -- x x) "c-s-dup"

Duplicate x on the control-flow stack.

cs-dup is a compile-only word.

In Solo Forth the control-flow stack is implemented
using the data stack.

See also: cs-pick, cs-roll, cs-swap, cs-drop, cs-mark,
cs-test.

Source file: <src/lib/flow.stack.fs>.

cs-mark

 cs-mark (C: -- cs-mark) "c-s-mark"

Place a marker cs-mark on the control-flow stack. The
marker ocuppies the same width as an orig|dest but is
distinguishable using cs-test.

See also: cs-pick, cs-roll, cs-swap, cs-dup, cs-drop.

Source file: <src/lib/flow.stack.fs>.

cs-pick

 cs-pick "c-s-pick"
 (S: u --)
 (C: x#u ... x#1 x#0 -- x#u ... x#1 x#0 x#u)

Remove u. Copy x#u to the top of the control-flow
stack.

cs-pick is a compile-only word.

In Solo Forth the control-flow stack is implemented
using the data stack.

Origin: Forth-94 (TOOLS EXT), Forth-2012 (TOOLS EXT).

See also: cs-roll, cs-swap, cs-drop, cs-dup, cs-mark,
cs-test.

Source file: <src/lib/flow.stack.fs>.

cs-roll

 cs-roll "c-s-roll"
 (S: u --)
 (C: x#u x#u-1 ... x#0 -- x#u-1 ... x#0 x#u)

Remove u. Rotate u+1 items on top of the control-flow
stack so that x#u is on top of the control-flow stack.

cs-roll is a compile-only word.

In Solo Forth the control-flow stack is implemented
using the data stack. Therefore cs-roll is an alias
of roll.

Origin: Forth-94 (TOOLS EXT), Forth-2012 (TOOLS EXT).

See also: cs-pick, cs-swap, cs-drop, cs-dup, cs-mark,
cs-test.

Source file: <src/lib/flow.stack.fs>.

cs-swap

 cs-swap "c-s-swap"
 (C: orig#1|dest#1 orig#2|dest#2 -- orig#2|dest#2 orig#1|dest#1)

Exchange the top two control-flow stack items.

cs-swap is a compile-only word.

In Solo Forth the control-flow stack is implemented
using the data stack. Therefore cs-swap is an alias
of swap.

See also: cs-pick, cs-roll, cs-drop.

Source file: <src/kernel.z80s>.

cs-test

 cs-test "c-s-test"
 Compilation: (-- f) (C: x -- x)

Return a true flag if x is an orig|dest, and false if a
marker placed by cs-mark.

See also: cs-pick, cs-roll, cs-swap, cs-dup, cs-drop.

Source file: <src/lib/flow.stack.fs>.

cset

 cset (b ca --) "c-set"

Set the bits at ca specified by the bitmask b.

cset is written in Z80. Its equivalent definition in
Forth is the following.

 : cset (b ca --) tuck c@ or swap c! ;

See also: creset, ctoggle, c@and.

Source file: <src/kernel.z80s>.

cslit

 cslit (-- ca) "c-s-lit"

Return a string that is compiled after the calling word, and
adjust the instruction pointer to step over the inline string.

cslit is compiled by csliteral.

See also: slit.

Source file: <src/lib/strings.c-quote.fs>.

csliteral

 csliteral
 Compilation: (ca1 len1 --)
 Run-time: (-- ca2)
"c-s-literal"

Compile cslit and string ca1 len1 in the current
definition. At run-time cslit will return string ca1
len1 as a counted string ca2.

csliteral is an immediate and compile-only word.

See also: sliteral.

Source file: <src/lib/strings.c-quote.fs>.

csp

 csp (-- a) "c-s-p"

A user variable. a is the address of a cell containing the
current data stack position saved by !csp.

Origin: fig-Forth.

Source file: <src/kernel.z80s>.

csprite

 csprite (width height a "name..." --) "c-sprite"

Parse a character sprite and store it at a. width and
height are in characters. The maximum width is 7
(imposed by the size of Forth source blocks). height has
no maximum, as the UDG block can ocuppy more than one Forth
block (provided the Forth block has no index line, i.e.
load-program is used to load the source).

The scans can be formed by binary digits, by the characters
hold in udg-blank and udg-dot, or any combination of
both notations.

The difference with udg-block and ,udg-block is
csprite stores the graphic by whole scans, not by
characters.

Usage example:

 create ship-sprite 3 2 * /udg* allot
3 2 ship-sprite csprite

..XX.X.X........X.X.XX..
..XXX.X.X......X.X.XXX..
..XX.....X....X.....XX..
...XX.....XXXX.....XX...
....XX.....XX.....XX....
.....XXX........XXX.....
......XX........XX......
.......XX......XX.......
.......XX......XX.......
........XX....XX........
........XX....XX........
X.........XXXX.........X
X........XXXXXX........X
.XXXXXXXXXXXXXXXXXXXXXX.
..........XXXX..........
...........XX...........

Source file: <src/lib/graphics.udg.fs>.

cstorer

 cstorer (c ca "name" --) "c-storer"

Define a word name which, when executed, will cause that
c be stored at ca.

Origin: variant of the word set found in Forth-79
(Reference Word Set) and Forth-83 (Appendix B. Uncontrolled
Reference Words).

Source file: <src/lib/data.storer.fs>.

cswitch

 cswitch (c switch --) "c-switch"

Execute the switch switch for the key c.

See also: switch:, :cclause.

Source file: <src/lib/flow.switch-colon.fs>.

ctoggle

 ctoggle (b ca --) "c-toggle"

Invert the bits at ca specified by the bitmask b.

See also: cset, creset, c@and.

Source file: <src/lib/memory.MISC.fs>.

ctoval

 ctoval (--) "c-to-val"

Change the default behaviour of words created by cval:
make them store a new value instead of returning its actual
one.

See also: toval, 2toval.

Source file: <src/lib/data.val.fs>.

current

 current (-- a)

A user variable. a is the address of a cell containing the
word list identifier of the compilation word list.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(System Extension Word Set).

See also: get-current.

Source file: <src/kernel.z80s>.

current-channel

 current-channel (-- ca)

A cvariable. ca is the address of a byte containing
the number of the latest output channel set by channel.

Source file: <src/kernel.z80s>.

current-latest

 current-latest (-- nt)

nt is the name token of the topmost word in the current
compilation word list.

Definition:

 : current-latest (-- nt) get-current @ ;

Origin: fig-Forth’s latest.

See also: latest, fyi.

Source file: <src/kernel.z80s>.

current-mode

 current-mode (-- a)

A variable. a is the address of a cell containing the
execution token of the word that activates the current screen
mode (e.g. mode-32, mode-32iso, mode-42pw, mode-42rs,
mode-64es, mode-64ao). It’s set to noop until the first
mode change is done.

See also: save-mode, restore-mode.

Source file: <src/kernel.z80s>.

current-window

 current-window (-- a)

A variable. a is the address of a cell containing the
address of the current-window.

See also: wx, wy, wx0, wy0, wcolumns, wrows.

Source file: <src/lib/display.window.fs>.

cursor-char

 cursor-char (-- ca)

A cvariable. ca is the address of a byte containing
the character code of the cursor used by xkey. Note this is
a character variable, thus it has to be fetched with c@ and
modified with c!.

Source file: <src/kernel.z80s>.

cval

 cval (c "name" --) "c-val"

Create a definition for name that will place c on
the stack (unless ctoval is used first) and then will
execute init-cval.

See also: val, 2val, cvariable, cconstant.

Source file: <src/lib/data.val.fs>.

cvalue

 cvalue (c "name" --) "c-value"

Create a definition name with initial value c. When
name is later executed, c will be placed on the stack.
to can be used to assign a new value to name.

See also: value, 2value, cconstant, cvariable, cval.

Source file: <src/lib/data.value.fs>.

cvariable

 cvariable ("name" --) "c-variable"

Create a character variable name and reserve one
character of data space. When name is executed, it
returns the address of the reserved space.

See also: c!, c@, variable.

Source file: <src/lib/data.MISC.fs>.

cyan

 cyan (-- b)

A cconstant that returns 5, the value that represents the
cyan color.

See also: black, blue, red, magenta, green,
yellow, white, contrast, papery, inversely.

Source file: <src/lib/display.attributes.fs>.

d

d

 d (-- reg)

Return the identifier reg of the Z80 assembler register
"D", which is interpreted as register pair "DE" by
assembler words that use register pairs (for example
ldp,).

See also: a,
b, c,
e, h,
l, m,
ix, iy, sp.

Source file: <src/lib/assembler.fs>.

d

 d (--)

A command of gforth-editor:
delete marked area.

See also:
dl,
m
a,
h,
f,
r,
y,
l.

Source file: <src/lib/prog.editor.gforth.fs>.

d

 d (n --)

A command of specforth-editor: Delete line n but hold
it in pad. Line 15 becomes free as all statements move up
one line.

See also: b,
c,
e,
f,
h,
i,
l,
m,
n,
p,
r,
s,
t,
x.

Source file: <src/lib/prog.editor.specforth.fs>.

d*

 d* (d|ud1 d|ud2 -- d|ud3) "d-star"

Multiply d1|ud1 by d2|ud2 giving the product d3|ud3.

See also: ud*, um*, m*, *.

Source file: <src/lib/math.operators.2-cell.fs>.

d+

 d+ (d1|ud1 d2|ud2 -- d3|ud3) "d-plus"

Add d2|ud2 to d1|ud1, giving the sum d3|ud3.

Origin: Forth-79 (Double Number Word Set), Forth-83 (Double
Number Extension Word Set), Forth-94 (DOUBLE), Forth-2012
(DOUBLE).

See also: d-, +, dmax.

Source file: <src/kernel.z80s>.

d-

 d- (d1|ud1 d2|ud2 -- d3|ud3) "d-minus"

Subtract d2|ud2 from d1|ud1, giving the difference
d3|ud3.

Origin: Forth-79 (Double Number Word Set), Forth-83 (Double
Number Extension Word Set), Forth-94 (DOUBLE), Forth-2012
(DOUBLE).

See also: d+, -, dmin.

Source file: <src/lib/math.operators.2-cell.fs>.

d.

 d. (d --) "d-dot"

Display d according to current base, followed by one blank.

Origin: fig-Forth, Forth-79 (Double Number Word Set), Forth-83
(Double Number Extension Word Set), Forth-94 (DOUBLE),
Forth-2012 (DOUBLE).

See also: ud., ., f..

Source file: <src/kernel.z80s>.

d.r

 d.r (d n --) "d-dot-r"

Display d right aligned in a field n characters wide. If
the number of characters required to display d is greater
than n, all digits are displayed with no leading spaces in a
field as wide as necessary.

Definition:

 : d.r (d n --) >r d>str r> over - spaces type ;

Origin: fig-Forth, Forth-79 (Double Number Word Set), Forth-83
(Double Number Extension Word Set)[7], Forth-94 (DOUBLE), Forth-2012 (DOUBLE).

See also: d>str, ud.r, .r, 0d.r, <#.

Source file: <src/kernel.z80s>.

d0<

 d0< (d -- f) "d-zero-less"

f is true if and only if d is less than zero.

See also: 0<.

Source file: <src/lib/math.operators.2-cell.fs>.

d0=

 d0= (d -- f) "d-zero-equals"

f is true if and only if d is equal to zero.

d0= is written in Z80. Its equivalent definition in
Forth is the following:

 : d0= (d -- f) + 0= ;

See also: 0=.

Source file: <src/lib/math.operators.2-cell.fs>.

d10*

 d10* (ud1 -- ud2) "d-ten-star"

Multiply ud1 per 10, resulting ud2.

See also: d2*, d*, 2*, 8*.

Source file: <src/lib/math.operators.2-cell.fs>.

d2*

 d2* (xd1 -- xd2) "d-two-star"

xd2 is the result of shifting xd1 one bit toward the
most-significant bit, filling the vacated bit with zero.

Origin: Forth-94 (DOUBLE), Forth-2012 (DOUBLE).

See also: d2/, 2*, lshift.

Source file: <src/lib/math.operators.2-cell.fs>.

d2/

 d2/ (xd1 -- xd2) "d-two-slash"

xd2 is the result of shifting xd1 one bit toward the
least-significant bit, leaving the most-significant bit
unchanged.

Origin: Forth-94 (DOUBLE), Forth-2012 (DOUBLE).

See also: d2*, 2/, rshift.

Source file: <src/lib/math.operators.2-cell.fs>.

d<

 d< (d1 d2 -- f) "d-less"

f is true only if and only if d1 is less than d2.

Origin: Forth-79 (Double Number Word Set), Forth-83 (Double
Number Extension Word Set), Forth-94 (DOUBLE EXT),
Forth-2012 (DOUBLE EXT).

See also: du<, <, dmin.

Source file: <src/lib/math.operators.2-cell.fs>.

d<>

 d<> (xd1 xd2 -- f) "d-not-equals"

f is true if and only if xd1 is not bit-for-bit the
same as xd2.

See also: <>.

Source file: <src/lib/math.operators.2-cell.fs>.

d=

 d= (xd1 xd2 -- f) "d-equals"

f is true if and only if xd1 is equal to xd2.

See also: =.

Source file: <src/lib/math.operators.2-cell.fs>.

d>s

 d>s (d -- n) "d-to-s"

n is the equivalent of d. The high cell of d is
discarded.

Origin: Forth-94 (DOUBLE), Forth-2012 (DOUBLE).

See also: s>d, u>ud.

Source file: <src/kernel.z80s>.

d>str

 d>str (d>str -- ca len) "d-to-s-t-r"

Convert d to string ca len in the pictured numeric output
string buffer.

d>str is a factor of d.r.

Definition:

 : d>str (d -- ca len) tuck dabs <# #s rot sign #> ;

The pictured numeric output string buffer is a
transient region (with maximum size /hold bytes below pad,
and start pointed by hld). Therefore the string ca len
must be used or preserved before the buffer is moved or
overwritten.

See also: <#, #s, sign ,#>, >stringer, s,,
cmove.

Source file: <src/kernel.z80s>.

d>str

 d>str (d -- ca len) "d-to-s-t-r"

Convert d to string ca len.

See also: n>str, ud>str, char>string.

Source file: <src/lib/strings.MISC.fs>.

daa,

 daa, (--) "d-a-a-comma"

Compile the Z80 assembler instruction DAA.

Source file: <src/lib/assembler.fs>.

dabs

 dabs (d -- ud) "d-abs"

Leave the absolute value ud of a double number d.

Definition:

 : dabs (d -- ud) dup ?dnegate ;

Source file: <src/kernel.z80s>.

dand

 dand (xd1 xd2 -- xd3) "d-and"

xd3 is the bit-by-bit logical "and" of xd1 and xd2.

See also: and, dor, dxor.

Source file: <src/lib/math.operators.2-cell.fs>.

data

 data (n "name" -- n orig)

Create a definition for name, in order to compile data
items of n bytes each, finished by end-data. Leave n
and orig to be consumed by end-data. When name is
executed, it will leave the start address of the data and
the number of items, which depends on n.

Usage example:

 cell data my-cells (-- a u)
 1 , 2 , 3 , 4 , 5 , end-data

2 cells data my-double-cells (-- a u)
 0. 2, 1. 2, 2. 2, end-data

1 chars data my-characters (-- a u)
 'a' c, 'b' c, 'c' c, end-data

Source file: <src/lib/data.data.fs>.

date

 date (-- a)

a is the address of a 3-cell table containing the date
used by set-date and get-date, with the following
structure:

+0 day (1 byte)
+1 month (1 byte)
+2 year (1 cell)

See also: set-date, get-date.

Source file: <src/lib/time.fs>.

dec,

 dec, (reg --) "dec-comma"

Compile the Z80 assembler instruction DEC reg.

See also: decp,, inc,.

Source file: <src/lib/assembler.fs>.

dec.

 dec. (n --) "dec-dot"

Display n as a signed decimal number, followed by a space.

Origin: Gforth.

See also: hex., bin., ..

Source file: <src/kernel.z80s>.

decimal

 decimal (--)

Set contents of base to ten.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: hex, binary.

Source file: <src/kernel.z80s>.

decp,

 decp, (regp --) "dec-p-comma"

Compile the Z80 assembler instruction DEC regp.

See also: incp,, dec,.

Source file: <src/lib/assembler.fs>.

decx,

 decx, (disp regpi --) "dec-x-comma"

Compile the Z80 assembler instruction DEC
(regp+disp).

See also: addx,, subx,, sbcx,.

Source file: <src/lib/assembler.fs>.

default-1346

 default-1346 (--) "default-1-3-4-6"

Set the default configuration of memory banks for +3DOS.

+3DOS uses RAM banks 1, 3, 4 and 6 as an array of 128
sector buffers (numbered 0 .. 127), each of 512 bytes, thus
32 buffers per RAM bank. The cache and RAM disk occupy two
separate (contiguous) areas of this array.

The original default configuration of +3DOS is the
following:

Table 18. Original configuration of memory buffers on +3DOS.

	Usage

	First buffer

	Number of buffers

	KiB

	Cache

	32

	8

	4

	RAM disk

	40

	88

	44

	Total

	

	176

	48

In order to free 3 RAM banks for the Forth name space, and
still keep a small RAM disk, the default configuration is
modified by default-1346 the following way:

Table 19. Solo Forth configuration of memory buffers on +3DOS.

	Usage

	First buffer

	Number of buffers

	KiB

	Cache

	96

	8

	4

	RAM disk

	104

	24

	12

	Total

	

	32

	16

default-1346 is executed by cold.

See also: get-1346, set-1346, bank, far-banks,
farlimit.

Source file: <src/kernel.plus3dos.z80s>.

default-bank

 default-bank (--)

Page in the default memory bank, wich can be configured with
default-bank#, at $C000 .. $FFFF.

See also: banks.

Source file: <src/kernel.z80s>.

default-bank#

 default-bank# (-- ca) "default-bank-number-sign"

A constant. ca is the address of a byte containing the value
of the default bank paged in at $C000 .. $FFFF. Its default
value is zero.

See also: banks, far-banks.

Source file: <src/kernel.z80s>.

default-bank_

 default-bank_ (-- a) "default-bank-underscore"

Return address a of a routine that pages in the default
bank. This is the routine default-bank runs into, after
pushing IX on the return stack to force a final return to
next.

Output of the routine: A and E corrupted.

See also: e-bank_.

Source file: <src/lib/memory.far.fs>.

default-break-key?

 default-break-key? (-- f) "default-break-key-question"

f is true if the default break key (Shift+Space) is pressed.
default-break-key? is the default action of the deferred
word break-key? (see defer).

Source file: <src/kernel.z80s>.

default-colors

 default-colors (--)

Set the screen colors to the default values.

See also: default-display, default-mode, default-font.

Source file: <src/kernel.z80s>.

default-display

 default-display (--)

Set the default values of the display: mode, font and colors.
default-display is executed by cold.

Definition:

 : default-display (--)
 default-mode default-font default-colors ;

See also: default-mode, default-font, default-colors.

Source file: <src/kernel.z80s>.

default-first-locatable

 default-first-locatable (-- a)

A variable. a is the address of a cell containing the
default number of the first block to be searched by
located and its descendants.

See also: first-locatable.

Source file: <src/lib/002.need.fs>.

default-font

 default-font (--)

Set the default font, which is the ROM font, by setting the
system variable os-chars to 15360 ($3C00).

See also: set-font, rom-font, default-display,
default-mode, default-colors.

Source file: <src/kernel.z80s>.

default-graphic-ascii-char

 default-graphic-ascii-char (-- c)

A character constant. c is the default ASCII graphic
character used by >graphic-ascii-char. The value can
be changed with c!>.

Source file: <src/lib/chars.fs>.

default-header

 default-header (--)

Set header to its default action: input-stream-header.

Definition:

 : default-header (--)
 ['] input-stream-header ['] header defer! ;

Source file: <src/kernel.z80s>.

default-mode

 default-mode (--)

A deferred word (see defer) that activates the default
screen mode. It’s set to noop until the first mode change is
done. Then it’s vectored to mode-32. It’s used by bye and
cold.

See also: reset-default-mode, defer, default-display,
default-font, default-colors.

Source file: <src/kernel.z80s>.

default-of

 default-of
 Compilation: (C: -- of-sys)
 Run-time: (x --)

An alternative to mark the default clause of a case
structure.

Compilation:

Put of-sys onto the control flow stack. Append the
run-time semantics given below to the current definition.
The semantics are incomplete until resolved by a consumer
of of-sys, such as endof.

Run-time:

Discard x and continue execution.

default-of is an immediate and compile-only word.

Usage example:

 : test (x --)
 case
 1 of ." one" endof
 2 of ." two" endof
 default-of ." other" endof
 endcase ;

Source file: <src/lib/flow.case.fs>.

default-option

 default-option ("name" --)

Set the default option name of an options[…​
]options structure. It can be anywhere inside the
structure.

See options[for a usage example.

Source file: <src/lib/flow.options-bracket.fs>.

default-stringer

 default-stringer (--)

Set the default values of stringer and /stringer.
default-stringer is executed by cold.

Source file: <src/kernel.z80s>.

default-udg-chars

 default-udg-chars (--) "default-u-d-g-chars"

A phoney word used only to do need default-udg-chars in
order to define UDG 144..164 as letters 'A'..'U', copied
from the ROM font, the shape they have in Sinclair BASIC by
default. The current value of os-udg is used.

In Solo Forth os-udg points to bitmap of UDG
0, while in Sinclair BASIC it points to bitmap of UDG
144.

See also: block-chars, set-udg, rom-font.

Source file: <src/lib/graphics.udg.fs>.

defer

 defer ("name" --)

Create a deferred word name, whose action can be configured
with defer! or is. The default action of name is
(defer.

Origin: Forth-2012 (CORE EXT).

See also: defer@, action-of, >action.

Source file: <src/kernel.z80s>.

defer!

 defer! (xt1 xt2 --) "defer-store"

Set the deferred word xt2 to execute xt1.

Origin: Forth-2012 (CORE EXT).

See also: defer@, defer, >action.

Source file: <src/kernel.z80s>.

defer@

 defer@ (xt1 -- xt2) "defer-fetch"

Return the word xt2 currently associated to the deferred
word xt1.

Origin: Forth-2012 (CORE EXT).

See also: defer!, defer, >action.

Source file: <src/lib/define.deferred.fs>.

deferred

 deferred (xt "name" --)

Create a deferred word name that will execute xt.
Therefore xt deferred name is equivalent to defer
name xt ' name defer!.

See also: defer, defer!.

Source file: <src/lib/define.deferred.fs>.

deferred?

 deferred? (xt -- f) "deferred-question"

Is xt a deferred word?

The code of a deferred word starts with a Z80 jump
($C3) to the word it’s associated to. This is what
deferred? checks.

See also: defer, defer@, action-of.

Source file: <src/lib/define.deferred.fs>.

defers

 defers
 Interpretation: ("name" --)
 Compilation: ("name" --)
 Run-time: (--)

Compile the present contents of the deferred word name
into the current definition. I.e. this produces static
binding as if name was not deferred.

defers is an immediate word.

Origin: Gforth.

See also: defer, defer@, action-of, compile,.

Source file: <src/lib/define.deferred.fs>.

defined

 defined ("name" -- nt | 0)

Parse name and find its definition. If the definition is
not found after searching all the word lists in the search
order, return zero. If the definition is found,
return its nt.

Definition:

 : defined ("name" -- nt | 0) parse-name find-name ;

See also: undefined?, [defined], parse-name,
find-name.

Source file: <src/kernel.z80s>.

defined?

 defined? (ca len -- f) "defined-question"

Find name ca len. If the definition is
found after searching the active search
order, return true, else return false.

See also: undefined?, defined, find-name.

Source file: <src/lib/parsing.fs>.

defines

 defines (xt class "name" --)

Bind xt to the selector name in class class.

Source file: <src/lib/objects.mini-oof.fs>.

definitions

 definitions (--)

Make the compilation word list the same as the first word
list in the search order. The names of subsequent definitions
will be placed in the compilation word list. Subsequent
changes in the search order will not affect the compilation
word list.

Definition:

 : definitions (--) context @ set-current ;

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (SEARCH), Forth-2012 (SEARCH).

See also: context, set-current, wordlist, vocabulary.

Source file: <src/kernel.z80s>.

delapsed

 delapsed (d1 -- d2) "d-elapsed"

For the time d1 in dticks return the elapsed time d2
since then, also in dticks.

See also: dtimer, elapsed, dticks>seconds, dticks>cs,
dticks>ms.

Source file: <src/lib/time.fs>.

delete

 delete (n --)

A command of specforth-editor:
Delete n characters prior to the cursor.

See also: #lag, r#, #lead.

Source file: <src/lib/prog.editor.specforth.fs>.

delete

 delete (ca1 len1 len2 --)

Delete len2 characters at the start of string ca1 len1,
moving the rest of the string to the left (ca1) and
filling the end with blanks.

See also: insert, replace.

Source file: <src/lib/strings.MISC.fs>.

delete-file

 delete-file (ca len -- ior)

Delete the disk file named in the string ca len and
return the I/O result code ior.

Origin: Forth-94 (FILE), Forth-2012 (FILE).

See also: (delete-file, rename-file.

Source file: <src/lib/dos.plus3dos.fs>.

delimited

 delimited (ca1 len1 -- ca2 len2)

Add one leading space and one trailing space to string ca1
len1, returning the result ca2 len2 in the stringer.

Source file: <src/lib/002.need.fs>.

depth

 depth (-- +n)

+n is the number of single-cell values contained in the
data stack before +n was placed on the stack.

Origin: Forth-79 (Required Word Set), Forth-83 (Required Word
Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: sp@, sp0`, cell, rdepth, fdepth, .depth.

Source file: <src/lib/tool.list.stack.fs>.

dfalign

 dfalign (--) "d-f-align"

If the data space is not double-float aligned, reserve
enough space to make it so.

In Solo Forth, dfalign does nothing: it’s an immediate
alias of noop.

Origin: Forth-94 (FLOATING EXT), Forth-2012 (FLOATING EXT).

See also: dfaligned, falign, sfalign, float.

Source file: <src/lib/math.floating_point.rom.fs>.

dfaligned

 dfaligned (a -- fa) "d-f-aligned"

fa is the first double-float-aligned address greater than
or equal to a

In Solo Forth, dfaligned does nothing: it’s an
immediate alias of noop.

Origin: Forth-94 (FLOATING EXT), Forth-2012 (FLOATING EXT).

See also: dfalign, faligned, sfaligned, float.

Source file: <src/lib/math.floating_point.rom.fs>.

dfor

 dfor "d-for"
 Compilation: (R: -- dest)
 Run-time: (ud --)

Start of a dfor..dstep loop, that will iterate ud+1
times, starting with du and ending with 0.

dfor is an immediate and compile-only word.

The current value of the index can be retrieved with
dfor-i.

See also: for, dtimes, ?do, executions.

Source file: <src/lib/flow.dfor.fs>.

dfor-i

 dfor-i (-- d) "d-for-i"

Return the current index d of a dfor loop.

Source file: <src/lib/flow.dfor.fs>.

dhz>bleep

 dhz>bleep (frequency duration1 -- duration2 pitch) "decihertz-to-bleep"

Convert frequency (in dHz, i.e. tenths of hertzs) and
duration1 (in ms) to the parameters duration2 pitch
needed by bleep.

See also: hz>bleep.

Source file: <src/lib/sound.48.fs>.

di,

 di, (--) "d-i-comma"

Compile the Z80 assembler instruction DI.

See also: ei,, im1,, im2,, halt,.

Source file: <src/lib/assembler.fs>.

digit?

 digit? (c n -- u true | false) "digit-question"

Convert the ascii character c (using base n) to its binary
equivalent u, accompanied by a true flag. If the conversion
is invalid, leave only a false flag.

Origin: fig-Forth’s digit.

Source file: <src/kernel.z80s>.

dip

 dip (x1 x2 -- x2 x2)

This word is defined in Z80. Its equivalent definition in
Forth is the following:

 : dip (x1 x2 -- x2 x2) nip dup ;

See also: nip, dup, tuck, drup.

Source file: <src/lib/data_stack.fs>.

discard-key

 discard-key (--)

Wait for a valid key and discard it.

Source file: <src/kernel.z80s>.

disk-buffer

 disk-buffer (-- a)

A constant. a is the address of the disk buffer. The cell
stored at a is the disk buffer identifier.

See also: buffer-data.

Source file: <src/kernel.z80s>.

display-char-bitmap_

 display-char-bitmap_ (-- a) "display-char-bitmap-underscore"

Return address a of a Z80 routine that displays
the bitmap of a character at given cursor coordinates.

Input registers:

	
HL = address of the character bitmap

	
B = y coordinate (0..23)

	
C = x coordinate (0..31)

Source file: <src/lib/graphics.udg.fs>.

display>tape-file

 display>tape-file (ca len --) "display-to-tape-file"

Write the display memory into a tape file ca len.

See also: tape-file>display, >tape-file.

Source file: <src/lib/tape.fs>.

djnz,

 djnz, (a --) "d-j-n-z-comma"

Compile the Z80 assembler instruction DJNZ n, being
n an offset from the current address to address a.

See also: ?jr,, dec,.

Source file: <src/lib/assembler.fs>.

dl

 dl (--)

A command of gforth-editor:
delete a line at the cursor position.

See also:
d
c
m
r,
y,
l.

Source file: <src/lib/prog.editor.gforth.fs>.

dmax

 dmax (d1 d2 -- d3) "d-max"

d3 is the lesser of d1 and d2.

Origin: Forth-79 (Double Number Word Set), Forth-83 (Double
Number Extension Word Set), Forth-94 (DOUBLE), Forth-2012
(DOUBLE).

See also: dmin, max, umax.

Source file: <src/lib/math.operators.2-cell.fs>.

dmin

 dmin (d1 d2 -- d3) "d-min"

d3 is the greater of d1 and d2.

Origin: Forth-79 (Double Number Word Set), Forth-83 (Double
Number Extension Word Set), Forth-94 (DOUBLE), Forth-2012
(DOUBLE).

See also: dmax, min, umin.

Source file: <src/lib/math.operators.2-cell.fs>.

dnegate

 dnegate (d1 -- d2) "d-negate"

Negate d1, giving its arithmetic inverse d2.

Origin: Forth-79 (Required Word Set), Forth-83 (Required
Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: negate, ?dnegate.

Source file: <src/kernel.z80s>.

do

 do
 Compilation: (-- do-sys)

Compile (do and leave do-sys to be consumed by loop
or +loop.

do is an immediate and compile-only word.

Origin: Forth-94 (CORE), Forth-2012 (CORE).

See also: ?do, -do.

Source file: <src/lib/flow.do.fs>.

do>

 do> "do-from"
 Compilation: (C: dest -- orig dest)

Part of the {do control structure.

Source file: <src/lib/flow.dijkstra.fs>.

docolon

 docolon (-- a) "do-colon"

A constant. a is the address of the colon interpreter.

dolocon is used by does>.

Source file: <src/kernel.z80s>.

doer

 doer ("name" --)

Define a word name whose action is configurable. By
default name executes doer-noop, which does nothing.

The action of name can be changed by make.

doer is superseded by the standard word defer.

Source file: <src/lib/flow.doer.fs>.

doer-noop

 doer-noop (--)

Do nothing. does-noop is an empty colon definition
which is the default action of words created by doer.

Source file: <src/lib/flow.doer.fs>.

does>

 does> "does"
 Compilation: (--)
 Run-time: (--) (R: nest-sys --)

Define the execution-time action of a word created by a
high-level defining word. Used in the form:

 : namex ... create ... does> ... ;

namex name

where create could be also any user defined word which
executes create.

does> marks the termination of the defining part of the
defining word namex and then begins the definition of the
execution-time action for words that will later be defined by
namex. When name is later executed, the address of
name's parameter field is placed on the stack and then the
sequence of words between does> and ; are executed.

does> is an immediate and compile-only word.

Definition:

 : does> \ Compilation: (--)
 \ Run-time: (--) (R: nest-sys --)
 postpone (;code docolon call, ; immediate compile-only

Detailed description:

Compilation:

Append the run-time semantics below to the current
definition. Append the initiation semantics given below to
the current definition.

Run-time:

Replace the execution semantics of the most recent
definition, referred to as name, with the name execution
semantics given below. Return control to the calling
definition specified by nest-sys1.

Initiation: (i*x -- i*x dfa) (R: -- nest-sys2)

Save information nest-sys2 about the calling definition.
Place name's data field address dfa on the stack. The
stack effects i*x represent arguments to name.

name execution: (i*x -- j*x)

Execute the portion of the definition that begins with the
initiation semantics appended by the does> which
modified name. The stack effects i*x and j*x represent
arguments to and results from name, respectively.

Origin: Forth-79 (Required Word Set), Forth-83 (Required Word
Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: ;, ;code, create, (;code, call,.

Source file: <src/kernel.z80s>.

don’t

 don't (n1 n2 -- | n1 n2)

If n1 equals n2, remove them and exit the definition
that called don’t, else leave n1 n2 on the stack.

don’t is a compile-only word.

don’t is intended to be used before do, as an
alternative to ?do, when the do-loop structure is
factored in its own word.

Usage example:

 : (.range (n1 n2 --) don't do i . loop ;
: .range (n1 n2 --) (.range ;

don’t is superseded by the standard word ?do.

Source file: <src/lib/flow.MISC.fs>.

dor

 dor (xd1 xd2 -- xd3) "d-or"

xd3 is the bit-by-bit inclusive-or of xd1 and xd2.

See also: or, dxor, dand.

Source file: <src/lib/math.operators.2-cell.fs>.

dos

 dos (-- ca len)

Return the name of the DOS in string ca len.
It can be "+3DOS", "G+DOS" or "TR-DOS".

See also: g+dos, tr-dos, +3dos.

Source file: <src/kernel.z80s>.

dos-in_

 dos-in_ (-- a) "dos-in-underscore"

Address of a routine that pages in RAM 7 and ROM 2 (DOS), as
needed to call a +3DOS routine.

The stack must be somewhere in central 32K (conforming to
+3DOS requirements).

See also: dos-out_.

Source file: <src/kernel.plus3dos.z80s>.

dos-ix-ehl_

 dos-ix-ehl_ (-- a) "dos-I-X-E-H-L-underscore"

Address of an entry point to the Forth inner interpreter.
This entry point is jumped to at the end of a code word, in
order to execute first the +3DOS command hold in the IX
register, which returns a double-cell result in registers E
and HL.

Input:
 B = file number
 IX = address of the +3DOS routine
 (SP) = Forth IP
Output:
 BC = Forth IP
 IX = Forth `<<entry6E657874, next>>`
Output stack:
 (d ior)
 Where _d_ is the content of registers EHL.

The stack must be somewhere in central 32K (conforming to
+3DOS requirements).

See also: dos-ix_, dos-ix-preserve-ip_, dos-tos_.

Source file: <src/kernel.plus3dos.z80s>.

dos-ix-preserve-ip_

 dos-ix-preserve-ip_ (-- a) "dos-I-X-preserve-I-P-underscore"

Address of a routine that executes the +3DOS command hold in
the IX register, preserving the Forth IP.

Input:
 IX = address of the +3DOS routine
Output:
 IX = Forth `<<entry6E657874, next>>`

The stack must be somewhere in central 32K (conforming to
+3DOS requirements).

See also: dos-ix_, dos-tos_.

Source file: <src/kernel.plus3dos.z80s>.

dos-ix_

 dos-ix_ (-- a) "dos-I-X-underscore"

Address of a routine that executes the +3DOS command hold in
the IX register.

Input:
 IX = address of the +3DOS routine
Output:
 IX = Forth `<<entry6E657874, next>>`

The stack must be somewhere in central 32K (conforming to
+3DOS requirements).

See also: dos-ix-preserve-ip_, dos-tos_.

Source file: <src/kernel.plus3dos.z80s>.

dos-out_

 dos-out_ (-- a) "dos-out-underscore"

Address of a routine that pages out RAM 7 and ROM 2 (DOS),
paging in the default memory configuration: RAM 0 and ROM 3
(48 BASIC).

The stack must be somewhere in central 32K (conforming to
+3DOS requirements).

See also: dos-in_.

Source file: <src/kernel.plus3dos.z80s>.

dos-tos_

 dos-tos_ (-- a) "dos-T-O-S-underscore"

Address of a routine that executes the +3DOS command hold on
the top of the stack.

This routine is used when the IX register is a parameter of
the +3DOS routine.

Input:
 (TOS) = address of the +3DOS routine
Output:
 IX = Forth `<<entry6E657874, next>>`

The stack must be somewhere in central 32K (conforming to
+3DOS requirements).

See also: dos-ix_, dos-ix-preserve-ip_.

Source file: <src/kernel.plus3dos.z80s>.

dosior>ior

 dosior>ior (dosior -- ior) "dos-I-O-R-to-I-O-R"

Convert a DOS ior to a Forth ior.

dosior>ior is written in Z80. Its equivalent definition in
Forth is the following:

 : dosior>ior (dosior -- ior) 1000 + negate ;

See also: pushdosior.

Source file: <src/kernel.plus3dos.z80s>.

dovocabulary

 dovocabulary (--) "do-vocabulary"

Change the behaviour of the latest word defined:
Replace the first word list in the search order with
the wid stored in its body.

Definition:

 : dovocabulary (--) does> (--) (dfa) @ context ! ;

See also: vocabulary, wordlist>vocabulary, wordlist.

Source file: <src/kernel.z80s>.

do}

 do} "do-curly-bracket"
 Compilation: (C: orig dest --)
 Run-time: (--)

Terminate a {do control structure.

Source file: <src/lib/flow.dijkstra.fs>.

dp

 dp (-- a) "d-p"

A user variable. a is the address of a cell containing the
data-space pointer. The value may be read by here and
altered by there and allot.

Origin: fig-Forth.

Source file: <src/kernel.z80s>.

dpast?

 dpast? (ud -- f) "d-past-question"

Return true if the dticks clock has passed ud.

Usage example: The following word will execute the
hypothetical word test for ud clock dticks:

 : dtry (ud --)
 dticks + begin test 2dup dpast? until 2drop ;

Origin: lina’s past?.

See also: past?, delapsed, dtimer.

Source file: <src/lib/time.fs>.

dpl

 dpl (-- a) "d-p-l"

A user variable. a is the address of a cell containing the
number of places after the decimal point on double-integer
input conversion.

If dpl contains zero, the decimal point is the last
character. The default value of dpl on single-number
input is -1.

Origin: fig-Forth, Forth-83 (Uncontrolled Reference Words).

See also: number-point?, >number, number?.

Source file: <src/kernel.z80s>.

drive

 drive (c1 -- c2)

Convert drive number c1 (0 index) to actual drive
identifier c2 (DOS dependent).

drive is used in order to make the code portable,
abstracting the DOS drive identifiers.

Usage example:

 \ Set the second disk drive as default:

2 set-drive \ on G+DOS only
1 set-drive \ on TR-DOS only
'B' set-drive \ on +3DOS only

1 drive set-drive \ on any DOS -- portable code

See also: set-drive, first-drive, max-drives.

Source file: <src/lib/dos.COMMON.fs>.

drive-unused

 drive-unused (c -- n ior)

Return unused kibibytes n in drive c, and the I/O
result code ior.

See also: unused, farunused.

Source file: <src/lib/dos.plus3dos.fs>.

drop

 drop (x --)

Remove x from the stack.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: 2drop, nip.

Source file: <src/kernel.z80s>.

drop-type

 drop-type (ca len x --)

Remove x from the stack and display the string ca len.

drop-type is one of the possible actions of
type-right-field and type-center-field.

Source file: <src/lib/display.type.fs>.

drup

 drup (x1 x2 -- x1 x1)

This word is defined in Z80. Its equivalent definition in
Forth is the following:

 : drup (x1 x2 -- x1 x1) drop dup ;

See also: dup, tuck, nup, dip.

Source file: <src/lib/data_stack.fs>.

dstep

 dstep "d-step"
 Compilation: (dest --)
 Run-time: (R: ud -- ud' |)

dstep is an immediate and compile-only word.

Compilation:

Append the run-time semantics given below to the current
definition. Resolve the destination dest of dfor.

Run-time:

If the loop index ud is zero, discard the loop parameters and
continue execution after the loop. Otherwise decrement the
loop index and continue execution at the beginning of the
loop.

Source file: <src/lib/flow.dfor.fs>.

dticks

 dticks (-- ud) "d-ticks"

Return the current count of clock ticks ud, which is
updated by the OS.

dticksreturns the OS frames counter, which is
increased by the OS interrupts routine every 20th ms. The
counter is a 24-bit value.

See also: ticks, set-dticks, reset-dticks,
ticks/second, dticks>seconds, bench{.

Source file: <src/lib/time.fs>.

dticks>cs

 dticks>cs (d1 -- d2) "d-ticks-to-cs"

Convert clock ticks d1 to centiseconds d2.

See also: ticks>cs, dticks>seconds, dticks>ms,
ticks/second, ticks.

Source file: <src/lib/time.fs>.

dticks>ms

 dticks>ms (d1 -- d2) "d-ticks-to-ms"

Convert clock ticks d1 to milliseconds d2.

See also: ticks>ms, dticks>seconds, dticks>cs,
ticks/second, ticks.

Source file: <src/lib/time.fs>.

dticks>seconds

 dticks>seconds (d -- n) "d-ticks-to-seconds"

Convert clock ticks d to seconds n.

See also: ticks>seconds, dticks>cs, dticks>ms,
ticks/second, ticks.

Source file: <src/lib/time.fs>.

dtimer

 dtimer (d --) "d-timer"

For the time d in dticks display the elapsed time
since then, also in dticks.

See also: timer, delapsed.

Source file: <src/lib/time.fs>.

dtimes

 dtimes (d --) "d-times"

Repeat the next compiled instruction d times. If d is
zero, continue executing the following instruction.

This structure is not nestable.

Usage example:

 : blink (--) 7 0 ?do i border loop 0 border ;
: blinking (--) 100000. dtimes blink ." Done" cr ;

See also: times, executions, dfor, ?do.

Source file: <src/lib/flow.times.fs>.

du/mod

 du/mod (ud1 ud2 -- ud3 ud4) "d-u-slash-mod"

Divide ud1 by ud2, giving the remainder ud3 and
the quotient ud4.

See also: um/mod, /mod ,*/mod.

Source file: <src/lib/math.operators.2-cell.fs>.

du<

 du< (ud1 ud2 -- f) "d-u-less"

f is true only if and only if du1 is less than du2.

Origin: Forth-79 (Double Number Word Set), Forth-83 (Double
Number Extension Word Set), Forth-94 (DOUBLE EXT),
Forth-2012 (DOUBLE EXT).

See also: d<, <, dmin.

Source file: <src/lib/math.operators.2-cell.fs>.

dump

 dump (ca len --)

Show the contents of len bytes from ca.

Source file: <src/lib/tool.dump.fs>.

dump-fs

 dump-fs (F: i*r -- i*r)

See also: .fs.

Source file: <src/lib/math.floating_point.rom.fs>.

dump-wordlist

 dump-wordlist (wid --)

Dump the data of the wordlist identified by wid, with
labels: its associated name (or, if none, just the wid)
and the name of the latest definition created in the word
list.

See also: .wordlist, dump-wordlists, wordlist>last,
.name.

Source file: <src/lib/tool.list.word_lists.fs>.

dump-wordlists

 dump-wordlists (--)

Dump the data of all the word lists defined in the system,
starting from the wordlist pointed by last-wordlist.

See also: dump-wordlist, dump-wordlists>, wordlists.

Source file: <src/lib/tool.list.word_lists.fs>.

dump-wordlists>

 dump-wordlists> (wid --) "dump-wordlists-from"

Dump the data of all the word lists defined in the system,
starting from the wordlist identified by wid.

dump-wordlists> is a useful factor of dump-wordlists.

See also: dump-wordlist, wordlists, wordlist>link.

Source file: <src/lib/tool.list.word_lists.fs>.

dup

 dup (x -- x x)

Duplicate x.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: ?dup, 2dup, tuck, over, 0dup, -dup,
nup, 3dup, dup>r.

Source file: <src/kernel.z80s>.

dup>r

 dup>r (x -- x) (R: -- x) "dup-to-r"

Move a copy of x to the return stack. dup>r is a
faster alternative to the idiom dup >r.

Origin: IsForth.

See also: dup, >r`.

Source file: <src/lib/return_stack.fs>.

dxor

 dxor (xd1 xd2 -- xd3) "d-x-or"

xd3 is the bit-by-bit exclusive-or of xd1 and xd2.

See also: xor, dor, dand.

Source file: <src/lib/math.operators.2-cell.fs>.

dzx7m

 dzx7m (a1 a2 --) "d-z-x-seven-m"

Decompress data, which has been compressed by ZX7, from
a1 and copy the result to a2.

dzx7m is the port of the ZX7 decompressor, "Mega"
version, written by Einar Saukas.

dzx7m is the fastest (30% faster than dzx7s) but
biggest (251 bytes) version of the decompressor. dzx7s
and dzx7t are smaller but slower. See a comparation
table in dzx7s.

For more information, see
ZX7
in World of Spectrum.

Source file: <src/lib/decompressor.zx7.fs>.

dzx7s

 dzx7s (a1 a2 --) "d-z-x-seven-s"

Decompress data, which has been compressed by ZX7, from
a1 and copy the result to a2.

dzx7s is the port of the ZX7 decompressor, "Standard"
version, written by Einar Saukas, Antonio Villena &
Metalbrain.

dzx7s is the smallest but slowest version of the
decompressor. dzx7t and dzx7m are bigger but faster:

Table 20. Comparation of ZX7 decompressors.

	Decompressor

	Size in bytes

	Relative speed

	dzx7s

	87

	100

	dzx7t

	97

	125

	dzx7m

	251

	130

For more information, see
ZX7
in World of Spectrum.

Source file: <src/lib/decompressor.zx7.fs>.

dzx7t

 dzx7t (a1 a2 --) "d-z-x-seven-t"

Decompress data, which has been compressed by ZX7, from
a1 and copy the result to a2.

dzx7t is the port of the ZX7 decompressor, "Turbo"
version, written by Einar Saukas & Urusergi.

dzx7t is 25% faster than dzx7s, and needs only 10
more bytes (97 bytes in total). dzx7m is bigger but
faster. See a comparation table in dzx7s.

For more information, see
ZX7
in World of Spectrum.

Source file: <src/lib/decompressor.zx7.fs>.

7 In Forth-83, if the number of characters required to display d is greater than n, an error condition exists, which depends on the system.

e

e

 e (-- reg)

Return the identifier reg of the Z80 assembler register
"E".

See also: a,
b, c,
d, h,
l, m,
ix, iy, sp.

Source file: <src/lib/assembler.fs>.

e

 e (n --)

A command of specforth-editor: Erase line n with
blanks.

See also: b,
c,
d,
f,
h,
i,
l,
m,
n,
p,
r,
s,
t,
x, c/l, blank,
update.

Source file: <src/lib/prog.editor.specforth.fs>.

e-bank_

 e-bank_ (-- a) "e-bank-underscore"

Return address a of a routine that pages in the
bank hold in the E register.
This routine is a secondary entry point of default-bank.

	
Input: E = bank

	
Output: A corrupted

See also: default-bank_.

Source file: <src/lib/memory.far.fs>.

e>

 e> (a -- x) "e-from"

Move x from the extra stack a defined with estack to
the data stack.

See also: >e, e@.

Source file: <src/lib/data.estack.fs>.

e@

 e@ (a -- x) "e-fetch"

Copy x from the estack a to the data stack.

See also: e>, >e.

Source file: <src/lib/data.estack.fs>.

edepth

 edepth (a -- n) "e-depth"

Return size n in cells of an estack a.

Source file: <src/lib/data.estack.fs>.

edit-sound

 edit-sound (ca --)

Start a simple editor to edit the 14-byte 128K-sound
definition stored at ca. Instructions are displayed.

Usage example:

 need train-sound need >body
' train-sound >body edit-sound

See also: sound, play.

Source file: <src/lib/prog.app.edit-sound.fs>.

editor

 editor (--)

Replace the first entry in the search order with the word
list associated to the block editor.

editor is a deferred word (see defer). Its action can
be gforth-editor or specforth-editor. When any of these
editors is loaded, editor is updated accordingly.

Source file: <src/lib/prog.editor.COMMON.fs>.

ei,

 ei, (--) "e-i-comma"

Compile the Z80 assembler instruction EI.

See also: di,, im1,, im2,, halt,.

Source file: <src/lib/assembler.fs>.

either

 either (x1 x2 x3 -- f)

Return true if x1 equals either x2 or x3;
else return false.

Origin: IsForth.

See also: neither, ifelse, any?.

Source file: <src/lib/math.operators.1-cell.fs>.

elapsed

 elapsed (u1 -- u2)

For the time u1 in ticks return the elapsed time u2
since then, also in ticks.

See also: timer, delapsed, ticks>seconds, ticks>cs,
ticks>ms.

Source file: <src/lib/time.fs>.

else

 else
 Compilation: (C: orig1 -- orig2)
 Run-time: (--)

Compilation: Resolve the forward reference orig1, usually
left by if. Put the location of a new unresolved forward
reference orig2 onto the control-flow stack, usually to be
resolved by then.

Run-time: Continue execution at the location specified by the
resolution of orig2.

else is an immediate and compile-only word.

Definition:

 : else \ Compilation: (C: orig1 -- orig2)
 \ Run-time: (--)
 ahead cs-swap then ; immediate compile-only

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: ahead, cs-swap.

Source file: <src/kernel.z80s>.

emit

 emit (x --)

If x is a graphic character in the character set used by the
current display mode, display it. If x is a control
character used by the current display mode, manage it.

emit is a deferred word (see defer) whose default action
is mode-32-emit.

Origin: Forth-79 (Required Word Set), Forth-83 (Required Word
Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: current-mode, emit-udg, g-emit-udg.

Source file: <src/kernel.z80s>.

emit-ascii

 emit-ascii (c --)

Convert character c with >graphic-ascii-char, then
emit it.

See also: type-ascii, fartype-ascii.

Source file: <src/lib/display.type.fs>.

emit-udg

 emit-udg (c|n --) "emit-u-d-g"

Display the UDG c|n from the current UDG set, which is
pointed by os-udg.

The usual parameter is c (0 .. 255), but no check is
done: If a 16-bit value n is received instead, it will be
used to calculate the address of the corresponding character
bitmap in the UDG set.

emit-udg gets the cursor position and the current
screen address from the OS variables. Therefore, it works only
in display modes that use the ROM printing routines and keep
those variables updated, like mode-32 and mode-32iso.

See also: set-udg, emit-udga, emit, mode-32-emit,
g-emit-udg, last-font-char.

Source file: <src/kernel.z80s>.

emit-udga

 emit-udga (ca --) "emit-u-d-g-a"

Display the UDG defined at ca, i.e, the 8 bytes of the UDG
are stored at ca, in the usual ZX Spectrum font/UDG format:
the first byte is the top scan.

emit-udga gets the cursor position and the
current screen address from the OS variables. Therefore, it
works only in display modes that use the ROM printing routines
and keep those variables updated, like mode-32 and
mode-32iso.

See also: emit-udg, emit, mode-32-emit.

Source file: <src/kernel.z80s>.

emits

 emits (c n --)

If n is greater than zero, display n characters c.

Definition:

 : emits (c n --) 0 max 0 ?do dup emit loop drop ;

Source file: <src/kernel.z80s>.

empty-buffers

 empty-buffers (--)

Unassign all block buffers. Do not transfer the contents of
any updated block to mass storage.

Definition:

 : empty-buffers (--) $7FFF disk-buffer ! ;

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Controlled Reference Words), Forth-94 (BLOCK EXT), Forth-2012
(BLOCK EXT).

See also: update, flush, disk-buffer.

Source file: <src/kernel.z80s>.

empty-fs

 empty-fs (--) "empty-f-s"

Empty the floating-point stack, by storing the content of
fp0 into fp.

Source file: <src/lib/math.floating_point.rom.fs>.

empty-heap

 empty-heap (--)

Empty the current heap, which was created by
allot-heap, limit-heap, bank-heap or farlimit-heap.

empty-heap is a deferred word (see defer) whose
action can be charlton-empty-heap or gil-empty-heap,
depending on the heap implementation used by the
application.

Source file: <src/lib/memory.allocate.COMMON.fs>.

empty-stack

 empty-stack (--)

Empty the data stack.

Definition:

 : empty-stack (--) sp0 @ sp! ;

See also: sp0, sp!, (abort.

Source file: <src/kernel.z80s>.

empty-stringer

 empty-stringer (--)

Empty the stringer, by initializing +stringer with
/stringer. The contents of the stringer are not modified.

Definition:

 : empty-stringer (--) /stringer +stringer ! ;

See also: default-stringer.

Source file: <src/kernel.z80s>.

end-asm

 end-asm (--)

Exit the assembler mode started by asm.

Definition:

 : end-asm (--) ?csp previous abase @ base ! ;

See also: end-code, ?csp, previous, abase, base.

Source file: <src/kernel.z80s>.

end-calc

 end-calc (--)

Compile the end-calc ROM calculator command:

 db $38 ; exit the ROM calculator

See also: end-calculator.

Source file: <src/lib/math.calculator.fs>.

end-calculator

 end-calculator (--)

Stop compiling ROM calculator commands: Restore the
search order and compile the following assembly
instructions to exit the ROM calculator:

 db $38 ; ``end-calc`` ROM calculator command
pop bc ; restore the Forth IP

See also: end-calc.

Source file: <src/lib/math.calculator.fs>.

end-calculator-flag

 end-calculator-flag (-- f) (F: 1|0 --)

A Z80 macro that compiles code to exit the ROM calculator
and convert a flag calculated by it (1|0) to a
well-formed flag on the data stack.

end-calculator-flag is a common factor of all
floating-point logical operators.

See also: calculator-command.

Source file: <src/lib/math.floating_point.rom.fs>.

end-class

 end-class (class methods vars "name" --)

End the definition of a class.

Source file: <src/lib/objects.mini-oof.fs>.

end-code

 end-code (--)

Terminate a code definition started by code or ;code.

Definition:

 : end-code (--) end-asm reveal ;

Origin: Forth-83 (Assembler Extension Word Set).

See also: end-asm, reveal.

Source file: <src/kernel.z80s>.

end-data

 end-data (n orig --)

Finish the definition started by data, calculating the
number of data items of n bytes that were compiled and
store it at orig.

Source file: <src/lib/data.data.fs>.

end-internal

 end-internal (-- a)

End internal (private) definitions. Return the current
value of the headers pointer, which is the xtp (execution
token pointer) of the next word defined.

The start of the internal definitions was marked by
internal. The internal definitions can be unlinked by
unlink-internal or hidden by hide-internal.

Source file: <src/lib/modules.internal.fs>.

end-module

 end-module (parent-wid --)

End a module definition. All module internal words are no
longer accessible. Only words that have been exported with
export are still available.

Source file: <src/lib/modules.module.fs>.

end-package

 end-package (wid0 wid1 --)

End the current package, which was started by package.

wid1 is the word list of the current package; wid0
is the word list in which the current package was created.

Origin: SwiftForth.

See also: public, private.

Source file: <src/lib/modules.package.fs>.

end-program

 end-program (--)

Mark the end of a program that is being loaded by
load-program.

See also: loading-program.

Source file: <src/lib/blocks.fs>.

end-seclusion

 end-seclusion (wid1 wid2 --)

End a seclusion module.

See also: -seclusion, +seclusion.

Source file: <src/lib/modules.MISC.fs>.

end-stringtable

 end-stringtable (a1 a2 --)

End a named stringtable, consuming a1 (containing the
address of the strings index) and a2 (the address of the
compiled strings), which were left by begin-stringtable.
Create the strings index by traversing the compiled strings
and update its address in a1.

See begin-stringtable for a usage example.

Source file: <src/lib/data.begin-stringtable.fs>.

end-structure

 end-structure (struct-sys +n --)

Terminate definition of a structure started by
begin-structure.

Origin: Forth-2012 (FACILITY EXT).

Source file: <src/lib/data.begin-structure.fs>.

end-transient

 end-transient (--)

End the transient code started by transient.
end-transient must be used after compiling the
transient code.

The inner operation is: Restore the old values of dp,
np, limit and farlimit.

See also: forget-transient.

Source file: <src/lib/modules.transient.fs>.

end?ccase

 end?ccase "end-question-case"
 Compilation: (C: orig --)
 Run-time: (--)

End of a ?ccase control structure.
See ?ccase for a usage example.

end?ccase is an immediate and compile-only word.

Source file: <src/lib/flow.ccase.fs>.

endcase

 endcase
 Compilation: (C: 0 orig#1 ... orig#n --)
 Run-time: (x --)

endcase is an immediate and compile-only word.

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: thens.

Source file: <src/lib/flow.case.fs>.

endccase

 endccase "end-c-case"
 Compilation: (C: orig1 orig2 --)
 Run-time: (--)

End of a ccase control structure.
See ccase for a usage example.

endccase is an immediate and compile-only word.

Source file: <src/lib/flow.ccase.fs>.

endccase0

 endccase0 "end-c-case-zero"
 Compilation: (C: orig --)
 Run-time: (--)

End of a ccase0 control structure.
See ccase0 for a usage example.

endcase0 is an immediate and compile-only word.

Source file: <src/lib/flow.ccase.fs>.

endm

 endm (--) "end-m"

Finish the definition of an assembler macro.

endm is an immediate word.

See also: end-asm, code.

Source file: <src/lib/assembler.macro.fs>.

endof

 endof
 Compilation: (C: orig1 -- orig2)
 Run-time: (--)

Compilation: Mark the end of an of clause (or any of its
variants) of the case structure. Resolve the forward
reference orig1, usually left by of. Put the location
of a new unresolved forward reference orig2 onto the
control-flow stack, usually to be resolved by endcase.

Run-time: Continue execution at the location specified by
the consumer of orig2.

endof is equivalent to else.

endof is an immediate and compile-only word.

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

Source file: <src/lib/flow.case.fs>.

entry:

 entry: (x wid "name" --) "entry-colon"

Create a cell entry name in the associative-list
wid, with value x.

See also: centry:, 2entry:, sentry:, create-entry.

Source file: <src/lib/data.associative-list.fs>.

enum

 enum (n "name" -- n+1)

Create a constant name with value n and return n+1.

Usage example:

 0 enum first
 enum second
 enum third
 enum fourth
drop

See also: cenum, enumcell.

Source file: <src/lib/data.MISC.fs>.

enumcell

 enumcell (n "name" -- n+cell) "enum-cell"

Create a constant name with value n and return
n+cell.

Usage example:

 0 enumcell first
 enumcell second
 enumcell third
 enumcell fourth
drop

See also: enum.

Source file: <src/lib/data.MISC.fs>.

environment-wordlist

 environment-wordlist (-- wid)

A constant. wid is the identifier of the word list where
the environmental queries are defined.

See also: environment?.

Source file: <src/lib/environment-question.fs>.

environment?

 environment? (ca len -- false | i*x true) "environment-question"

The string ca len is the identifier of an environmental
query. If the string is not recognized, return a false
flag. Otherwise return a true flag and some information
about the query.

Table 21. Environmental Query String

	String
	Value data type
	Constant?
	Meaning

	/COUNTED-STRING

	n

	yes

	maximum size of a counted string, in characters

	/HOLD

	n

	yes

	size of the pictured numeric output string buffer, in characters

	/PAD

	n

	yes

	size of the scratch area pointed to by PAD, in characters

	ADDRESS-UNIT-BITS

	n

	yes

	size of one address unit (one byte), in bits

	FLOORED

	flag

	yes

	true if floored division is the default

	MAX-CHAR

	u

	yes

	maximum value of any character in the implementation-defined character set

	MAX-D

	d

	yes

	largest usable signed double number

	MAX-N

	n

	yes

	largest usable signed integer

	MAX-U

	u

	yes

	largest usable unsigned integer

	MAX-UD

	ud

	yes

	largest usable unsigned double number

	RETURN-STACK-CELLS

	n

	yes

	maximum size of the return stack, in cells

	STACK-CELLS

	n

	yes

	maximum size of the data stack, in cells

Notes:

	
Forth-2012 designates the Forth-94 practice of using
environment? to inquire whether a given word set is
present as obsolescent. The Forth-94 environmental strings
are not supported in Solo Forth.

	
In Solo Forth environment queries are also independent
ordinary constants accessible by need.

Origin: Forth-2012 (CORE).

See also: environment-wordlist. /counted-string,
/pad, address-unit-bits, floored, max-char,
max-d, max-n, max-u, max-ud, return-stack-cells,
stack-cells.

Source file: <src/lib/environment-question.fs>.

eof?

 eof? (fid -- f)

Is the file position of file referenced to by fid at the
end of the file, i.e. does its file position equals its
file size?

See also: file-size, file-position, create-file,
open-file.

Source file: <src/lib/dos.plus3dos.fs>.

eol?

 eol? (c -- f) "e-o-l-question"

If c is one of the characters of newline
return true; otherwise return false.

Source file: <src/lib/display.control.fs>.

erase

 erase (ca len --)

If len is greater than zero, clear all bits in each ol len
consecutive bytes of memory beginning at ca.

Origin: fig-Forth, Forth-83 (Controlled Reference Words), Forth-94
(CORE EXT), Forth-2012 (CORE EXT).

See also: fill, move.

Source file: <src/kernel.z80s>.

error

 error (n --)

Save the throw code n into error#, and the current
block and line into error-pos, to be used by where. Then
perform the action required by throw code n as follows:

If n is minus-one (-1), execute (abort.

If n is minus-two (-2), perform the function abort",
displaying the message associated with the abort" that
generated the throw.

Otherwise, execute .error-word and .throw to give
information about the condition associated with the throw
code n. Subsequently, execute (abort.

error is a factor of throw.

Definition:

 : error (n --)
 dup error# !
 >in @ blk @ error-pos 2!
 dup -1 = if (abort then
 dup -2 = if space abort-message 2@ type (abort then
 .error-word .throw (abort ;

See also: abort-message.

Source file: <src/kernel.z80s>.

error#

 error# (-- a) "error-number-sign"

A variable. a is the address of a cell containing the number
of the last error issued by error.

See also: error-pos, where.

Source file: <src/kernel.z80s>.

error-code-warn

 error-code-warn (ca len -- ca len) "warn-dot-throw"

If the contents of the user variable warnings is not zero
and the word name ca len is already defined in the
current compilation word list, display a throw exception
#-257 ("warning: is not unique") without actually throwing
an exception.

error-code-warn is an alternative action of the deferred
word warn (see defer).

See also: warnings, error-warn, message-warn, ?warn.

Source file: <src/lib/compilation.fs>.

error-pos

 error-pos (-- a)

A 2variable. a is the address of a double cell
containing the position of the last error issued by error,
as follows:

	
First cell = value of blk

	
Second cell = value of >in

See also: error#, where.

Source file: <src/kernel.z80s>.

error-warn

 error-warn (ca len -- ca len)

If the contents of the user variable warnings is not zero
and the word name ca len is already defined in the
current compilation word list, throw an exception #-257
instead of printing a warning message.

error-warn is an alternative action of the deferred
word warn (see defer).

See also: warnings, error-code-warn, message-warn,
?warn.

Source file: <src/lib/compilation.fs>.

error>line

 error>line (-n1 -- n2) "error-to-line"

Convert error code -n1 to line n2 relative to the block
that contains the error messages.

See also: error>ordinal.

Source file: <src/lib/exception.fs>.

error>ordinal

 error>ordinal (-n1 -- +n2) "error-to-ordinal"

Convert an error code n1 to its ordinal position +n2 in
the library.

 -n1 = -90 ... -1 \ Standard error codes
 -300 ... -256 \ Solo Forth error codes
 -1024 ... -1000 \ DOS error codes
+n2 = 1 ... 146

See also: error>line.

Source file: <src/lib/exception.fs>.

errors-block

 errors-block (-- a)

A variable. a is the address of a cell containing the
block that holds the error messages.

The variable is initialized during compilation with the
first block that contains "Standard error codes" in its
first line.

See also: .throw-message.

Source file: <src/lib/exception.fs>.

esc-block-chars-wordlist

 esc-block-chars-wordlist (-- wid)

Identifier of the word list that contains the escaped block
characters used by the BASin IDE and other ZX Spectrum
tools:

Table 22. Escaped characters defined in esc-block-chars-wordlist.

	Escaped notation
	Default character code

	\<space><space>

	128

	\<space>'

	129

	\'<space>

	130

	\''

	131

	\<space>.

	132

	\<space>:

	133

	\'.

	134

	\':

	135

	\.<space>

	136

	\.'

	137

	\:<space>

	138

	\:'

	139

	\..

	140

	\.:

	141

	\:.

	142

	\::

	143

In order to make s\", .\" and their common factor
parse-esc-string recognize the escaped block characters,
esc-block-chars-wordlist must be pushed to the escaped
strings search order. Example:

 need set-esc-order
esc-standard-chars-wordlist
esc-block-chars-wordlist 2 set-esc-order

s\" \::\:.\ '\. \nNew line:\.'\:'\'.\: ..." type

The code of the first block character can be modified with
the character variable first-esc-block-char.

See also: first-esc-block-char, set-esc-order, >esc-order,
esc-standard-chars-wordlist, esc-udg-chars-wordlist,
parse-esc-string, s\", .\".

Source file: <src/lib/strings.escaped.graphics.fs>.

esc-context

 esc-context (-- a)

A variable that holds the escaped strings search order: a
is the address of an array of cells, whose maximum length
is hold in the max-esc-order constant, and whose current
length is hold in the #esc-order variable. a holds the
word list at the top of the search order.

See also: max-esc-order, >esc-order, get-esc-order,
set-esc-order.

Source file: <src/lib/strings.escaped.fs>.

esc-previous

 esc-previous (--)

Remove the top word list (the word list that is searched
first) from the escaped strings search order.

Source file: <src/lib/strings.escaped.fs>.

esc-standard-chars-wordlist

 esc-standard-chars-wordlist (-- wid)

Identifier of the word list that contains the words whose
names are the standard characters that must be escaped
after a backslash in strings parsed by s\", .\" and
other words.

The execution of the words defined in the word list
identified by esc-standard-chars-wordlist returns the
new character(s) on the stack (the last one at the bottom)
and the count. Example of the stack effect of a escaped
character that returns two characters:

 (-- c[1] c[0] 2)

Most of the escaped characters are translated to one
character, so they are defined as double-cell constants.

Conversion rules:

Table 23. Escaped characters defined in esc-standard-chars-wordlist.

	Escaped
	Name
	ASCII characters

	\a

	BEL (alert)

	7

	\b

	BS (backspace)

	8

	\e

	ESC (escape)

	27

	\f

	FF (form feed)

	12

	\l

	LF (line feed)

	10

	\m

	CR/LF

	13, 10

	\n

	newline

	13

	\q

	double-quote

	34

	\r

	CR (carriage return)

	13

	\t

	HT (horizontal tab)

	9

	\v

	VT (vertical tab)

	11

	\z

	NUL (no character)

	0

	\"

	double-quote

	34

	\x<hexdigit><hexdigit>

	
	Conversion of the two hexadecimal digits

See also: parse-esc-string, set-esc-order,
esc-standard-chars-wordlist, esc-block-chars-wordlist,
esc-udg-chars-wordlist.

Source file: <src/lib/strings.escaped.fs>.

esc-udg-chars-wordlist

 esc-udg-chars-wordlist (-- wid)

Identifier of the word list that contains the words whose
names are the UDG characters ('A'..'U'), in upper case,
that must be escaped after a backslash in strings parsed by
s\", .\" and other words.

The execution of the words defined in the word list
identified by esc-udg-chars-wordlist returns the
correspondent UDG character (144..164) and a 1.

In order to make s\", .\" and their common factor
parse-esc-string recognize the escaped UDG characters,
esc-udg-chars-wordlist must be pushed on the escaped
strings search order. Example:

 need set-esc-order
esc-standard-chars-wordlist
esc-udg-chars-wordlist 2 set-esc-order

s\" \A\B\C\D\nNew line:\A\B\C\D..." type

See also: set-esc-order, >esc-order,
esc-standard-chars-wordlist, esc-block-chars-wordlist.

Source file: <src/lib/strings.escaped.graphics.fs>.

estack

 estack (a --) "e-stack"

Init extra stack a. The extra stack will grow towards
high memory and the required memory must be already
reserved. No check is done by estack or the other
words used to manipulate the extra stack.

Usage example:

 create my-stack 10 cells allot
my-stack estack
100 my-stack >e
my-stack edepth .
my-stack e@ .
my-stack e> .
my-stack edepth .

See also: >e, e@, e>, edepth, xstack.

Source file: <src/lib/data.estack.fs>.

eval

 eval (i*x "name" -- j*x)

Parse and evaluate name.

eval is a common factor of [const], [2const] and
[cconst].

See also: parse-name.

Source file: <src/lib/compilation.fs>.

evaluate

 evaluate (i*x ca len -- j*x)

Save the current input source specification. Store
minus-one (-1) in source-id. Make the string described
by ca len both the input source and input buffer, set
>in to zero, and interpret. When the parse area is
empty, restore the prior input source specification.

Origin: Forth-94 (CORE), Forth-2012 (CORE).

See also: interpret, execute-parsing.

Source file: <src/lib/parsing.fs>.

even?

 even? (n -- f) "even-question"

Is n an even number?

even? is written in Z80. Its equivalent definition in
Forth is the following:

 : even? (n -- f) 1 and 0= ;

See also: odd?.

Source file: <src/lib/math.operators.1-cell.fs>.

exaf,

 exaf, (--) "ex-a-f-comma"

Compile the Z80 assembler instruction EX AF, AF'.

See also: exx,, exde,.

Source file: <src/lib/assembler.fs>.

exchange

 exchange (a1 a2 --)

Exchange the cells stored at a1 and a2.

See also: cexchange, !exchange.

Source file: <src/lib/memory.MISC.fs>.

exde,

 exde, (--) "ex-de-comma"

Compile the Z80 assembler instruction EX DE,HL.

See also: exaf,, exx,.

Source file: <src/lib/assembler.fs>.

exec

 exec ("name" -- i*x)

Parse name. If name is the name of a word in the
current search order, execute it; else throw an
exception #-13 ("undefined word").

See also: possibly, defined, name>, ?throw, execute.

Source file: <src/lib/compilation.fs>.

execute

 execute (i*x xt -- j*x)

Execute execution token xt.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: perform.

Source file: <src/kernel.z80s>.

execute-hl,

 execute-hl, (--) "execute-h-l-comma"

Compile an execute with the xt hold in the HL register.
execute-hl, is used to call Forth words from code
words.

See also: call-xt,, call, call,, assembler.

Source file: <src/lib/assembler.fs>.

execute-parsing

 execute-parsing (ca len xt --)

Make ca len the current input source (using
string>source), execute xt, and then restore the
previous input source.

See also: evaluate, interpret, nest-source.

Origin: Gforth.

Source file: <src/lib/parsing.fs>.

executing?

 executing? (-- f) "executing-question"

f is true if state is zero, i.e. the Forth system is not
in compilation state.

Definition:

 : executing? (-- f) state @ 0= ;

See also: ?executing.

Source file: <src/kernel.z80s>.

executions

 executions (xt n --)

Execute xt n times.

See also: times, dtimes.

Source file: <src/lib/flow.MISC.fs>.

exit

 exit (--) (R: nest-sys --)

Return control to the calling definition, specified by
nest-sys.

Before executing exit within a loop, a program shall
discard the loop-control parameters by executing unloop.

exit is compiled by ;. When words contain and endless
loop, the space used by exit can be recovered using
no-exit.

In Solo Forth exit can be used in interpretation mode to
stop the interpretation of a block, like fig-Forth’s ;s.

Origin: fig-Forth’s ;s, Forth-79 (Required Word Set),
Forth-83 (Required Word Set), Forth-94 (CORE), Forth-2012
(CORE).

See also: ?exit, 0exit, -exit, +exit.

Source file: <src/kernel.z80s>.

exitcase

 exitcase
 Compilation: (C: orig --)
 Run-time: (--)

Part of a thiscase structure.

Compilation: Resolve the forward reference orig, which
was left by ifcase.

Run-time: exit the current definition.

exitcase is an immediate and compile-only word.

See also: ifcase, othercase.

Source file: <src/lib/flow.thiscase.fs>.

export

 export (parent-wid "name" -- parent-wid)

Make the word named name accessible outside the module
currently defined. name will be still available after
end-module.

Source file: <src/lib/modules.module.fs>.

exsp,

 exsp, (--) "ex-s-p-comma"

Compile the Z80 assembler instruction EX (SP),HL.

Source file: <src/lib/assembler.fs>.

extend

 extend (--)

Change the cold start parameters to extend the system to
its current state.

This word is experimental. See the source code for
details.

See also: system-zone, system-size, turnkey.

Source file: <src/lib/tool.turnkey.fs>.

extended-number-point?

 extended-number-point? (c -- f)
"extended-number-point-question"

Is character c an extended number point? Allowed points
are: plus sign, comma, hyphen, period, slash and colon,
after Forth Programmer’s Handbook.

extended-number-point? is an alternative action for the
deferred word number-point?, (see defer) which is used
in number?, and whose default action is
standard-number-point?.

See also: classic-number-point?.

Source file: <src/lib/math.number.point.fs>.

exx,

 exx, (--) "ex-x-comma"

Compile the Z80 assembler instruction EXX.

See also: exde,, exaf,.

Source file: <src/lib/assembler.fs>.

f

f

 f ("ccc<eol>" | --)

A command of gforth-editor:
Parse ccc, search it and mark it.

See also:
m,
l,
fbuf.

Source file: <src/lib/prog.editor.gforth.fs>.

f

 f ("ccc<eol>" --)

A command of specforth-editor: Search forward from the
current cursor position until string ccc is found. The
cursor is left at the end of the string and the cursor line
is printed. If the string is not found and error message is
given and the cursor repositioned to the top of the block.

See also: b,
c,
d,
e,
h,
i,
l,
m,
n,
p,
r,
s,
t,
x, text.

Source file: <src/lib/prog.editor.specforth.fs>.

f!

 f! (fa --) (F: r --) "f-store"

Store r at fa.

Origin: Forth-94 (FLOATING), Forth-2012 (FLOATING).

See also: f@, f,, !, 2!, c!.

Source file: <src/lib/math.floating_point.rom.fs>.

f,

 f, (--) (F: r --) "f-comma"

Reserve data space for one floating-point number and store
r in that space.

Origin: Gforth.

See also: f!.

Source file: <src/lib/math.floating_point.rom.fs>.

f.

 f. (F: r --)

See also: ., d., .fs.

Source file: <src/lib/math.floating_point.rom.fs>.

f==

 f== (-- f) (F: r1 r2 --) "f-equals-equals"

Exact bitwise equality.

Are r1 and r2 exactly identical? Flag f is true if
the bitwise comparison of r1 and r2 is succesful.

See also: f~.

Source file: <src/lib/math.floating_point.rom.fs>.

f>flag

 f>flag (-- f) (F: rf --) "f-to-flag"

Convert a floating-poing flag rf (1|0) to an actual flag
f in the data stack.

Source file: <src/lib/math.floating_point.rom.fs>.

f@

 f@ (fa --) (F: -- r)

r is the value stored at fa.

Origin: Forth-94 (FLOATING), Forth-2012 (FLOATING).

See also: f!, @, 2@, c@.

Source file: <src/lib/math.floating_point.rom.fs>.

facos

 facos (F: r1 -- r2)

See also: fasin, fatan, fcos.

Source file: <src/lib/math.floating_point.rom.fs>.

fade-display

 fade-display (--)

Do a screen fade to black, by decrementing the values of
paper and ink in a loop.

See also: blackout, attr-cls.

Source file: <src/lib/graphics.display.fs>.

falign

 falign (--) "f-align"

If the data space is not float aligned, reserve enough
space to make it so.

In Solo Forth, falign does nothing: it’s an immediate
alias of noop.

Origin: Forth-94 (FLOATING), Forth-2012 (FLOATING).

See also: faligned, sfalign, dfalign, float.

Source file: <src/lib/math.floating_point.rom.fs>.

faligned

 faligned (a -- fa) "f-aligned"

fa is the first float-aligned address greater than or
equal to a

In Solo Forth, faligned does nothing: it’s an
immediate alias of noop.

Origin: Forth-94 (FLOATING), Forth-2012 (FLOATING).

See also: falign, sfaligned, dfaligned, float.

Source file: <src/lib/math.floating_point.rom.fs>.

false

 false (-- false)

Return a false flag, a single-cell value with all bits
clear.

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: true, 0.

Source file: <src/kernel.z80s>.

far

 far (a1 -- a2)

Convert a far-memory address a1 ($0000 .. $FFFF) to its actual
equivalent a2 ($C000 .. $FFFF) and page in the corresponding
memory bank, using the configuration at far-banks.

far is written in Z80. Its equivalent definition in Forth
is the following:

 : far (a1 -- a2)
 u>ud /bank um/mod far-banks + c@ bank bank-start + ;

See also: far-hl_, bank.

Source file: <src/kernel.z80s>.

far!

 far! (x a --) "far-store"

Store x into far-memory address a.

far! is written in Z80. Its equivalent definition in Forth
is the following:

 : far! (x a --)
 >r split r@ 1+ far c! r> farc! ;

Faster but larger definition:

 : far! (x a --)
 >r split r@ 1+ far c! r> far c! default-bank ;

See also: far-banks.

Source file: <src/kernel.z80s>.

far+!

 far+! (n|u a --) "far-plus-store"

Add n|u to the single-cell number at far-memory address
a.

See also: farc+!, +!, farc!, far-banks.

Source file: <src/lib/memory.far.fs>.

far,

 far, (x --) "far-comma"

Compile x in far-memory headers space.

See also: far-n,, ,, farallot.

Source file: <src/lib/memory.far.fs>.

far,"

 far," ("ccc<quote>" --) "far-comma-quote"

Parse "ccc" delimited by a double-quote and compile the
string in far memory.

See also: fars,, parse, ,". s,, far-banks.

Source file: <src/lib/strings.far.fs>.

far-banks

 far-banks (-- ca)

ca is the address of an array of four bytes. It holds the
four memory banks used as a virtual 64-KiB continuous space,
called "far memory". Every byte holds the bank number used for
a 16-KiB range of addresses, as follows:

Table 24. Far-memory banks.

	Offset
	Address range
	Bank

	+0

	$0000 .. $3FFF

	1

	+1

	$4000 .. $7999

	3

	+2

	$8000 .. $BFFF

	4

	+3

	$C000 .. $FFFF

	6 (not used on +3DOS)

Bank 6 is used by +3DOS for disk cache and RAM disk,
and the default value of farlimit is $C000 instead of $0000.
Therefore, the name space is 16 KiB smaller on +3DOS than on
G+DOS or TR-DOS.

See also: bank, banks, bank-index, far, far@, farc@,
far!, farc!, farcount, farplace, fartype,
faruppers, default-1346.

Source file: <src/kernel.z80s>.

far-hl_

 far-hl_ (-- a) "far-h-l-underscore"

Address of the far.hl routine of the kernel, which
converts the far-memory address ($0000..$FFFF) hold in the
HL register to its actual equivalent ($C000..$FFFF) and
page in the corresponding memory bank.

This is the routine called by far. far-hl_ is used in
code words.

Input:

	
HL = far-memory address ($0000..$FFFF)

Output:

	
HL = actual memory address ($C000..$FFFF)

	
A DE corrupted

Source file: <src/lib/memory.far.fs>.

far-localized,

 far-localized, (x[langs]..x[1] --)

Store a langs number of cells, from x[1] to x[langs]
in the far-memory name space, updating np.

far-localized, is an unused alternative to
localized,.

Source file: <src/lib/translation.fs>.

far-localized-string

 far-localized-string (ca[langs]..ca[1] "name" --)

Create a word name that will return a counted string from
ca[langs]..ca[1], depending on lang.

ca[langs]..ca[1], are the far-memory addresses where the
strings have been compiled. ca[langs]..ca[1], are
ordered by ISO language code, being TOS the first one.

Note the string returned by name is in far memory, where
it’s compiled. Therefore the application needs fartype or
far>stringer to use it. far>localized-string is a
variant of far-localized-string that returns the
strings already copied in the stringer.

See also: far>localized-string, localized-string,
localized-word, localized-character, langs,
farcount.

Source file: <src/lib/translation.fs>.

far-n,

 far-n, (x[u]..x[1] u --) "far-n-comma"

If u is not zero, store u cells x[u]..x[1] into
far-memory headers
space, being x[1] the first one stored and x[u] the
last one.

See also: far,, n,, farallot.

Source file: <src/lib/memory.far.fs>.

far2!

 far2! (d a --) "far-two-store"

Store d into far-memory address a.

See also: far2@, far!, farc!, far-banks, 2!.

Source file: <src/lib/memory.far.fs>.

far2@

 far2@ (a -- d) "far-two-fetch"

Fetch d from far-memory address a.

See also: far2!, far2@+, far@, farc@, far-banks, 2@.

Source file: <src/lib/memory.far.fs>.

far2@+

 far2@+ (a -- a' xd) "far-two-fetch-plus"

Fetch xd from a. Return a', which is a incremented
by two cells. This is handy for stepping through
double-cell arrays.

See also: far@+, farc@+, far2@, 2@+. far-banks.

Source file: <src/lib/memory.far.fs>.

far2avariable

 far2avariable (n "name" --) "far-two-a-variable"

Create, in far memory, a 1-dimension double-cell variables
array name with n elements and the execution semantics
defined below.

name execution:

name (n — a)

Return far-memory address a of element n.

See also: faravariable, farcavariable, 2avariable.

Source file: <src/lib/data.array.variable.far.fs>.

far>localized-string

 far>localized-string (ca[langs]..ca[1] "name" --)

Create a word name that will return a counted string from
ca[langs]..ca[1], depending on lang, and copied in the
stringer.

ca[langs]..ca[1], are the far-memory addresses where the
strings have been compiled. ca[langs]..ca[1], are
ordered by ISO language code, being TOS the first one.

See also: far-localized-string, localized-string,
localized-word, localized-character, langs,
farcount, far>stringer.

Source file: <src/lib/translation.fs>.

far>sconstant

 far>sconstant (ca len "name" --) "far-to-s-constant"

Create a string constant name in far memory with value
ca len.

When name is executed, it returns the string ca len in
the stringer as ca2 len.

See also: farsconstant.

Source file: <src/lib/strings.far.fs>.

far>sconstants

 far>sconstants (0 ca[n]..ca[1] "name" -- n) "far-to-s-constants"

Create a table of string constants name in far memory,
using counted strings ca[n]..ca[1], being 0 a mark for
the last string on the stack, and return the number n of
compiled strings.

When name is executed, it converts the index on the stack
(0..n-1) to the correspondent string ca len in far
memory, and return a copy in the stringer.

Usage example:

 0 \ end of strings
 np@ far," kvar" \ string 4
 np@ far," tri" \ string 3
 np@ far," du" \ string 2
 np@ far," unu" \ string 1
 np@ far," nul" \ string 0
far>sconstants digitname constant digitnames

cr .(There are) digitnames . .(digit names:)
0 digitname cr type
1 digitname cr type
2 digitname cr type
3 digitname cr type cr

See also: sconstants, farsconstants.

Source file: <src/lib/strings.far.fs>.

far>stringer

 far>stringer (ca1 len1 -- ca2 len1) "far-to-stringer"

Save the string ca1 len1, which is in far memory, to the
stringer and return it as ca2 len1.

See also: >stringer.

Source file: <src/lib/strings.far.fs>.

far@

 far@ (a -- x) "far-fetch"

Fetch x from far-memory address a.

far@ is written in Z80. Its equivalent definition in Forth
is the following:

 : far@ (a -- x)
 dup 1+ far c@ >r farc@ r> join ;

Faster but larger definition:

 : far@ (a -- x)
 dup 1+ far c@ >r far c@ r> join default-bank ;

See also: far-banks.

Source file: <src/kernel.z80s>.

far@+

 far@+ (a -- a' x) "far-fetch-plus"

Fetch x from far-memory address a. Return a', which
is a incremented by one cell. This is handy for stepping
through cell arrays.

See also: farc@+, far@+, far2@+, @+, far-banks.

Source file: <src/lib/memory.far.fs>.

farallot

 farallot (n --) "far-allot"

If n is greater than zero, reserve n bytes of headers
space. If n is less than zero, release n bytes of
headers space. If n is zero, leave the headers-space
pointer unchanged.

See also: farfill, far-banks.

Source file: <src/lib/memory.far.fs>.

faravariable

 faravariable (n "name" --) "far-a-variable"

Create, in far memory, a 1-dimension single-cell variables
array name with n elements and the execution semantics
defined below.

name execution:

name (n — a)

Return far-memory address a of element n.

See also: far2avariable, farcavariable, avariable.

Source file: <src/lib/data.array.variable.far.fs>.

farc!

 farc! (c ca --) "far-c-store"

Store c into far-memory address ca.

See also: far-banks.

Source file: <src/kernel.z80s>.

farc+!

 farc+! (c ca -) "far-c-plus-store"

Add c to the char at far-memory address ca.

See also: far+!, c+!, farc!, far-banks.

Source file: <src/lib/memory.far.fs>.

farc@

 farc@ (ca -- c) "far-c-fetch"

Fetch c from far-memory address ca.

See also: far-banks.

Source file: <src/kernel.z80s>.

farc@+

 farc@+ (ca -- ca' c) "far-c-fetch-plus"

Fetch the character c at far-memory address ca. Return
ca', which is ca incremented by one character. This
is handy for stepping through character arrays.

See also: far@+, far-banks.

Source file: <src/lib/memory.far.fs>.

farcavariable

 farcavariable (n "name" --) "far-c-a-variable"

Create, in far memory, a 1-dimension character variables
array name with n elements and the execution semantics
defined below.

name execution:

name (n — ca)

Return far-memory address ca of element n.

See also: faravariable, far2avariable, cavariable.

Source file: <src/lib/data.array.variable.far.fs>.

farcount

 farcount (ca1 -- ca2 len2)

A variant of count that works with far-memory addresses.

See also: far-banks.

Source file: <src/kernel.z80s>.

fardump

 fardump (ca len --) "far-dump"

Show the contents of len bytes from far-memory address
ca.

See also: farwdump, dump.

Source file: <src/lib/tool.dump.fs>.

farerase

 farerase (ca len --) "far-erase"

If len is greater than zero, clear all bits in each of
len consecutive address units of far memory beginning at
ca.

See also: farfill, farallot, far-n,, farc!, far-banks.

Source file: <src/lib/memory.far.fs>.

farfill

 farfill (ca len b --) "far-fill"

If len is not zero, store b in each of len
consecutive characters of far memory beginning at a.

See also: farerase, farallot, far-n,, farc!,
far-banks, fill.

Source file: <src/lib/memory.far.fs>.

farlimit

 farlimit (-- a)

A variable. a is the address of a cell containing the
address above the highest address usable by the name space
(the region addressed by np). Its default value, which is
restored by cold, is $0000 on G+DOS and TR-DOS, and $C000 on
+3DOS.

farlimit can be modified by a program in order to reserve
a far-memory zone for special purposes.

Origin: Fig-Forth’s limit constant.

See also: farunused, limit, far-banks, default-1346,
fyi, greeting.

Source file: <src/kernel.z80s>.

farlimit-heap

 farlimit-heap (n -- a)

Create a heap of n bytes right above farlimit and
return its address a. farlimit is moved down n bytes,
and heap-bank is updated with the corresponding bank.

allocate, resize and free page in the corresponding
bank at the start and restore the default bank at the end.

The heap must be in one memory bank. Therefore,
before executing farlimit-heap, the application must
check that the n bytes below farlimit belong to one
memory bank.

See also: allot-heap, bank-heap, limit-heap, empty-heap.

Source file: <src/lib/memory.allocate.COMMON.fs>.

farlowers

 farlowers (ca len --)

A variant of lowers that works in far memory.

See also: far-banks.

Source file: <src/kernel.z80s>.

farplace

 farplace (ca1 len1 ca2 --)

Store the string ca1 len1 (which must be below memory
address $C000) as a counted string at far-memory address
ca2.

See also: far-banks, place.

Source file: <src/kernel.z80s>.

fars,

 fars, (ca len --) "fars-comma"

Compile a string in far memory.

See also: farplace, farallot, np@, s,.

Source file: <src/lib/strings.far.fs>.

farsconstant

 farsconstant (ca len "name" --) "far-s-constant"

Create a string constant name in far memory with value
ca len.

When name is executed, it returns the string ca len in
far memory as ca2 len.

See also: far>sconstant.

Source file: <src/lib/strings.far.fs>.

farsconstants

 farsconstants (0 ca[n]..ca[1] "name" --) "far-s-constants"

Create a table of string constants name in far memory,
using counted strings ca[n]..ca[1], being 0 a mark for
the last string on the stack, and return the number n of
compiled strings.

When name is executed, it converts the index on the stack
(0..n-1) to the correspondent string ca len in far
memory.

Usage example:

 0 \ end of strings
 np@ far," kvar" \ string 4
 np@ far," tri" \ string 3
 np@ far," du" \ string 2
 np@ far," unu" \ string 1
 np@ far," nul" \ string 0
farsconstants digitname constant digitnames

cr .(There are) digitnames . .(digit names:)
0 digitname cr fartype
1 digitname cr fartype
2 digitname cr fartype
3 digitname cr fartype cr

See also: sconstants, far>sconstants.

Source file: <src/lib/strings.far.fs>.

farsconstants,

 farsconstants, (0 ca[n]..ca[1] "name" -- n) "far-s-constants-comma"

Create a table of string constants name in far memory,
using counted strings ca[n]..ca[1], being 0 a mark for
the last string on the stack, and return the number n of
compiled strings.

When name is executed, it returns an address that holds
the address of the table in far memory.

farconstants, is a common factor of farsconstants and
far>sconstants.

Source file: <src/lib/strings.far.fs>.

farsconstants>

 farsconstants> (n a -- ca len) "far-s-constants-from"

Return the far-memory string ca len whose address is
stored at the n cell of the table a in data space.

farsconstants> is a factor of farsconstants and
far>sconstants.

Source file: <src/lib/strings.far.fs>.

fartype

 fartype (ca len --)

If len is greater than zero, display the character string
ca len, which is stored in the far memory.

See also: far-banks, type, fartype-ascii.

Source file: <src/lib/display.type.fs>.

fartype-ascii

 fartype-ascii (ca len --)

If len is greater than zero, display the string ca len,
which is stored in far memory, using emit-ascii to make
sure the characters are graphic ASCII characters.

See also: fartype, type-ascii.

Source file: <src/lib/display.type.fs>.

farunused

 farunused (-- u)

Return the amount of far-memory space remaining in the region
addressed by np, in bytes.

Definition:

 : farunused (-- u) farlimit @ np @ - ;

See also: farlimit, unused, os-unused, fyi, greeting.

Source file: <src/kernel.z80s>.

faruppers

 faruppers (ca len --) "far-uppers"

Convert string ca len, which is stored in far memory, to
uppercase.

See also: uppers, far-banks.

Source file: <src/lib/strings.far.fs>.

farwdump

 farwdump (a len --) "far-w-dump"

Show the contents of len cells from far-memory address
a.

See also: fardump, wdump.

Source file: <src/lib/tool.dump.fs>.

fasin

 fasin (F: r1 -- r2)

See also: facos, fatan, fsin.

Source file: <src/lib/math.floating_point.rom.fs>.

fast-get-key?

 fast-get-key? (-- f) "fast-get-key-question"

An alternative to key?. It works also when the system
interrupts are off. Faster variant with absolute jumps.

See also: get-key?.

Source file: <src/lib/keyboard.get-key-question.fs>.

fast-gxy>scra_

 fast-gxy>scra_ (-- a) "fast-g-x-y-to-s-c-r-a-underscore"

Return address a of a a modified copy of the PIXEL-ADD
ROM routine ($22AA), to let the range of the y coordinate
be 0..191 instead of 0..175.

This code is a bit faster than slow-gxy>scra_ because the
necessary jump to the ROM is saved and a useless and a
has been removed. But in most cases the speed gain is so
small (only 0.01: see set-pixel-bench, defined in
<src/lib/meta.benchmark.MISC.fs>) that it’s not worth the
extra space, including the assembler.

When fast-gxy>scra_ is loaded, it is set as the current
action of gxy>scra_.

Input registers:

	
C = x cordinate (0..255)

	
B = y coordinate (0..191)

Output registers:

	
HL = address of the pixel byte in the screen bitmap

	
A = position of the pixel in the byte address (0..7),
note: position 0=bit 7, position 7=bit 0.

See also: gxy176>scra_.

Source file: <src/lib/graphics.pixels.fs>.

fast-pixels

 fast-pixels (-- n)

Return the number n of pixels set on the screen.
fast-pixels is the default action of pixels.

See also: slow-pixels, bits.

Source file: <src/lib/graphics.pixels.fs>.

fast-random

 fast-random (n1 -- n2)

Return a random number n2 from 0 to n1 minus 1.

See also: fast-rnd, random.

Source file: <src/lib/random.fs>.

fast-rnd

 fast-rnd (-- u) "fast-r-n-d"

Return a random number u.

fast-rnd generates a sequence of pseudo-random values
that has a cycle of 65536 (so it will hit every single
number): f(n+1)=241f(n)+257.

See also: fast-random, rnd.

Source file: <src/lib/random.fs>.

fatan

 fatan (F: r1 -- r2)

See also: facos, fasin, ftan.

Source file: <src/lib/math.floating_point.rom.fs>.

fbuf

 fbuf (-- ca)

Return the address ca of the 100-byte search buffer used
by the gforth-editor.

See also: rbuf, ibuf,
f.

Source file: <src/lib/prog.editor.gforth.fs>.

fconstant

 fconstant ("name" --) (F: r --) "f-constant"

Create a floating-point constant called name with value
r.

Origin: Forth-94 (FLOATING), Forth-2012 (FLOATING).

See also: constant, 2constant, cconstant, fvariable.

Source file: <src/lib/math.floating_point.rom.fs>.

fcos

 fcos (F: r1 -- r2)

See also: fsin, ftan, facos.

Source file: <src/lib/math.floating_point.rom.fs>.

fdepth

 fdepth (-- +n) "f-depth"

+n is the number of values contained on the
floating-point stack.

Origin: Forth-94 (FLOATING), Forth-2012 (FLOATING).

See also: fp0, (fp@ ,float, depth, rdepth.

Source file: <src/lib/math.floating_point.rom.fs>.

fetchhl

 fetchhl (-- a) "fetch-h-l"

A constant. a is the address of a secondary entry point in
the code of @. The code at a fetches the cell pointed by
the HL register, pushes it onto the stack and then continues
at the address returned by next.

See also: pushhl.

Source file: <src/kernel.z80s>.

field:

 field: (n1 "name" -- n2) "field-colon"

Parse name. offset is the first cell aligned
value greater than or equal to n1. n2 = offset + 1
cell.

Create a definition for name with the execution semantics
defined below.

name execution: (a1 -- a2)

Add the offset calculated during the compile-time action
to a1 giving the address a2.

Origin: Forth-2012 (FACILITY EXT).

See also: begin-structure, +field.

Source file: <src/lib/data.begin-structure.fs>.

file-id

 file-id (-- fid true | false)

If there is a file identifier not used yet, return it fid
and true; otherwise return false.

See also: #file-ids, file-ids`.

Source file: <src/lib/dos.plus3dos.fs>.

file-ids

 file-ids (-- ca)

ca is the address of a byte table containing the status
of the file identifiers:

Table 25. Meaning of the bytes hold in the file-ids table.

	Byte
	Meaning

	$00

	Not used

	$FF

	Used

See also: #file-ids, file-id.

Source file: <src/lib/dos.plus3dos.fs>.

file-position

 file-position (fid -- ud ior)

Return the the current file position ud for the file
identified by fid, and the I/O result code ior. If
ior is non-zero, ud is undefined.

Origin: Forth-94 (FILE), Forth-2012 (FILE).

See also: reposition-file, file-size, open-file,
create-file.

Source file: <src/lib/dos.plus3dos.fs>.

file-size

 file-size (fid - ud ior)

ud is the size, in bytes, of the file identified by
fid. ior is the I/O result code. This operation
does not affect the value returned by file-position. If
ior is non-zero, ud is undefined.

file-size returns unpredictable results on the
ZX Spectrum +2A/+2B/+3, because of a bug in the +3DOS ROM:
ud may be correct, or rounded to 128-byte blocks, or
correspond to the previously checked file. The bug was
fixed in the improved ROM of the ZX Spectrum +3e.

Origin: Forth-94 (FILE), Forth-2012 (FILE).

See also: file-position, open-file.

Source file: <src/lib/dos.plus3dos.fs>.

fill

 fill (ca len b --)

If len is greater than zero, store b in each of len
consecutive bytes of memory beginning at ca.

Origin: fig-Forth, Forth-83 (Required Word Set), Forth-94
(CORE), Forth-2012 (CORE).

See also: erase, farfill, move.

Source file: <src/kernel.z80s>.

find

 find (--)

A command of specforth-editor:
Search for a match to the string at pad, from the cursor
position until the end of block. If no match found issue
an error message and reposition the cursor at the top of
the block.

See also: 1line.

Source file: <src/lib/prog.editor.specforth.fs>.

find

 find (ca -- ca 0 | xt 1 | xt -1)

Find the definition named in the counted string at ca.
If the definition is not found, return ca and zero. If
the definition is found, return its execution token xt.
If the definition is immediate, also return one (1),
otherwise also return minus-one (-1).

Origin: Forth-83 (Required Word Set), Forth-94 (CORE,
SEARCH), Forth-2012 (CORE, SEARCH).

See also: find-name, find-name-from, find-name-in.

Source file: <src/lib/word_lists.fs>.

find-name

 find-name (ca len -- nt | 0)

Find the definition identified by the string ca len in the
current search order. If the definition is not found after
searching all the vocabularies in the search order, return
zero. If the definition is found, return its nt.

Definition:

 : find-name (ca len -- nt | 0)
 #order @ 0 ?do
 2dup context i cells + @ @ find-name-from ?dup
 (ca len nt nt | ca len 0)
 if nip nip unloop exit then (ca len)
 loop 2drop false ;

Origin: Gforth.

See also: find-name-in, find-name-from, find.

Source file: <src/kernel.z80s>.

find-name-from

 find-name-from (ca len nt1 -- nt2 | 0)

Find the definition named in the string ca len, starting at
nt1. If the definition is found, return its nt2, else
return zero.

String ca len must be below memory address $C000.

See also: find-name, find-name-in, find.

Source file: <src/kernel.z80s>.

find-name-in

 find-name-in (ca len wid -- nt | 0)

Find the definition named in the string at ca len, in the
word list identified by wid. If the definition is found,
return its nt, else return zero.

See also: search-wordlist, find-name-from, find-name,
find.

Source file: <src/lib/word_lists.fs>.

find-substitution

 find-substitution (ca len -- xt f | 0)

Given a string ca len, find its substitution. Return
xt and f if found, or just zero if not found.

See also: replaces.

Source file: <src/lib/strings.replaces.fs>.

finish-code

 finish-code (--)

End the current definition, allow it to be found in the
dictionary and enter interpretation state.

finish-code is a factor of ; and ;code.

Definition:

 : finish-code (--)
 ?csp postpone [noname? @ noname? off ?exit reveal ;

Origin: Gforth.

See also: reveal, noname?, ?csp, [, no-exit.

Source file: <src/kernel.z80s>.

first-drive

 first-drive (-- c)

A cconstant. c is the identifier of the first drive
available in the DOS.

See also: max-drives, drive.

Source file: <src/kernel.z80s>.

first-esc-block-char

 first-esc-block-char (-- a)

A variable. a is the address of a cell containing the
code of the first block graphic. Its default value is 128,
like in the ZX Spectrum charset. This variable can be
modified in order to make the escaped block characters
produce a different range of codes.

See also: esc-block-chars-wordlist.

Source file: <src/lib/strings.escaped.graphics.fs>.

first-locatable

 first-locatable (-- a)

A variable. a is the address of a cell containing the
number of the first block to be searched by located and
its descendants.

See also: last-locatable, need-from.

Source file: <src/lib/002.need.fs>.

first-name

 first-name (ca1 len1 -- ca2 len2)

Return the first name ca2 len2 from string ca1 len1. A
name is a substring separated by spaces.

See also: /first-name, last-name, /name, -prefix,
/string.

Source file: <src/lib/strings.MISC.fs>.

first-stream

 first-stream (-- n)

n is the number of the first stream.

See also: last-stream, os-strms, stream>, stream?.

Source file: <src/lib/os.fs>.

fit-stringer

 fit-stringer (len --)

Make sure there’s room in the stringer for len characters.

Definition:

 : fit-stringer (len --)
 dup unused-stringer > if empty-stringer then
 negate +stringer +! ;

See also: unused-stringer, empty-stringer, +stringer.

Source file: <src/kernel.z80s>.

flash-mask

 flash-mask (-- b)

A cconstant. b is the bitmask of the bit used to indicate
the flash status in an attribute byte.

See also: unflash-mask, flashy, set-flash, attr!,
bright-mask, paper-mask, ink-mask.

Source file: <src/lib/display.attributes.fs>.

flash.

 flash. (n --) "flash-dot"

Set flash n by printing the corresponding control
characters. If n is zero, turn flash off; if n is one,
turn flash on; if n is eight, set transparent flash.
Other values of n are converted as follows:

	
2, 4 and 6 are converted to 0.

	
3, 5 and 7 are converted to 1.

	
Values greater than 8 or less than 0 are converted to 8.

flash. is much slower than set-flash or attr!, but
it can handle pseudo-color 8 (transparent), setting the
corresponding system variables accordingly.

See also: bright., (0-1-8-color..

Source file: <src/lib/display.attributes.fs>.

flashy

 flashy (b1 -- b2)

Convert attribute b1 to its flashy equivalent b2.

flashy is written in Z80. Its equivalent definition in
Forth is the following:

 : flashy (b1 -- b2) flash-mask or ;

See also: flash-mask, papery, brighty, inversely.

Source file: <src/lib/display.attributes.fs>.

flip

 flip (x1 -- x2)

Exchange the low and high bytes within x1, resulting x2.

Origin: eForth.

flip is called >< in Forth-79 (Word Reference
Set) and Forth-83 (Uncontrolled Reference Words), swab in
LaForth (c. 1980) and cswap in other Forth systems.

See also: split, join.

Source file: <src/kernel.z80s>.

float

 float (-- n)

n is the size in bytes of a floating-point number.

See also: floats, float+, float-.

Source file: <src/lib/math.floating_point.rom.fs>.

float+

 float+ (fa1 -- fa2) "float-plus"

Add the size in bytes of a floating-point number to fa1,
giving fa2.

See also: float-, float, floats.

Source file: <src/lib/math.floating_point.rom.fs>.

float-

 float- (fa1 -- fa2) "float-minus"

Subtract the size in bytes of a floating-point number from
fa1, giving fa2.

See also: float+, float, floats.

Source file: <src/lib/math.floating_point.rom.fs>.

floats

 floats (n1 -- n2)

n2 is the size in bytes of n1 floating-point
numbers.

See also: float, float+, float-.

Source file: <src/lib/math.floating_point.rom.fs>.

floor

 floor (F: r1 -- r2)

Round r1 to an integral value using the "round toward
negative infinity" rule, giving r2.

Origin: Forth-94 (FLOATING), Forth-2012 (FLOATING).

See also: ftrunc, fround.

Source file: <src/lib/math.floating_point.rom.fs>.

floored

 floored (-- f)

f is true if floored division is the default.

See also: environment?.

Source file: <src/lib/environment-question.fs>.

flush

 flush (--)

Perform the function of save-buffers, then unassign all
block buffers.

Origin: Forth-83 (Required Word Set), Forth-94 (BLOCK),
Forth-2012 (BLOCK).

See also: empty-buffers.

Source file: <src/lib/blocks.fs>.

flush-drive

 flush-drive (c -- ior)

Write any pending headers, data, directory entries for
drive c ('A'..'P'), returning the I/O result code ior.

This word ensures that the disk is up to date. It can be
called at any time, even when files are open.

See also: set-drive, close-file.

Source file: <src/lib/dos.plus3dos.fs>.

fly-located

 fly-located (ca len -- block | 0)

Locate the first block whose header contains the string ca
len (surrounded by spaces), and return its number. If not
found, return zero. The search is case-sensitive.
Index all searched blocks on the fly.

See also: use-fly-index.

Source file: <src/lib/blocks.indexer.fly.fs>.

fm/mod

 fm/mod (d1 n1 -- n2 n3) "f-m-slash-mod"

Floored division:

 d1 = n3*n1+n2
 n1>n2>=0 or 0>=n2>n1

Divide d1 by n1, giving the floored quotient n3 and
the remainder n2. Input and output stack arguments are
signed.

Table 26. Floored Division Example

	Dividend
	Divisor
	Remainder
	Quotient

	10

	7

	3

	1

	-10

	7

	4

	-2

	10

	-7

	-4

	-2

	-10

	-7

	-3

	1

Origin: Forth-94 (CORE), Forth-2012 (CORE).

See also: sm/rem, m/.

Source file: <src/lib/math.operators.1-cell.fs>.

for

 for
 Compilation: (R: -- dest)
 Run-time: (u --)

Start of a for..step loop, that will iterate u+1
times, starting with u and ending with 0.

The current value of the index can be retrieved with
for-i.

for is an immediate and compile-only word.

See also: dfor, times, ?do, executions.

Source file: <src/lib/flow.for.fs>.

for-i

 for-i (-- n)

Return the current index n of a for loop.

Source file: <src/lib/flow.for.fs>.

forget-transient

 forget-transient (--)

Forget the transient code compiled between transient and
end-transient, by unlinking the header space that was
reserved and used for it. forget-transient must be
used when the transient code is not going to be used any
more.

The inner operation is: Restore the old value of
last-wordlist; store the nt of the latest word
created before compiling the transient code, into the lfa
of the first word created after the transient code was
finished by end-transient.

Source file: <src/lib/modules.transient.fs>.

form

 form (-- cols rows)

Number of columns and rows in the terminal in the
current display mode (e.g. mode-32, mode-64ao).

Origin: Gforth.

Source file: <src/lib/display.mode.COMMON.fs>.

form>xy

 form>xy (cols rows -- col row) "form-to-x-y"

col row is the new cursor position corresponding to a
display mode whose form is cols rows. col row are
calculated with the values returned by xy, columns and
rows in the current mode.

form>xy is a factor of >form.

Source file: <src/lib/display.mode.COMMON.fs>.

forth

 forth (--)

Transform the search order consisting of wid#n .. wid#2
wid#1 (where wid#1 is searched first) into wid#n ..
wid#2 wid#f, where wid#f is the word-list identifier
returned by forth-wordlist. I.e., replace the top word list
of the search order with forth-wordlist.

forth is the vocabulary corresponding to
forth-wordlist.

Origin: Forth-83 (Required Word Set), Forth-94 (SEARCH EXT),
Forth-2012 (SEARCH EXT).

See also: root, wordlist.

Source file: <src/kernel.z80s>.

forth-wordlist

 forth-wordlist (-- wid)

Return wid, the identifier of the word list that includes
all standard words provided by the implementation.
forth-wordlist is initially the compilation word list and
is part of the initial search order.

Origin: Forth-94 (SEARCH), Forth-2012 (SEARCH).

See also: wordlist, set-order, root-wordlist,
assembler-wordlist.

Source file: <src/kernel.z80s>.

forth2012-block-test

 forth2012-block-test (--)

Do nothing. This word is used just for doing need
forth2012-block-test in order to run only the core test
of forth2012-test-suite.

Source file: <src/lib/meta.test.forth2012-test-suite.fs>.

forth2012-core-test

 forth2012-core-test (--)

Do nothing. This word is used just for doing need
forth2012-core-test in order to run only the core test of
forth2012-test-suite.

Source file: <src/lib/meta.test.forth2012-test-suite.fs>.

forth2012-coreext-test

 forth2012-coreext-test (--)

Do nothing. This word is used just for doing need
forth2012-coreext-test in order to run only the core test
of forth2012-test-suite.

Source file: <src/lib/meta.test.forth2012-test-suite.fs>.

forth2012-coreplus-test

 forth2012-coreplus-test (--)

Do nothing. This word is used just for doing need
forth2012-coreplus-test in order to run only the core
test of forth2012-test-suite.

Source file: <src/lib/meta.test.forth2012-test-suite.fs>.

forth2012-double-test

 forth2012-double-test (--)

Do nothing. This word is used just for doing need
forth2012-double-test in order to run only the core test
of forth2012-test-suite.

Source file: <src/lib/meta.test.forth2012-test-suite.fs>.

forth2012-exception-test

 forth2012-exception-test (--)

Do nothing. This word is used just for doing need
forth2012-exception-test in order to run only the core
test of forth2012-test-suite.

Source file: <src/lib/meta.test.forth2012-test-suite.fs>.

forth2012-facility-test

 forth2012-facility-test (--)

Do nothing. This word is used just for doing need
forth2012-facility-test in order to run only the core
test of forth2012-test-suite.

Source file: <src/lib/meta.test.forth2012-test-suite.fs>.

forth2012-file-test

 forth2012-file-test (--)

Do nothing. This word is used just for doing need
forth2012-file-test in order to run only the core test of
forth2012-test-suite.

Source file: <src/lib/meta.test.forth2012-test-suite.fs>.

forth2012-locals-test

 forth2012-locals-test (--)

Do nothing. This word is used just for doing need
forth2012-locals-test in order to run only the core test
of forth2012-test-suite.

Source file: <src/lib/meta.test.forth2012-test-suite.fs>.

forth2012-memory-test

 forth2012-memory-test (--)

Do nothing. This word is used just for doing need
forth2012-memory-test in order to run only the core test
of forth2012-test-suite.

Source file: <src/lib/meta.test.forth2012-test-suite.fs>.

forth2012-report-errors

 forth2012-report-errors (--)

Report the errors found during the latest execution of
forth2012-test-suite.

Source file: <src/lib/meta.test.forth2012-test-suite.fs>.

forth2012-searchorder-test

 forth2012-searchorder-test (--)

Do nothing. This word is used just for doing need
forth2012-searchorder-test in order to run only the core
test of forth2012-test-suite.

Source file: <src/lib/meta.test.forth2012-test-suite.fs>.

forth2012-string-test

 forth2012-string-test (--)

Do nothing. This word is used just for doing need
forth2012-string-test in order to run only the core test
of forth2012-test-suite.

Source file: <src/lib/meta.test.forth2012-test-suite.fs>.

forth2012-test-suite

 forth2012-test-suite (--)

An unexistent word. This word is used just for doing need
forth2012-test-suite in order to run the Forth-2012 Test
Suite.

The following partial tests are available:
forth2012-file-test, forth2012-block-test,
forth2012-core-test, forth2012-coreext-test,
forth2012-coreplus-test, forth2012-double-test,
forth2012-exception-test, forth2012-facility-test,
forth2012-locals-test, forth2012-memory-test,
forth2012-searchorder-test, forth2012-string-test,
forth2012-tools-test, forth2012-utilities-test.

See also: forth2012-report-errors, ttester, hayes-test.

Source file: <src/lib/meta.test.forth2012-test-suite.fs>.

forth2012-tools-test

 forth2012-tools-test (--)

Do nothing. This word is used just for doing need
forth2012-tools-test in order to run only the core test
of forth2012-test-suite.

Source file: <src/lib/meta.test.forth2012-test-suite.fs>.

forth2012-utilities-test

 forth2012-utilities-test (--)

Do nothing. This word is used just for doing need
forth2012-utilities-test in order to run only the core
test of forth2012-test-suite.

Source file: <src/lib/meta.test.forth2012-test-suite.fs>.

fp

 fp (-- a) "f-p"

Return the address a of a cell containing the
floating-point stack pointer. a is the STKEND variable of
the OS.

The floating-point stack (which is the OS calculator
stack) grows towards higher memory, and fp points to
the first free position, therefore above top of stack.

See also: fp@, fp0.

Source file: <src/lib/math.floating_point.rom.fs>.

fp0

 fp0 (-- a) "f-p-zero"

Return address a of a cell containing the bottom address
of the floating-point stack. a is the STKBOT variable of
the OS.

The floating-point stack (which is the OS calculator
stack) grows towards higher memory.

See also: fp.

Source file: <src/lib/math.floating_point.rom.fs>.

fp@

 fp@ (-- fa) "f-p-fetch"

Return the address fa of the top of the floating-point
stack.

See also: fp.

Source file: <src/lib/math.floating_point.rom.fs>.

free

 free (a -- ior)

Return the contiguous region of data space indicated by a
to the system for later allocation. a shall indicate a
region of data space that was previously obtained by
allocate or resize.

If the operation succeeds, ior is zero. If the operation
fails, ior is the I/O result code.

free is a deferred word (see defer) whose action can
be charlton-free or gil-free, depending on the heap
implementation used by the application.

Origin: Forth-94 (MEMORY), Forth-2012 (MEMORY).

See also: allocate, resize, empty-heap.

Source file: <src/lib/memory.allocate.COMMON.fs>.

free-buffer

 free-buffer (n --)

If the current disk buffer has been updated, write its block
to the disk. Assign block number n to the disk buffer.

Definition:

 : free-buffer (n --)
 updated? if buffer-block write-buffer
 then disk-buffer ! ;

Source file: <src/kernel.z80s>.

free/wtype

 free/wtype (ca len -- ca' len') "free-slash-w-type"

Display in the current-window as many characters of
string ca len as fit in the current line, then remove
them from the string, returning the result string ca'
len'.

free/wtype is a factor of wltype and wtype.

See also: /wtype.

Source file: <src/lib/display.window.fs>.

fround

 fround (r1 -- r2) "f-round"

Round r1 to an integral value using the "round to
nearest" rule, giving r2.

Origin: Forth-94 (FLOATING), Forth-2012 (FLOATING).

See also: ftrunc, floor.

Source file: <src/lib/math.floating_point.rom.fs>.

fsin

 fsin (F: r1 -- r2)

See also: fcos, ftan, fasin.

Source file: <src/lib/math.floating_point.rom.fs>.

fta,

 fta, (a --) "f-t-a-comma"

Compile the Z80 assembler instruction LD A,(a), i.e.
fetch the contents of memory address a into register "A".

See also: sta,, ld,, ld#,.

Source file: <src/lib/assembler.fs>.

ftan

 ftan (F: r1 -- r2)

See also: fcos, fsin, fatan.

Source file: <src/lib/math.floating_point.rom.fs>.

ftap,

 ftap, (repg --) "f-t-a-p-comma"

Compile the Z80 assembler instruction LD A,(regp).

See also: stap,.

Source file: <src/lib/assembler.fs>.

fthl,

 fthl, (a --) "f-t-h-l-comma"

Compile the Z80 assembler instruction LD HL,(a), i.e.
fetch the contents of memory address a into register pair
"HL".

See also: sthl,, ftp,.

Source file: <src/lib/assembler.fs>.

ftp,

 ftp, (a regp --) "f-t-p-comma"

Compile the Z80 assembler instruction LD regp,(a),
i.e. fetch the contents of pair register regp from
memory address a.

For the "HL" register has a specific word: fthl,,
which compiles shorten and faster code.

See also: stp,.

Source file: <src/lib/assembler.fs>.

ftpx,

 ftpx, (disp regpi regp --) "f-t-p-x-comma"

Compile the Z80 assembler instructions required to fetch
register pair regp from the address pointed by regpi
plus disp.

Example: 16 ix h ftpx, will compile the Z80
instructions LD L,(IX+16) and LD H,(IX+17).

See also: stpx,, ftx,.

Source file: <src/lib/assembler.fs>.

ftrunc

 ftrunc (F: r1 -- r2) "f-trunc"

Round r1 to an integral value using the "round toward
zero" rule, giving r2.

Origin: Forth-94 (FLOATING), Forth-2012 (FLOATING).

See also: fround ,floor.

Source file: <src/lib/math.floating_point.rom.fs>.

ftx,

 ftx, (disp regpi reg --) "f-t-x-comma"

Compile the Z80 assembler instruction LD
reg,(regpi+disp).

See also: stx,.

Source file: <src/lib/assembler.fs>.

full-cat

 full-cat (-- a)

A variable a is the address of a cell containing a
flag. When the flag is true, cat, wcat, acat and
wacat display also system files. When the flag is
false, they don’t. Other values are not supported. The
default value is true.

See also: >cat.

Source file: <src/lib/dos.plus3dos.fs>.

fvariable

 fvariable ("name" --) (F: --) "f-constant"

Parse name. create a definition for name, which is
referred to as a "floating-point variable". allot a
float of data space, the data field of name, to hold
the contents of the variable. When name is later
executed, the address of its data field is placed on the
data stack.

Origin: Forth-94 (FLOATING), Forth-2012 (FLOATING).

See also: constant, 2constant, cconstant, fconstant.

Source file: <src/lib/math.floating_point.rom.fs>.

fyi

 fyi (--) "f-y-i"

Display information about the current status of the Forth
system.

See also: #words, here, last-wordlist, limit,
unused. np@, latest, current-latest, farlimit,
farunused, greeting.

Source file: <src/lib/tool.debug.fyi.fs>.

f~

 f~ (-- f) (F: r1 r2 r3 --) "f-tilde"

Medley for comparing r1 and r2 for equality:

	
r3>0: f~abs;

	
r3=0: f==;

	
r3<0: f~relabs.

Origin: Forth-94 (FLOATING EXT), Forth-2012 (FLOATING EXT).

See also: f~rel.

Source file: <src/lib/math.floating_point.rom.fs>.

f~abs

 f~abs (-- f) (F: r1 r2 r3 --) "f-tilde-abs"

Approximate equality with absolute error: |r1-r2|<r3.

Flag f is true if the absolute value of r1-r2 is less
than r3.

Origin: Gforth.

See also: f~rel, f~relabs.

Source file: <src/lib/math.floating_point.rom.fs>.

f~rel

 f~rel (-- f) (F: r1 r2 r3 --) "f-tilde-rel"

Approximate equality with relative error:
|r1-r2|<r3*|r1+r2|.

Flag f is true if the absolute value of r1-r2 is less
than the value of r3 times the sum of the absolute values
of r1 and r2.

See also: f~abs, f~relabs.

Source file: <src/lib/math.floating_point.rom.fs>.

f~relabs

 f~relabs (-- f) (F: r1 r2 r3 --) "f-tilde-rel-abs"

Approximate equality with relative error:
|r1-r2|<|r3|*|r1+r2|.

Flag f is true if the absolute value of r1-r2 is less
than the absolute value of r3 times the sum of the
absolute values of r1 and r2.

See also: f~rel, f~abs.

Source file: <src/lib/math.floating_point.rom.fs>.

g

g

 g (u --)

A command of gforth-editor:
Go to screen u.

See also:
c,
a,
n,
p,
t.

Source file: <src/lib/prog.editor.gforth.fs>.

g+dos

 g+dos (--) "g-plus-dos"

An alias of noop that is defined only in the G+DOS version
of Solo Forth. Its goal is to check the DOS a program is
running on, using defined or [defined].

g+dos is an immediate word.

See also: dos, tr-dos, +3dos.

Source file: <src/kernel.z80s>.

g-at-x

 g-at-x (gx --)

Set the current graphic x coordinate gx, without changing
the current graphic y coordinate.

See also: g-at-xy, g-at-y.

Source file: <src/lib/graphics.coordinates.fs>.

g-at-xy

 g-at-xy (gx gy --) "g-at-x-y"

Set the current graphic coordinates gx gy.

See also: g-xy, g-at-y, g-at-x, g-home.

Source file: <src/lib/graphics.coordinates.fs>.

g-at-y

 g-at-y (gy --)

Set the current graphic y coordinate gy, without changing
the current graphic x coordinate.

See also: g-at-xy, g-at-x.

Source file: <src/lib/graphics.coordinates.fs>.

g-cr

 g-cr (--) "g-c-r"

Move the graphic coordinates to the next character row.

See also: g-at-xy, g-emit.

Source file: <src/lib/display.g-emit.fs>.

g-emit

 g-emit (gx gy c --)

Display character c (32..255) at the current graphic
coordinates. If c greater than last-font-char from the
UDG font, otherwise it is printed from the main font.

The character is printed with overprinting (equivalent to
1 overprint).

See also: g-emit-udg, (g-emit, g-type.

Source file: <src/lib/display.g-emit.fs>.

g-emit-udg

 g-emit-udg (c --) "g-emit-u-d-g"

Display UDG c (0..255) at the current graphic
coordinates, from the font pointed by system variable
os-udg, which contains the address of the first UDG
bitmap (0).

The UDG character is printed with overprinting (equivalent
to 1 overprint).

See also: g-emit, g-emit_.

Source file: <src/lib/display.g-emit.fs>.

g-emit_

 g-emit_ (-- a) "g-emit-underscore"

a is the address of a machine code routine that prints an
8x8 bits character at graphic coordinates. Used by
g-emit-udg.

Input registers:

	
DE = address of the first char (0) bitmap in a charset

	
A = char code (0..255)

	
B = y coordinate

	
C = x coordinate

Modifies: AF BC HL IX DE

See also: g-emit.

Source file: <src/lib/display.g-emit.fs>.

g-emitted

 g-emitted (--)

Update the current graphic coordinates after printing a
character at them.

See g-emit, g-cr, g-at-xy.

Source file: <src/lib/display.g-emit.fs>.

g-home

 g-home (--)

Set the graphic coordinates to 0, 0.

See also: g-at-xy.

Source file: <src/lib/graphics.coordinates.fs>.

g-type

 g-type (ca len --)

If len is greater than zero, display the character string
ca len at the current graphic coordinates.

See also: g-emit.

Source file: <src/lib/display.g-emit.fs>.

g-x

 g-x (-- gx)

Return the current graphic x coordinate gx.

See also: g-xy, g-y, g-at-xy.

Source file: <src/lib/graphics.coordinates.fs>.

g-xy

 g-xy (-- gx gy) "g-x-y"

Return the current graphic coordinates gx gy.

See also: g-x, g-y, g-at-xy.

Source file: <src/lib/graphics.coordinates.fs>.

g-y

 g-y (-- gy)

Return the current graphic y coordinate gy.

See also: g-xy, g-x, g-at-xy.

Source file: <src/lib/graphics.coordinates.fs>.

gcd

 gcd (n1 n2 -- n3) "g-c-d"

n3 is the greatest common divisor of n1 and n2.

See also: /, mod.

Source file: <src/lib/math.operators.1-cell.fs>.

get-1346

 get-1346 (-- n1 n2 n3 n4) "get-1-3-4-6"

Return the +3DOS current configuration of RAM banks 1, 3, 4
and 6, which are organized as an array of 128 sector
buffers, each of 512 bytes. The cache and the RAM disk
occupy two separate (contiguous) areas of this array.

	

n1

	
first sector buffer of cache

	

n2

	
number of cache sector buffers

	

n3

	
first sector buffer of RAM disk

	

n4

	
number of RAM disk sector buffers

See also: set-1346, default-1346, bank.

Source file: <src/lib/dos.plus3dos.fs>.

get-block-drives

 get-block-drives (-- c#n..c#1 n | 0)

Get the current configuration of block drives, as
configured by set-block-drives.

See also: 2-block-drives, -block-drives, #block-drives,
block-drive!.

Source file: <src/lib/dos.COMMON.fs>.

get-bright

 get-bright (-- f)

If bright is active in the current attribute, return true,
else return false.

See also: set-bright, attr@, bright., get-paper,
get-ink, get-flash, bright-mask.

Source file: <src/lib/display.attributes.fs>.

get-current

 get-current (-- wid)

Return wid, the identifier of the compilation word list.

Definition:

 : get-current (-- wid) current @ ;

Origin: Forth-94 (SEARCH), Forth-2012 (SEARCH).

See also: current.

Source file: <src/kernel.z80s>.

get-date

 get-date (-- day month year)

Get the current date. The default date is 2016-01-01. It
can be changed with set-date. The date is not updated by
the system.

See also: set-date, date, time&date, .date.

Source file: <src/lib/time.fs>.

get-drive

 get-drive (-- c ior)

Get the current default drive c ('A'..'P'), i.e. the drive
implied by all filenames that do not specify a drive, and the
drive used by block operations. The default drive is initially
'A'. Return also an error result ior.

See also: set-drive, get-user.

Source file: <src/kernel.plus3dos.z80s>.

get-esc-order

 get-esc-order (-- wid[n]..wid[1] n)

Return the number of word lists n in the escaped strings
search order and the word lists identifiers
wid[n]..wid[1] identifying these word lists. wid[1]
identifies the word list that is searched first, and
wid[n] the word list that is searched last.

See also: set-esc-order, >esc-order.

Source file: <src/lib/strings.escaped.fs>.

get-filename-drive

 get-filename-drive (-- c ior)

Get drive c ('A'..'P') currently used as default drive, i.e.
the drive implied by all filenames that do not specify a
drive.

See also: set-filename-drive.

Source file: <src/kernel.plus3dos.z80s>.

get-flash

 get-flash (-- f)

If flash is active in the current attribute, return true,
else return false.

See also: set-flash, attr!, flash., get-paper,
get-ink, get-bright, flash-mask.

Source file: <src/lib/display.attributes.fs>.

get-font

 get-font (-- a)

Get address a of the current font (characters 32..127),
by fetching the system variable os-chars. a is the
bitmap address of character 0.

See also: set-font, default-font.

Source file: <src/lib/display.fonts.fs>.

get-heap

 get-heap (-- a u b)

Get the values of the current heap: its address a
(returned by heap), its size u (returned by /heap)
and its bank b (stored in heap-bank).

get-heap and set-heap are useful when more than one
memory heap are needed by the application.

Source file: <src/lib/memory.allocate.COMMON.fs>.

get-ink

 get-ink (-- b)

Get the ink color b from the current attribute.

See also: set-ink, attr@, ink., get-paper,
get-bright, get-flash, ink-mask.

Source file: <src/lib/display.attributes.fs>.

get-inkey

 get-inkey (-- 0 | c)

Leave the value of the key being pressed. If no key being
pressed leave zero.

get-inkey reads the keyboard, so it works even when the
keyboard is not read by an interrupts routine.

See also: inkey, key.

Source file: <src/lib/keyboard.get-inkey.fs>.

get-key?

 get-key? (-- f) "get-key-question"

An alternative to key?. It works also when the system
interrupts are off. Variant with relative jumps.

See also: key?, fast-get-key?.

Source file: <src/lib/keyboard.get-key-question.fs>.

get-mixer

 get-mixer (-- b)

Get the contents b of the mixer register of the
AY-3-8912 sound generator.

Register 7 (Mixer - I/O Enable)

This controls the enable status of the noise and tone
mixers for the three channels, and also controls the I/O
port used to drive the RS232 and Keypad sockets.

	

Bit 0

	
Channel A Tone Enable (0=enabled).

	

Bit 1

	
Channel B Tone Enable (0=enabled).

	

Bit 2

	
Channel C Tone Enable (0=enabled).

	

Bit 3

	
Channel A Noise Enable (0=enabled).

	

Bit 4

	
Channel B Noise Enable (0=enabled).

	

Bit 5

	
Channel C Noise Enable (0=enabled).

	

Bit 6

	
I/O Port Enable (0=input, 1=output).

	

Bit 7

	
Not used.

~ Disassembly of the ZX Spectrum 128k ROM0

See also: set-mixer, -mixer, @sound.

Source file: <src/lib/sound.128.fs>.

get-order

 get-order (-- wid#n .. wid#1 n)

Return the number of word lists n in the search order and
the word lists identifiers wid#n .. wid#1 identifying these
word lists. wid#1 identifies the word list that is
searched first, and wid#n the word list that is searched
last.

 : get-order (-- wid#n .. wid#1 n)
 #order @ dup 0 ?do
 dup i - 1- cells context + @ swap
 loop ;

Origin: Forth-94 (SEARCH), Forth-2012 (SEARCH).

See also: set-order, >order, context, #order.

Source file: <src/kernel.z80s>.

get-paper

 get-paper (-- b)

Get the paper color b from the current attribute.

See also: set-paper, attr@, paper., get-ink,
get-bright, get-flash, paper-mask.

Source file: <src/lib/display.attributes.fs>.

get-sector-unit

 get-sector-unit (-- n)

Get unit n (0..1) currently used for sector-level access,
i.e. the unit used by transfer-sector and transfer-block.
The default unit is initially 0.

See also: set-sector-unit.

Source file: <src/kernel.plus3dos.z80s>.

get-time

 get-time (-- second minute hour)

Return the current time.

The computer doesn’t have a real clock. The OS frames
counter is used instead, which is increased by the OS
interrupts routine every 20th ms. The counter is a 24-bit
value, so its maximum is $FFFFFF ticks of 20 ms (335544
seconds or 5592 minutes or 93 hours), then it starts again
from zero.

See also: set-time, time&date, .time.

Source file: <src/lib/time.fs>.

get-udg

 get-udg (-- a) "get-u-d-g"

Get address a of the current UDG set (characters
0..255), by fetching the system variable os-udg. a
is the bitmap address of character 0.

See also: set-udg.

Source file: <src/lib/graphics.udg.fs>.

get-user

 get-user (-- n ior)

Get the current user area n, i.e. the user area implied
by all filenames that do not specify a user number. ior
is the I/O result code.

See also: set-user, get-drive.

Source file: <src/lib/dos.plus3dos.fs>.

gforth-editor

 gforth-editor (--)

A vocabulary containing a port of the Gforth block
editor. When gforth-editor is loaded, it becomes the
action of editor.

Table 27. Gforth block editor commands

	Word
	Description

	a
(--)

	Go to marked position.

	c
(n --)

	Move cursor by n chars.

	d
(--)

	Delete marked area.

	dl
(--)

	Delete a line at the cursor position.

	f
("ccc<eol>" --)

	Search ccc and mark it.

	g
(u --)

	Go to screen u.

	h
(--)

	Type the line of the marked area, highlighting it.

	i
("ccc<eol>" --)

	Insert ccc; if ccc is empty, instert the contents of
the insert buffer.

	il
(--)

	Insert a line at the cursor position..

	l
(--)

	List current screen.

	m
(--)

	Mark current position.

	n
(--)

	Go to next screen.

	p
(--)

	Go to previous screen.

	r
("ccc<eol>" --)

	Replace marked area.

	s
(u "ccc<eol>" --)

	Search ccc until screen u; if ccc is empty, use the
string of the previous search.

	t
(u "ccc<eol>"--)

	Go to line u and insert ccc.

	y
(--)

	Yank deleted string.

See also: specforth-editor.

Source file: <src/lib/prog.editor.gforth.fs>.

gigatype

 gigatype (ca len --)

If len is greater than zero, display text string ca len
using the current font, with doubled pixels (16x16 pixels
per character) and modifying the characters on the fly
after the style stored in gigatype-style. The text is
combined with the current content of the screen, as if
overprint were active. The current attribute, set by
attr! and other words, is used to color the text.

Usage example:

 : demo (--)
 cls
 8 0 ?do
 i gigatype-style c!
 17 0 i 3 * tuck at-xy s" GIGATYPE" gigatype
 at-xy ." style " i .
 loop
 key drop home ;

See also: gigatype-title, set-font, (gigatype,
type.

Source file: <src/lib/display.gigatype.fs>.

gigatype-style

 gigatype-style (-- ca)

ca is the address of a byte containing the font style
used by gigatype (0..7).

Source file: <src/lib/display.gigatype.fs>.

gigatype-title

 gigatype-title (ca len --)

If len1 is greater than zero, display the character
string ca len at the center of the current row (the
current column is not used), using gigatype.

gigatype prints double-size (16x16 pixels)
characters. Therefore, the maximum value of len1 is 16
characters, but gigatype-title does no check. Beside,
it calculates the column of the title assuming the current
mode is mode-32 (32 characters per line), which is the
default one.

See also: gigatype-style, type-center-field.

Source file: <src/lib/display.gigatype.fs>.

gil-allocate

 gil-allocate (u -- a ior)

Allocate u bytes of contiguous data space. The data-space
pointer is unaffected by this operation. The initial
content of the allocated space is undefined.

If the allocation succeeds, a is the starting
address of the allocated space and ior is zero.

If the operation fails, a does not represent a valid
address and ior is the I/O result code #-59, the throw
code for allocate.

gil-allocate is the action of allocate in the heap
implementation based on code written by Javier Gil,
whose words are defined in gil-heap-wordlist.

See also: gil-free.

Source file: <src/lib/memory.allocate.gil.fs>.

gil-empty-heap

 gil-empty-heap (--)

Empty the current heap, which was created by
allot-heap, limit-heap, bank-heap or farlimit-heap.

gil-empty-heap is the action of empty-heap in the
memory heap implementation based on code written by
Javier Gil, whose words are defined in gil-heap-wordlist.

See also: gil-allocate, gil-free.

Source file: <src/lib/memory.allocate.gil.fs>.

gil-free

 gil-free (a -- ior)

Return the contiguous region of data space indicated by a
to the system for later allocation. a shall indicate a
region of data space that was previously obtained by
gil-allocate.

gil-free is the action of free in the heap
implementation based on code written by Javier Gil,
whose words are defined in gil-heap-wordlist.

Source file: <src/lib/memory.allocate.gil.fs>.

gil-heap-wordlist

 gil-heap-wordlist (-- wid)

wid is the word-list identifier of the word list that
holds the words the memory heap implementation adapted
from code written by Javier Gil (2007-01).

need gil-heap-wordlist is used to load the memory heap
implementation and configure allocate, free and
empty-heap accordingly. This implementation of the memory
heap does not provide resize.

An alternative, bigger implementation of the memory heap is
provided by charlton-heap-wordlist.

The actual heap must be created with allot-heap,
limit-heap, farlimit-heap or bank-heap, which are
independent from the heap implemention.

Source file: <src/lib/memory.allocate.gil.fs>.

graphic-ascii-char?

 graphic-ascii-char? (c -- f) "graphic-ascii-char-question"

Is c a printable ASCII character, i.e. in the range
32..126?

See also: ascii-char?, >graphic-ascii-char.

Source file: <src/lib/chars.fs>.

greater-of

 greater-of
 Compilation: (C: -- of-sys)
 Run-time: (x1 x2 -- | x1)

greater-of is an immediate and compile-only word.

Usage example:

 : test (x --)
 case
 10 of ." ten!" endof
 15 greater-of ." greater than 15" endof
 ." less than 10 or 11 ... 15"
 endcase ;

See also: case, less-of, (greater-of.

Source file: <src/lib/flow.case.fs>.

green

 green (-- b)

A cconstant that returns 4, the value that represents the
green color.

See also: black, blue, red, magenta, cyan,
yellow, white, contrast, papery, inversely.

Source file: <src/lib/display.attributes.fs>.

greeting

 greeting (--)

Display the boot message.

See also: cold, fyi.

Source file: <src/kernel.z80s>.

gx>x

 gx>x (gx -- col) "g-x-to-x"

Convert graphic coordinate gx to cursor column col.

See also: gy>y, x>gx.

Source file: <src/lib/graphics.pixels.fs>.

gxy176>scra

 gxy176>scra (gx gy -- n a) "g-x-y-176-to-s-c-r-a"

Return screen address a and pixel position n (0..7) of
pixel coordinates gx (0..255) and gy (0..175).

See also: gxy176>scra_, gxy>scra, xy>scra.

Source file: <src/lib/graphics.pixels.fs>.

gxy176>scra_

 gxy176>scra_ (-- a) "g-x-y-176-to-s-c-r-a-underscore"

Return address a of a routine that uses an alternative
entry point to the PIXEL-ADD ROM routine ($22AA), to bypass
the error check.

Input registers:

	
C = x cordinate (0..255)

	
B = y coordinate (0..176)

Output registers:

	
HL = address of the pixel byte in the screen bitmap

	
A = position of the pixel in the byte address (0..7),
note: position 0=bit 7, position 7=bit 0.

See also: gxy176>scra, gxy>scra_.

Source file: <src/lib/graphics.pixels.fs>.

gxy>attra

 gxy>attra (gx gy -- a) "g-x-y-to-a-t-t-r-a"

Convert pixel coordinates gx gy to their correspondent
attribute address a.

Source file: <src/lib/graphics.pixels.fs>.

gxy>scra

 gxy>scra (gx gy -- n a) "g-x-y-to-s-c-r-a"

Return screen address a and pixel position n (0..7) of
pixel coordinates gx (0..255) and gy (0..191).

See also: gxy>scra_, gxy176>scra, xy>scra.

Source file: <src/lib/graphics.pixels.fs>.

gxy>scra_

 gxy>scra_ (-- a) "g-x-y-to-s-c-r-a-underscore"

A deferred word (see defer) that executes
fast-gxy>scra_ or, by default, slow-gxy>scra_: Return
address a of an alternative to the PIXEL-ADD ROM routine
($22AA), to let the range of the y coordinate be 0..191
instead of 0..175.

See also: gxy176>scra_, xy>scra_.

Source file: <src/lib/graphics.pixels.fs>.

gy>y

 gy>y (gy -- row) "g-y-to-y"

Convert graphic y coordinate gy to cursor coordinate
row.

See also: gx>x, y>gy.

Source file: <src/lib/graphics.pixels.fs>.

h

h

 h (-- reg)

Return the identifier reg of the Z80 assembler register
"H", which is interpreted as register pair "HL" by
assembler words that use register pairs (for example
ldp,).

See also: a,
b, c,
d, e,
l, m,
ix, iy, sp.

Source file: <src/lib/assembler.fs>.

h

 h (--)

A command of gforth-editor:
Type the line of the marked area, highlighting it.

See also:
m,
a,
d,
f,
r.

Source file: <src/lib/prog.editor.gforth.fs>.

h

 h (n --)

A command of specforth-editor: Hold line n at pad
(used by system more often than by user).

See also: b,
c,
d,
e,
f,
i,
l,
m,
n,
p,
r,
s,
t,
x.

Source file: <src/lib/prog.editor.specforth.fs>.

halt,

 halt, (--) "halt-comma"

Compile the Z80 assembler instruction HALT.

See also: im1,, im2,, di,, ei,.

Source file: <src/lib/assembler.fs>.

hayes-test

 hayes-test (--)

An unexistent word. hayes-test is used just for doing
need hayes-test in order to run the Hayes test, which
tests the core words of an ANS Forth system.

The test assumes a two’s complement implementation where
the range of signed numbers is -2^(n-1) …​ 2^(n-1)-1 and
the range of unsigned numbers is 0 …​ 2^(n)-1.

Some words are not tested: key, quit, abort, abort"
environment?…​

See also: hayes-tester, ttester, forth2012-test-suite.

Source file: <src/lib/meta.test.hayes.fs>.

hayes-tester

 hayes-tester (--)

Do nothing. This word is used just for doing need
hayes-tester in order to load {, ->, and }, which
are used by hayes-test.

Usage example:

{ 1 2 3 swap -> 1 3 2 } ok
{ 1 2 3 swap -> 1 2 2 } Incorrect result
Use WHERE to see the error line.
{ 1 2 3 swap -> 1 2 } Wrong number of results:
Expected=3
Actual=2
Use WHERE to see the error line.

See also: ttester, forth2012-test-suite.

Source file: <src/lib/meta.tester.hayes.fs>.

headed

 headed (fam1 -- fam2)

Modify file access method fam1 to additionally select a
"headed", i.e., with an additional +3DOS header, file
access method, giving file access method fam2.

headed is written in Z80. Its equivalent definition in
Forth is the following:

 : headed (fam1 -- fam2) 128 and ;

See also: bin, r/o, w/o, r/w, s/r,
create-file, open-file.

Source file: <src/lib/dos.plus3dos.fs>.

header

 header ("name" | --)

A deferred word (see defer) that creates a dictionary
header. Its default action is input-stream-header, and it’s
set by default-header. Its alternative temporary action is
nextname-header.

See also: header,.

Source file: <src/kernel.z80s>.

header,

 header, (ca len --) "header-comma"

Create a definition header in the name space using the name
ca len and hide it by setting its smudge bit.

The execution token pointer of the new header points to the
data space pointer.

See also: header, warn.

Source file: <src/kernel.z80s>.

heap

 heap (-- a)

Address of the current memory heap, used by allocate,
resize and free.

The memory heap can be created by allot-heap,
limit-heap, bank-heap, or farlimit-heap. Then it must
be initialized by empty-heap.

See also: /heap, get-heap.

Source file: <src/lib/memory.allocate.COMMON.fs>.

heap-bank

 heap-bank (-- ca)

A cvariable ca that contains the memory bank
used to store the heap, when the memory heap was created
by bank-heap or farlimit-heap. If the heap was created
by allot-heap or limit-heap, heap-bank contains
zero.

See also: heap-in, heap-out, get-heap.

Source file: <src/lib/memory.allocate.COMMON.fs>.

heap-in

 heap-in (--)

If the current heap was created by bank-heap or
farlimit-heap, page in its bank, which is stored at
heap-bank; else do nothing.

heap-in is a deferred word (see defer) whose default
action is noop. Its alternative action is (heap-in.

See also: heap-out.

Source file: <src/lib/memory.allocate.COMMON.fs>.

heap-out

 heap-out (--)

If the current heap was created by bank-heap or
farlimit-heap, page in the default memory bank instead;
else do nothing.

heap-out is a deferred word (see defer) whose default
action is noop. Its alternative action is default-bank.

See also: heap-in.

Source file: <src/lib/memory.allocate.COMMON.fs>.

here

 here (-- a)

a is the data-space pointer.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: dp, limit, unused, there.

Source file: <src/kernel.z80s>.

hex

 hex (--)

Set contents of base to sixteen.

Origin: fig-Forth, Forth-79 (Reference Word Set), Forth-83
(Controlled Reference Words), Forth-94 (CORE EXT), Forth-2012
(CORE EXT).

See also: decimal, binary.

Source file: <src/kernel.z80s>.

hex.

 hex. (n --) "hex-dot"

Display n as an unsigned hexadecimal number, followed by
one space.

See also: dec., bin., u., ..

Source file: <src/lib/display.numbers.fs>.

hex>

 hex> (--) "end-hex"

End a code zone where hexadecimal radix is the default, by
restoring the value of base from base'. The zone was
started by <hex.

Source file: <src/lib/display.numbers.fs>.

hidden

 hidden (nt --)

Hide the definition nt by setting its smudge bit.

Definition:

 : hidden (nt --) smudge-mask swap lex! ;

See also: revealed, hide, smudge-mask, lex!.

Source file: <src/kernel.z80s>.

hide

 hide (--)

Hide the latest definition by setting its smudge bit.

Definition:

 : hide (--) latest hidden ;

See also: hidden, reveal.

Source file: <src/kernel.z80s>.

hide-internal

 hide-internal (nt xtp --)

Hide all words defined between the latest pair internal
and end-internal, setting the smudge bit of their
headers.

Usage example:

 internal

: hello (--) ." hello" ;

end-internal

: salute (--) hello ;

hide-internal

salute \ ok!
hello \ error!

At least one word must be defined between end-internal
and hide-internal.

The alternative word unlink-internal uses a different,
simpler method: it unlinks the internal words from the
dictionary.

privatize uses a similar method, but it has error
checking and does not use the stack.

Source file: <src/lib/modules.internal.fs>.

hld

 hld (-- a) "h-l-d"

A user variable. a is the address of a cell containing the
address of the latest character of text during numeric output
conversion.

Origin: fig-Forth.

See also: hold, <#, #>.

Source file: <src/kernel.z80s>.

hold

 hold (c --)

Insert character c into a pictured numeric output string.
Typically used between <# and #>.

Definition:

 : hold (c --) -1 hld +! hld @ c! ;

See also: holds.

Source file: <src/kernel.z80s>.

holds

 holds (ca len --)

Add string ca len to the pictured numeric output string
started by <#.

Origin: Forth-2012 (CORE EXT).

See also: hold.

Source file: <src/lib/display.numbers.fs>.

home

 home (--)

Set the cursor position at the top left position (column 0,
row 0).

home is a deferred word (see defer), whose default
action is (home.

See also: at-xy, home?.

Source file: <src/kernel.z80s>.

home?

 home? (-- f) "home-question"

Is the cursor at home position (column 0, row 0)?

See also: xy, home.

Source file: <src/lib/display.cursor.fs>.

hook,

 hook, (--) "hook-comma"

Compile the Z80 assembler instruction rst $08.
Therefore hook, is equivalent to $08 rst,.

See also: rst,, prt,.

Source file: <src/lib/assembler.fs>.

horizontal-curtain

 horizontal-curtain (b --)

Wash the screen with the given color attribute b from the
top and bottom rows to the middle.

See also: vertical-curtain.

Source file: <src/lib/graphics.cls.fs>.

hunt

 hunt (ca1 len1 ca2 len2 -- ca3 len3)

Search a string ca1 len1 for a substring ca2 len2.
Return the part of ca1 len1 that starts with the first
occurence of ca2 len2. Therefore ca3 len3 = ca1+n
len1-n.

Origin: Charscan library, by Wil Baden, 2003-02-17, public
domain.

See also: search, compare, skip, scan.

Source file: <src/lib/strings.MISC.fs>.

hz>bleep

 hz>bleep (frequency duration1 -- duration2 pitch) "hertz-to-bleep;

Convert frequency (in Hz) and duration1 (in ms) to
the parameters duration2 pitch needed by bleep.

See also: dhz>bleep.

Source file: <src/lib/sound.48.fs>.

i

i

 i (-- n|u) (R: do-sys -- do-sys)

Return a copy n|u of the current (innermost) loop index.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: i', j, k.

Source file: <src/kernel.z80s>.

i

 i ("ccc<eol>" --)

A command of gforth-editor: insert ccc or, if it’s
empty, the contents of the ibuf insert buffer.

See also:
il,
h,
l,
r.

Source file: <src/lib/prog.editor.gforth.fs>.

i

 i (n --)

A command of specforth-editor: Insert text from pad at
line n, moving the old line n down. Line 15 is lost.

See also: b,
c,
d,
e,
f,
h,
l,
m,
n,
p,
r,
s,
t,
x.

Source file: <src/lib/prog.editor.specforth.fs>.

i'

 i' (-- n|u) (R: loop-sys -- loop-sys) "i-tick"

Return a copy n|u of the limit of the current (innermost)
loop index.

Origin: Comus.

See also: i, j', k'.

Source file: <src/lib/flow.j.fs>.

ibuf

 ibuf (-- ca)

Return the address ca of the 100-byte insert buffer used
by the gforth-editor.

See also: rbuf, fbuf,
i,
il,
insert.

Source file: <src/lib/prog.editor.gforth.fs>.

if

 if
 Compilation: (C: -- orig)
 Run-time: (f --)

Compilation: Compile a conditional 0branch and put the
location orig of its unresolved destination on the
control-flow stack, to be resolved by else or then.

Run-time: If f is zero, continue execution at the location
specified by the resolution of orig.

if is an immediate and compile-only word.

Definition:

 : if \ Compilation: (C: -- orig)
 \ Run-time: (f --)
 compile 0branch >mark ; immediate compile-only

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: again, until, ahead, 0if, -if, +if, andif,
orif.

Source file: <src/kernel.z80s>.

if>

 if> "if-from"
 Compilation: (--)
 (C: -- orig)

Part of the {if control structure.

Source file: <src/lib/flow.dijkstra.fs>.

ifcase

 ifcase
 Compilation: (-- orig)
 Run-time: (x f -- x|)

Part of a thiscase structure that checks x.

Compilation: Leave the forward reference orig, to be
consumed by exitcase.

Runtime: If f is true, discard x and continue
execution; else skip the code compiled until the next
exitcase.

ifcase is an immediate and compile-only word.

See also: othercase.

Source file: <src/lib/flow.thiscase.fs>.

ifelse

 ifelse (x1 x2 f -- x1 | x2) "if-else"

If f is true return x1, otherwise return x2.

Source file: <src/lib/math.operators.1-cell.fs>.

if}

 if} "if-curly-bracket"
 Compilation: (count --)
 (C: orig#...orig#n --)

Terminate a {if control structure.

Source file: <src/lib/flow.dijkstra.fs>.

il

 il (--)

A command of gforth-editor: insert the line stored into
pad at the cursor position.

See also:
i,
l.

Source file: <src/lib/prog.editor.gforth.fs>.

im1,

 im1, (--) "i-m-one-comma"

Compile the Z80 assembler instruction IM 1.

See also: im2,, di,, ei,, halt,.

Source file: <src/lib/assembler.fs>.

im2,

 im2, (--) "i-m-two-comma"

Compile the Z80 assembler instruction IM 2.

See also: im1,, di,, ei,, halt,.

Source file: <src/lib/assembler.fs>.

immediate

 immediate (--)

Make the most recent definition an immediate word.

Definition:

 : immediate (--) immediate-mask latest lex! ;

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: immediate-mask, latest, lex!, immediate?,
compile-only.

Source file: <src/kernel.z80s>.

immediate-mask

 immediate-mask (-- b)

A cconstant. b is the bitmask of the precedence
bit, set by immediate.

See also: compile-only-mask, smudge-mask, word-length-mask.

Source file: <src/kernel.z80s>.

immediate?

 immediate? (nt -- f) "immediate-question"

f is true if the word nt is immediate.

Definition:

 : immediate? (nt -- f) immediate-mask lex? ;

See also: immediate, lex?, immediate-mask.

Source file: <src/kernel.z80s>.

in,

 in, (b --) "in-comma"

Compile the Z80 assembler instruction IN A,(b).

See also: out,, inbc,.

Source file: <src/lib/assembler.fs>.

inbc,

 inbc, (reg --) "in-b-c-comma"

Compile the Z80 assembler instruction IN reg,©.

See also: outbc, in,.

Source file: <src/lib/assembler.fs>.

inc,

 inc, (reg --) "inc-comma"

Compile the Z80 assembler instruction INC reg.

See also: dec,, incp,.

Source file: <src/lib/assembler.fs>.

incp,

 incp, (regp --) "inc-p-comma"

Compile the Z80 assembler instruction INC regp.

See also: decp,, inc,.

Source file: <src/lib/assembler.fs>.

incx

 incx (-- a) "inc-x"

A 2variable used by adraw176 and aline176.

See also: incy, x1, y1.

Source file: <src/lib/graphics.lines.fs>.

incx,

 incx, (disp regpi --) "inc-x-comma"

Compile the Z80 assembler instruction INC
(regp+disp).

See also: decx,, addx,, adcx,.

Source file: <src/lib/assembler.fs>.

incy

 incy (-- a) "ink-y"

A 2variable used by adraw176 and aline176.

See also: incx, x1, y1.

Source file: <src/lib/graphics.lines.fs>.

indented+

 indented+ (u --) "indented-plus"

Add u to #indented.

Source file: <src/lib/display.ltype.fs>.

index

 index (u1 u2 --)

Display the first line of each block over the range from
u1 to u2, which conventionally contains a comment with
a title.

Origin: fig-Forth, Forth-79 (Reference Word Set), Forth-83
(Uncontrolled Reference Words).

Source file: <src/lib/tool.list.blocks.fs>.

index-block

 index-block (block --)

Index block block.

See also: use-fly-index.

Source file: <src/lib/blocks.indexer.fly.fs>.

index-ilike

 index-ilike (u1 u2 "name" --)

Display the first line of each block over the range from
u1 to u2, which conventionally contains a comment with
a title, as long as the string name is included in the
line. The string comparison is case-insensitive.

See also: index, index-like.

Source file: <src/lib/tool.list.blocks.fs>.

index-like

 index-like (u1 u2 "name" --)

Display the first line of each block over the range from
u1 to u2, which conventionally contains a comment with
a title, as long as the string name is included in the
line. The string comparison is case-sensitive.

See also: index, index-ilike.

Source file: <src/lib/tool.list.blocks.fs>.

index-name

 index-name (ca len --)

Add word ca len to the blocks index, if not done before.

The current word list must be index-wordlist.

The block where ca len was found is stored as
the execution token of its definition in the index. This
way the index uses no data space. Don’t put
index-wordlist in the search order unless you know what
you’re doing.

Source file: <src/lib/blocks.indexer.COMMON.fs>.

index-wordlist

 index-wordlist (-- wid)

Word list for the indexed words.

Source file: <src/lib/blocks.indexer.COMMON.fs>.

indexed-block?

 indexed-block? (block -- f) "indexed-block-question"

Is block block indexed?

See also: use-fly-index.

Source file: <src/lib/blocks.indexer.fly.fs>.

indexed-blocks

 indexed-blocks (-- ca)

Bit array to mark the indexed blocks

See also: use-fly-index.

Source file: <src/lib/blocks.indexer.fly.fs>.

init-2val

 init-2val (--) "init-two-val"

Init the default behaviour of words created by 2val: Make
them return their content.

init-2val is a factor of 2val.

Source file: <src/lib/data.val.fs>.

init-arg-action

 init-arg-action (--)

Set arg-action to arg-default-action.

init-arg-action is a factor of arguments.

Source file: <src/lib/locals.arguments.fs>.

init-asm

 init-asm (--)

A deferred word (see defer) called by asm. Its action is
set by the assembler labels module in order to init the
labels. Its default action is noop.

Source file: <src/kernel.z80s>.

init-cval

 init-cval (--) "init-c-val"

Init the default behaviour of words created by cval: Make
them return their content.

init-cval is a factor of cval.

Source file: <src/lib/data.val.fs>.

init-labels

 init-labels (--)

Init the assembler labels and their references, by
allocating space for them in the stringer and erasing it.
labels and l-refs are given new values.

Loading init-labels makes it the action of init-asm,
which is called by asm and therefore also by code and
;code. Therefore, if the program needs a specific ammount
of labels or label references, max-labels and
max-l-refs must be configured before compiling the
assembly word.

Source file: <src/lib/assembler.labels.fs>.

init-val

 init-val (--)

Init the default behaviour of words created by val: Make
them return their content.

init-val is a factor of val.

Source file: <src/lib/data.val.fs>.

ink-mask

 ink-mask (-- b)

A cconstant. b is the bitmask of the bits used to
indicate the ink in an attribute byte.

See also: unink-mask, set-ink, attr!,
paper-mask, bright-mask, flash-mask.

Source file: <src/lib/display.attributes.fs>.

ink.

 ink. (b --) "ink-dot"

Set ink color to b (0..9), by printing the corresponding
control characters. If b is greater than 9, 9 is used
instead.

ink. is much slower than set-ink or attr!, but it
can handle pseudo-colors 8 (transparent) and 9 (contrast),
setting the corresponding system variables accordingly.

See also: paper., (0-9-color..

Source file: <src/lib/display.attributes.fs>.

inkey

 inkey (-- 0 | c)

Leave the value of the key being pressed. If no key being
pressed, leave 0.

inkey works only when an interrupts routine reads the
keyboard and updates the related system variables.

See also: get-inkey, key.

Source file: <src/lib/keyboard.inkey.fs>.

input-buffer

 input-buffer (-- a)

A 2variable. a is the address of a double cell
containing the address and length of the current input buffer.

See also: source, set-source.

Source file: <src/kernel.z80s>.

input-stream-header

 input-stream-header ("name" --)

Create a dictionary header name.

Definition:

 : input-stream-header ("name" --)
 parse-name dup 0= #-16 ?throw header, ;

See also: header, header,, nextname-header, parse-name.

Source file: <src/kernel.z80s>.

insert

 insert (ca1 len1 ca2 len2 --)

Insert string ca1 len1 at the start of string ca2 len2.

See also: delete, replace.

Source file: <src/lib/strings.MISC.fs>.

internal

 internal (-- nt)

Start internal (private) definitions. Return the nt of
the latest word created in the compilation word list.

The end of the internal definitions is marked by
end-internal. Then those definitions can be unlinked by
unlink-internal or hidden by hide-internal.

See also: isolate, module, package, privatize,
seclusion.

Source file: <src/lib/modules.internal.fs>.

interpret

 interpret (--)

The text interpreter which sequentially executes or compiles
text from the current input stream source (terminal or
disk) depending on state. If the word name cannot be found
in the search order it is converted to a number by
number?, according to the current base. That also
failing, an error will happen.

The actions of the text interpreter are determined by the
configuration of interpret-table.

See also: evaluate, execute-parsing, set-source,
nest-source.

Source file: <src/kernel.z80s>.

interpret-table

 interpret-table (-- a)

a is the zero-offset address of the execution table used by
interpret. The table contains 13 vectors. The behaviour of
the Forth text interpreter can be changed by replacing these
vectors. The structure and contents of the execution table is
the following:

Table 28. Structure of interpret-table.

	Cell offset
	Execution token or zero
	Condition

	-6

	execute

	Compile an immediate and compile-only word

	-5

	compile,

	Compile a compile-only word

	-4

	execute

	Compile an immediate word

	-3

	compile,

	Compile an ordinary word

	-2

	2literal

	Compile a 2-cell number

	-1

	xliteral

	Compile a 1-cell number

	0

	not-understood

	Not a word nor a number (error)

	1

	0

	Interpret a 1-cell number (do nothing)

	2

	0

	Interpret a 2-cell number (do nothing)

	3

	execute

	Interpret an ordinary word

	4

	execute

	Interpret an immediate word

	5

	compilation-only

	Interpret a compile-only word (error)

	6

	compilation-only

	Interpret an immediate and compile-only word (error)

Source file: <src/kernel.z80s>.

inverse

 inverse (f --)

If f is zero, turn the inverse printing mode
off; else turn it on.

See also: inverse-off, inverse-on, overprint.

Source file: <src/lib/display.attributes.fs>.

inverse-cond

 inverse-cond (op1 -- op2)

Convert a Z80 assembler condition flag op1 (actually a
jump opcode) to its opposite op2.

Examples: The opcode returned by c? is converted to the
opcode returned by nc?, nz? to z?, po? to pe?,
p? to `m?; and vice versa.

inverse-cond is used by rif, runtil, aif and
auntil.

Source file: <src/lib/assembler.fs>.

inverse-off

 inverse-off (--)

Turn the inverse printing mode off.

See also: inverse-on, inverse, overprint-off.

Source file: <src/lib/display.attributes.fs>.

inverse-on

 inverse-on (--)

Turn the inverse printing mode on.

See also: inverse-off, inverse, overprint-on.

Source file: <src/lib/display.attributes.fs>.

inversely

 inversely (b1 -- b2)

Convert attribute b1 to its inversely equivalent b2,
i.e. b2 has paper and ink exchanged.

See also: contrast, papery, brighty, flashy,
attr>paper, attr>ink.

Source file: <src/lib/display.attributes.fs>.

invert

 invert (x1 -- x2)

Invert all bits of x1 giving its logical inverse x2.

See also: 0=, negate.

Source file: <src/kernel.z80s>.

invert-display

 invert-display (--)

Invert the pixels of the whole screen.

See also: wave-display, fade-display.

Source file: <src/lib/graphics.display.fs>.

is

 is
 Interpretation: (xt "name" --)
 Compilation: ("name" --)
 Run-time: (xt --)

Interpretation: (xt "name" — )

Set name, which was defined by defer, to execute xt.

Compilation: ("name" — )

Append the run-time semantics given below to the current
definition.

Run-time: (xt — )

Set name, which was defined by defer, to execute xt.

is is a state-smart word (see state).

Origin: Forth-2012 (CORE EXT).

See also: [is], <is>.

Source file: <src/lib/define.deferred.fs>.

isolate

 isolate (--)

Create a word list, push it on the search order and set it
as the compilation word list.

isolate is the simplest way to create a module. Usage
example:

 get-current isolate
 \ Inner words.
set-current
 \ Interface words.
previous

See also: internal, module, package, privatize,
seclusion.

Source file: <src/lib/modules.MISC.fs>.

item

 item (ca len wid -- i*x)

If ca len is an item of the associative-list wid,
return its value i*x; else throw an exception #-13
("undefined word").

See also: item?. entry:, centry:, 2entry:, sentry:,
items.

Source file: <src/lib/data.associative-list.fs>.

item?

 item? (ca len wid -- false | xt true) "item-question"

Is ca len an item of the associative-list wid? If so
return its xt and true, else return false.

See also: item. entry:, centry:, 2entry:, sentry:,
items.

Source file: <src/lib/data.associative-list.fs>.

items

 items (wid --)

List items of the associative-list wid.

Source file: <src/lib/data.associative-list.fs>.

ix

 ix (-- regpi) "i-x"

regpi is the identifier of the Z80 assembler register
"IX".

See also: a,
b, c,
d, e,
h, l,
m, iy, sp.

Source file: <src/lib/assembler.fs>.

iy

 iy (-- regpi) "i-y"

regpi is the identifier of the Z80 assembler register
"IY".

See also: a,
b, c,
d, e,
h, l,
m, ix, sp.

Source file: <src/lib/assembler.fs>.

j

j

 j (-- n|u) (R: loop-sys1 loop-sys2 -- loop-sys1 loop-sys2)

Return a copy n|u of the next-outer loop index.

Origin: Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: j', i, k.

Source file: <src/lib/flow.j.fs>.

j'

 j' (-- n|u) (R: loop-sys1 loop-sys2 -- loop-sys1 loop-sys2) "j-tick"

Return a copy n|u of the limit of the next-outer loop
index.

Origin: Comus.

See also: j, i', k'.

Source file: <src/lib/flow.j.fs>.

join

 join (b1 b2 -- x)

b1 is the low-order byte of x, and b2 is the
high-order byte of x.

Origin: IsForth.

See also: split, flip.

Source file: <src/lib/math.operators.1-cell.fs>.

jp,

 jp, (a --) "j-p-comma"

Compile the Z80 opcode to jump to a.

Definition:

 : jp, (a --) $C3 c, , ;

See also: call,.

Source file: <src/kernel.z80s>.

jp>jr

 jp>jr (op1 -- op2) "j-p-greater-than-j-r"

Convert a Z80 assembler absolute-jump instruction op1
to its relative-jump equivalent op2. Throw error #-273 if
the jump condition is invalid.

jp>jr is a factor of ?jr,, rif and runtil.

Source file: <src/lib/assembler.fs>.

jphl,

 jphl, (--) "j-p-h-l-comma"

Compile the Z80 assembler instruction JP (HL).

See also: jpix,.

Source file: <src/lib/assembler.fs>.

jpix,

 jpix, (--) "j-p-i-x-comma"

Compile the Z80 assembler instruction JP (IX).

See also: jphl,.

Source file: <src/lib/assembler.fs>.

jpnext,

 jpnext, (--) "j-p-next-comma"

Compile a Z80 jump to next.

See also: jp,.

Source file: <src/kernel.z80s>.

jr,

 jr, (a --) "j-r-comma"

Compile the Z80 assembler instruction JR n, being n
an offset from the current address to address a.

See also: ?jr,, djnz,, jp,.

Source file: <src/lib/assembler.fs>.

k

k

 k (-- n|u) (R: loop-sys1 ... loop-sys3 -- loop-sys1 ... loop-sys3)

Return a copy n|u of the second outer loop index.

Origin: Forth-83 (Controlled reference words).

See also: k', i, j.

Source file: <src/lib/flow.j.fs>.

k'

 k' (-- n|u) (R: loop-sys1 ... loop-sys3 -- loop-sys1 ... loop-sys3) "k-tick"

Return a copy n|u of the limit of the second outer loop
index.

Origin: Comus.

See also: k, i', j'.

Source file: <src/lib/flow.j.fs>.

key

 key (-- c)

Return character c of the key struck, a member of the
defined character set. Keyboard events that do not correspond
to such characters are discarded until a valid character is
received, and those events are subsequently unavailable.

Origin: Forth-94 (CORE), Forth-2012 (CORE).

See also: key?, new-key, new-key-, -keys.

Source file: <src/kernel.z80s>.

key-caps-lock

 key-caps-lock (-- c)

c is the caps-lock control character, which is obtained
by pressing "Caps Shift + 2" and can be read by key.

See also: key-edit, key-left, key-right, key-down,
key-up, key-delete, key-enter, key-graphics,
key-true-video, key-inverse-video.

Source file: <src/lib/keyboard.MISC.fs>.

key-delete

 key-delete (-- c)

c is the delete control character, which is obtained by
pressing "Caps Shift + 0" and can be read by key.

See also: key-edit, key-left, key-right, key-down,
key-up, key-enter, key-graphics, key-true-video,
key-inverse-video, key-caps-lock.

Source file: <src/lib/keyboard.MISC.fs>.

key-down

 key-down (-- c)

c is the cursor-down control character, which is obtained
by pressing "Caps Shift + 6" and can be read by key.

See also: key-edit, key-left, key-right, key-up,
key-delete, key-enter, key-graphics,
key-true-video, key-inverse-video, key-caps-lock.

Source file: <src/lib/keyboard.MISC.fs>.

key-edit

 key-edit (-- c)

c is the edit control character, which is obtained by
pressing "Caps Shift + 1" and can be read by key.

See also: key-left, key-right, key-down, key-up,
key-delete, key-enter, key-graphics,
key-true-video, key-inverse-video, key-caps-lock.

Source file: <src/lib/keyboard.MISC.fs>.

key-enter

 key-enter (-- c)

c is the enter control character, which is obtained by
pressing "Enter" and can be read by key.

See also: key-edit, key-left, key-right, key-down,
key-up, key-delete, key-graphics, key-true-video,
key-inverse-video, key-caps-lock.

Source file: <src/lib/keyboard.MISC.fs>.

key-graphics

 key-graphics (-- c)

c is the graphics control character, which is obtained by
pressing "Caps Shift + 9" and can be read by key.

See also: key-edit, key-left, key-right, key-down,
key-up, key-delete, key-enter, key-true-video,
key-inverse-video, key-caps-lock.

Source file: <src/lib/keyboard.MISC.fs>.

key-inverse-video

 key-inverse-video (-- c)

c is the inverse-video control character, which is
obtained by pressing "Caps Shift + 4" and can be read by
key.

See also: key-edit, key-left, key-right, key-down,
key-up, key-delete, key-enter, key-graphics,
key-true-video, key-caps-lock.

Source file: <src/lib/keyboard.MISC.fs>.

key-left

 key-left (-- c)

c is the cursor-left control character, which is obtained
by pressing "Caps Shift + 5" and can be read by key.

See also: key-edit, key-right, key-down, key-up,
key-delete, key-enter, key-graphics,
key-true-video, key-inverse-video, key-caps-lock.

Source file: <src/lib/keyboard.MISC.fs>.

key-right

 key-right (-- c)

c is the cursor-right control character, which is
obtained by pressing "Caps Shift + 8" and can be read by
key.

See also: key-edit, key-left, key-down, key-up,
key-delete, key-enter, key-graphics,
key-true-video, key-inverse-video, key-caps-lock.

Source file: <src/lib/keyboard.MISC.fs>.

key-translation-table

 key-translation-table (-- a)

A variable. a is the address of a cell containing the
address of the current key translation table, used by key.

The table consists of pairs of characters. The first one is
the character that has to be translated and the second one is
its translation. The table is finished with a zero.

The default table makes it possible to access the following
characters with Symbol Shift: '[', ']', '~', '|', '\', '{' and
'}'.

Source file: <src/kernel.z80s>.

key-true-video

 key-true-video (-- c)

c is the true-video control character, which is obtained
by pressing "Caps Shift + 3" and can be read by key.

See also: key-edit, key-left, key-right, key-down,
key-up, key-delete, key-enter, key-graphics,
key-inverse-video, key-caps-lock.

Source file: <src/lib/keyboard.MISC.fs>.

key-up

 key-up (-- c)

c is the cursor-up control character, which is obtained
by pressing "Caps Shift + 7" and can be read by key.

See also: key-edit, key-left, key-right, key-down,
key-delete, key-enter, key-graphics,
key-true-video, key-inverse-video, key-caps-lock.

Source file: <src/lib/keyboard.MISC.fs>.

key?

 key? (-- f) "key-question"

If a character is available, return true. Otherwise, return
false. If non-character keyboard events are available before
the first valid character, they are discarded and are
subsequently unavailable. The character is returned by the
next execution of key.

After key? returns with a value of true, subsequent
executions of key? prior to the execution of key also
return true, without discarding keyboard events.

Origin: Forth-94 (FACILITY), Forth-2012 (FACILITY).

See also: -keys.

Source file: <src/kernel.z80s>.

kk#>kk

 kk#>kk (n -- b a) "k-k-dash-to-k-k"

Convert keyboard key number n to its data: key bitmask
b and keyboard row port a.

See also: kk-ports, /kk, kk@.

Source file: <src/lib/keyboard.MISC.fs>.

kk,

 kk, (b a --) "k-k-comma"

Compile key definition b a (bitmask and port) into table
kk-ports. The actual definition of kk, depends on the
value of /kk.

See also: kk@, /kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-0

 kk-0 (-- b a) "k-k-0"

Return key bitmask b and keyboard row port a needed for
reading the physical key "0" with pressed?.

See also: kk-0#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-0#

 kk-0# (-- n) "k-k-0-dash"

Return index n of the physical key "0" in tables
kk-chars and kk-ports.

See also: kk-0, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-1

 kk-1 (-- b a) "k-k-1"

Return key bitmask b and keyboard row port a needed for
reading the physical key "1" with pressed?.

See also: kk-1#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-1#

 kk-1# (-- n) "k-k-1-dash"

Return index n of the physical key "1" in tables
kk-chars and kk-ports.

See also: kk-1, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-2

 kk-2 (-- b a) "k-k-2"

Return key bitmask b and keyboard row port a needed for
reading the physical key "2" with pressed?.

See also: kk-2#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-2#

 kk-2# (-- n) "k-k-2-dash"

Return index n of the physical key "2" in tables
kk-chars and kk-ports.

See also: kk-2, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-3

 kk-3 (-- b a) "k-k-3"

Return key bitmask b and keyboard row port a needed for
reading the physical key "3" with pressed?.

See also: kk-3#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-3#

 kk-3# (-- n) "k-k-3-dash"

Return index n of the physical key "3" in tables
kk-chars and kk-ports.

See also: kk-3, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-4

 kk-4 (-- b a) "k-k-4"

Return key bitmask b and keyboard row port a needed for
reading the physical key "4" with pressed?.

See also: kk-4#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-4#

 kk-4# (-- n) "k-k-4-dash"

Return index n of the physical key "4" in tables
kk-chars and kk-ports.

See also: kk-4, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-5

 kk-5 (-- b a) "k-k-5"

Return key bitmask b and keyboard row port a needed for
reading the physical key "5" with pressed?.

See also: kk-5#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-5#

 kk-5# (-- n) "k-k-5-dash"

Return index n of the physical key "5" in tables
kk-chars and kk-ports.

See also: kk-5, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-6

 kk-6 (-- b a) "k-k-6"

Return key bitmask b and keyboard row port a needed for
reading the physical key "6" with pressed?.

See also: kk-6#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-6#

 kk-6# (-- n) "k-k-6-dash"

Return index n of the physical key "6" in tables
kk-chars and kk-ports.

See also: kk-6, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-7

 kk-7 (-- b a) "k-k-7"

Return key bitmask b and keyboard row port a needed for
reading the physical key "7" with pressed?.

See also: kk-7#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-7#

 kk-7# (-- n) "k-k-7-dash"

Return index n of the physical key "7" in tables
kk-chars and kk-ports.

See also: kk-7, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-8

 kk-8 (-- b a) "k-k-8"

Return key bitmask b and keyboard row port a needed for
reading the physical key "8" with pressed?.

See also: kk-8#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-8#

 kk-8# (-- n) "k-k-8-dash"

Return index n of the physical key "8" in tables
kk-chars and kk-ports.

See also: kk-8, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-9

 kk-9 (-- b a) "k-k-9"

Return key bitmask b and keyboard row port a needed for
reading the physical key "9" with pressed?.

See also: kk-9#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-9#

 kk-9# (-- n) "k-k-9-dash"

Return index n of the physical key "9" in tables
kk-chars and kk-ports.

See also: kk-9, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-a

 kk-a (-- b a) "k-k-A"

Return key bitmask b and keyboard row port a needed for
reading the physical key "A" with pressed?.

See also: kk-a#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-a#

 kk-a# (-- n) "k-k-A-dash"

Return index n of the physical key "A" in tables
kk-chars and kk-ports.

See also: kk-a, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-b

 kk-b (-- b a) "k-k-B"

Return key bitmask b and keyboard row port a needed for
reading the physical key "B" with pressed?.

See also: kk-b#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-b#

 kk-b# (-- n) "k-k-B-dash"

Return index n of the physical key "B" in tables
kk-chars and kk-ports.

See also: kk-b, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-c

 kk-c (-- b a) "k-k-C"

Return key bitmask b and keyboard row port a needed for
reading the physical key "C" with pressed?.

See also: kk-c#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-c#

 kk-c# (-- n) "k-k-C-dash"

Return index n of the physical key "C" in tables
kk-chars and kk-ports.

See also: kk-c, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-chars

 kk-chars (-- ca) "k-k-chars"

ca is the address of a 40-byte table that contains the
characters used as names of the physical keys (one
character per key) and it’s organized by keyboard rows, as
follows:

Table 29. Keyboard matrix pointed by kk-chars.

	1

	2

	3

	4

	5

	

	q

	w

	e

	r

	t

	

	a

	s

	d

	f

	g

	

	Caps Shift

	z

	x

	c

	v

	

	0

	9

	8

	7

	6

	

	p

	o

	i

	u

	y

	

	Enter

	l

	k

	j

	h

	

	Space

	Symbol Shift

	m

	n

	b

	

The first 4 UDG codes displayed after the default
configuration of last-font-char are used for the keys
whose names are not a printable character, as follows:

Table 30. Items of kk-chars used as names of special keys.

	Byte offset
	UDG code
	Key

	15

	128

	Caps Shift

	30

	129

	Enter

	35

	130

	Space

	36

	131

	Symbol Shift

The application should define those UDG with proper icons
to represent the corresponding keys.

See also: #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-cs

 kk-cs (-- b a) "k-k-caps-shift"

Return key bitmask b and keyboard row port a needed for
reading the physical key "Caps Shift" with pressed?.

See also: kk-cs#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-cs#

 kk-cs# (-- n) "k-k-caps-shift-dash"

Return index n of the physical key "Caps Shift" in tables
kk-chars and kk-ports.

See also: kk-cs, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-d

 kk-d (-- b a) "k-k-D"

Return key bitmask b and keyboard row port a needed for
reading the physical key "D" with pressed?.

See also: kk-d#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-d#

 kk-d# (-- n) "k-k-D-dash"

Return index n of the physical key "D" in tables
kk-chars and kk-ports.

See also: kk-d, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-e

 kk-e (-- b a) "k-k-E"

Return key bitmask b and keyboard row port a needed for
reading the physical key "E" with pressed?.

See also: kk-e#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-e#

 kk-e# (-- n) "k-k-E-dash"

Return index n of the physical key "E" in tables
kk-chars and kk-ports.

See also: kk-e, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-en

 kk-en (-- b a) "k-k-enter"

Return key bitmask b and keyboard row port a needed for
reading the physical key "Enter" with pressed?.

See also: kk-en#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-en#

 kk-en# (-- n) "k-k-enter-dash"

Return index n of the physical key "Enter" in tables
kk-chars and kk-ports.

See also: kk-en, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-f

 kk-f (-- b a) "k-k-F"

Return key bitmask b and keyboard row port a needed for
reading the physical key "F" with pressed?.

See also: kk-f#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-f#

 kk-f# (-- n) "k-k-F-dash"

Return index n of the physical key "F" in tables
kk-chars and kk-ports.

See also: kk-f, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-g

 kk-g (-- b a) "k-k-G"

Return key bitmask b and keyboard row port a needed for
reading the physical key "G" with pressed?.

See also: kk-g#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-g#

 kk-g# (-- n) "k-k-G-dash"

Return index n of the physical key "G" in tables
kk-chars and kk-ports.

See also: kk-g, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-h

 kk-h (-- b a) "k-k-H"

Return key bitmask b and keyboard row port a needed for
reading the physical key "H" with pressed?.

See also: kk-h#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-h#

 kk-h# (-- n) "k-k-H-dash"

Return index n of the physical key "H" in tables
kk-chars and kk-ports.

See also: kk-h, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-i

 kk-i (-- b a) "k-k-I"

Return key bitmask b and keyboard row port a needed for
reading the physical key "I" with pressed?.

See also: kk-i#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-i#

 kk-i# (-- n) "k-k-I-dash"

Return index n of the physical key "I" in tables
kk-chars and kk-ports.

See also: kk-i, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-j

 kk-j (-- b a) "k-k-J"

Return key bitmask b and keyboard row port a needed for
reading the physical key "J" with pressed?.

See also: kk-j#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-j#

 kk-j# (-- n) "k-k-J-dash"

Return index n of the physical key "J" in tables
kk-chars and kk-ports.

See also: kk-j, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-k

 kk-k (-- b a) "k-k-K"

Return key bitmask b and keyboard row port a needed for
reading the physical key "K" with pressed?.

See also: kk-k#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-k#

 kk-k# (-- n) "k-k-K-dash"

Return index n of the physical key "K" in tables
kk-chars and kk-ports.

See also: kk-k, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-l

 kk-l (-- b a) "k-k-L"

Return key bitmask b and keyboard row port a needed for
reading the physical key "L" with pressed?.

See also: kk-l#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-l#

 kk-l# (-- n) "k-k-L-dash"

Return index n of the physical key "L" in tables
kk-chars and kk-ports.

See also: kk-l, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-m

 kk-m (-- b a) "k-k-M"

Return key bitmask b and keyboard row port a needed for
reading the physical key "M" with pressed?.

See also: kk-m#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-m#

 kk-m# (-- n) "k-k-M-dash"

Return index n of the physical key "M" in tables
kk-chars and kk-ports.

See also: kk-m, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-n

 kk-n (-- b a) "k-k-N"

Return key bitmask b and keyboard row port a needed for
reading the physical key "N" with pressed?.

See also: kk-n#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-n#

 kk-n# (-- n) "k-k-N-dash"

Return index n of the physical key "N" in tables
kk-chars and kk-ports.

See also: kk-n, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-o

 kk-o (-- b a) "k-k-O"

Return key bitmask b and keyboard row port a needed for
reading the physical key "O" with pressed?.

See also: kk-o#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-o#

 kk-o# (-- n) "k-k-O-dash"

Return index n of the physical key "O" in tables
kk-chars and kk-ports.

See also: kk-o, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-p

 kk-p (-- b a) "k-k-P"

Return key bitmask b and keyboard row port a needed for
reading the physical key "P" with pressed?.

See also: kk-p#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-p#

 kk-p# (-- n) "k-k-P-dash"

Return index n of the physical key "P" in tables
kk-chars and kk-ports.

See also: kk-p, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-ports

 kk-ports (-- a) "k-k-ports"

A table that contains the key definitions (bitmak and port)
of all keys.

The table contains 40 items, one per physical key, and it’s
organized by keyboard rows.

Every item occupies 3 or 4 bytes, depending on the value of
/kk. The default is 4.

See also: kk,, kk@, #kk, kk-chars.

Source file: <src/lib/keyboard.MISC.fs>.

kk-q

 kk-q (-- b a) "k-k-Q"

Return key bitmask b and keyboard row port a needed for
reading the physical key "Q" with pressed?.

See also: kk-q#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-q#

 kk-q# (-- n) "k-k-Q-dash"

Return index n of the physical key "Q" in tables
kk-chars and kk-ports.

See also: kk-q, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-r

 kk-r (-- b a) "k-k-R"

Return key bitmask b and keyboard row port a needed for
reading the physical key "R" with pressed?.

See also: kk-r#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-r#

 kk-r# (-- n) "k-k-R-dash"

Return index n of the physical key "R" in tables
kk-chars and kk-ports.

See also: kk-r, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-s

 kk-s (-- b a) "k-k-S"

Return key bitmask b and keyboard row port a needed for
reading the physical key "S" with pressed?.

See also: kk-s#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-s#

 kk-s# (-- n) "k-k-S-dash"

Return index n of the physical key "S" in tables
kk-chars and kk-ports.

See also: kk-s, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-sp

 kk-sp (-- b a) "k-k-space"

Return key bitmask b and keyboard row port a needed for
reading the physical key "Space" with pressed?.

See also: kk-sp#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-sp#

 kk-sp# (-- n) "k-k-space-dash"

Return index n of the physical key "Space" in tables
kk-chars and kk-ports.

See also: kk-sp, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-ss

 kk-ss (-- b a) "k-k-symbol-shift"

Return key bitmask b and keyboard row port a needed for
reading the physical key "Symbol Shift" with pressed?.

See also: kk-ss#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-ss#

 kk-ss# (-- n) "k-k-symbol-shift-dash"

Return index n of the physical key "Symbol Shift" in
tables kk-chars and kk-ports.

See also: kk-ss, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-t

 kk-t (-- b a) "k-k-T"

Return key bitmask b and keyboard row port a needed for
reading the physical key "T" with pressed?.

See also: kk-t#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-t#

 kk-t# (-- n) "k-k-T-dash"

Return index n of the physical key "T" in tables
kk-chars and kk-ports.

See also: kk-t, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-u

 kk-u (-- b a) "k-k-U"

Return key bitmask b and keyboard row port a needed for
reading the physical key "U" with pressed?.

See also: kk-u#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-u#

 kk-u# (-- n) "k-k-U-dash"

Return index n of the physical key "U" in tables
kk-chars and kk-ports.

See also: kk-u, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-v

 kk-v (-- b a) "k-k-V"

Return key bitmask b and keyboard row port a needed for
reading the physical key "V" with pressed?.

See also: kk-v#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-v#

 kk-v# (-- n) "k-k-V-dash"

Return index n of the physical key "V" in tables
kk-chars and kk-ports.

See also: kk-v, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-w

 kk-w (-- b a) "k-k-W"

Return key bitmask b and keyboard row port a needed for
reading the physical key "W" with pressed?.

See also: kk-w#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-w#

 kk-w# (-- n) "k-k-W-dash"

Return index n of the physical key "W" in tables
kk-chars and kk-ports.

See also: kk-w, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-x

 kk-x (-- b a) "k-k-X"

Return key bitmask b and keyboard row port a needed for
reading the physical key "X" with pressed?.

See also: kk-x#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-x#

 kk-x# (-- n) "k-k-X-dash"

Return index n of the physical key "X" in tables
kk-chars and kk-ports.

See also: kk-x, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-y

 kk-y (-- b a) "k-k-Y"

Return key bitmask b and keyboard row port a needed for
reading the physical key "Y" with pressed?.

See also: kk-y#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-y#

 kk-y# (-- n) "k-k-Y-dash"

Return index n of the physical key "Y" in tables
kk-chars and kk-ports.

See also: kk-y, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-z

 kk-z (-- b a) "k-k-Z"

Return key bitmask b and keyboard row port a needed for
reading the physical key "Z" with pressed?.

See also: kk-z#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-z#

 kk-z# (-- n) "k-k-Z-dash"

Return index n of the physical key "Z" in tables
kk-chars and kk-ports.

See also: kk-z, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk@

 kk@ (a1 -- b a2) "k-k-fetch"

Fetch a key definition b a2 (bitmask and port) from item
a1 of table kk-ports. The actual definition of kk@
depends on the value of /kk.

See also: kk,, /kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

l

l

 l (-- reg)

Return the identifier reg of the Z80 assembler register
"L".

See also: a,
b, c,
d, e,
h, m,
ix, iy, sp.

Source file: <src/lib/assembler.fs>.

l

 l (--)

A command of gforth-editor:
Go to current screen.

Source file: <src/lib/prog.editor.gforth.fs>.

l

 l (--)

A command of specforth-editor: List the current block.

See also: b,
c,
d,
e,
f,
h,
i,
m,
n,
p,
r,
s,
t,
x, scr, list.

Source file: <src/lib/prog.editor.specforth.fs>.

l!

 l! (x n --) "l-store"

If assembler label n has been defined in the current
definition, throw exception #-284 (assembly label number
already used); else create a new assembler label n with
value x and resolve all previous references to it that
could have been created by rl# or al#. Usually x is
an address.

See also: l:, resolve-refs.

Source file: <src/lib/assembler.labels.fs>.

l-refs

 l-refs (-- a)

A variable. a is the address of a cell containing the
address of the label references table, which is allocated
in the stringer by init-labels. The size of the table
can be configured with max-l-refs.

Each element of the table (0 index) has the following
structure:

+0 = byte: unused reference:
 all bits are 0
 used reference:
 label number: bits 0..5
 relative reference?: bit 6 = 1 (mask ``rl-id``)
 absolute reference?: bit 7 = 1 (mask ``al-id``)
+1 = cell: label address

Source file: <src/lib/assembler.labels.fs>.

l/scr

 l/scr (-- b) "l-slash-s-c-r"

A cconstant. b is the number of lines per block
source: 16.

See also: c/l.

Source file: <src/kernel.z80s>.

l:

 l: (n --) "l-colon"

If assembler label n has been defined in the current
definition, throw exception #-284 (assembly label number
already used); else create a new assembler label n with
the value returned by here and resolve all previous
references to it that could have been created by rl# or
al#.

See also: l!, .l, labels, l-refs, init-labels.

See also unresolved for an alternative method.

Source file: <src/lib/assembler.labels.fs>.

labels

 labels (-- a)

A variable. a is the address of a cell containing the
address of the labels table, which is allocated in the
stringer by init-labels. The size of the table can be
configured with max-labels.

Each element of the table (0 index) is one cell, which
contains either the address of the corresponding label or
zero if the label is undefined.

See also: /labels, l-refs.

Source file: <src/lib/assembler.labels.fs>.

lang

 lang (-- b)

A cconstant containing the number b of the current
language, used by translation tools localized-word,
localized-string and localized-character.

Its default value is zero. The value must be changed by the
application using c!>.

See also: langs.

Source file: <src/lib/translation.fs>.

langs

 langs (-- b)

A cconstant containing the number b of languages used
by the application, needed by translation tools
localized-word, localized-string and
localized-character.

Its default value is zero. The value must be configured by
the application using c!>, and it should not be changed
later.

See also: lang.

Source file: <src/lib/translation.fs>.

laser-gun

 laser-gun (--)

Laser gun sound for ZX Spectrum 48.

Source file: <src/lib/sound.48.fs>.

last

 last (-- a)

A user variable. a is the address of a cell containing the
name token of the last word defined.

See also: latest, lastxt.

Source file: <src/kernel.z80s>.

last-column

 last-column (-- col)

Last column (x coordinate) in the current screen mode.

See also: last-row, columns, column.

Source file: <src/lib/display.cursor.fs>.

last-font-char

 last-font-char (-- ca)

A cvariable. ca is the address of a byte
containing the code of the last character displayed from the
current font by the current action of emit and by g-emit.
Higher characters are managed apart, displayed by emit-udg
(depending on the actual implementation of emit, which is a
deferred word; see defer) or g-emit-udg.

At the moment, only mode-32-emit and g-emit check this
value. Eventually, also the alternative modes will use it.

last-font-char is a character variable, which must be set
with c!. Its default value is 127.

See also: set-font, set-udg.

Source file: <src/kernel.z80s>.

last-locatable

 last-locatable (-- a)

A variable. a is the address of a cell containing the
number of the last block to be searched by located and
its descendants. Its default value is the last block of the
disk.

See also: first-locatable.

Source file: <src/lib/002.need.fs>.

last-name

 last-name (ca1 len1 -- ca2 len2)

Get the last name ca2 len2 from string ca1 len1. A
name is a substring separated by spaces.

See also: first-name, /name, string/, -suffix.

Source file: <src/lib/strings.MISC.fs>.

last-row

 last-row (-- row)

Last row (y coordinate) in the current screen mode.

See also: last-column, row, rows.

Source file: <src/lib/display.cursor.fs>.

last-stream

 last-stream (-- n)

n is the number of the last stream.

See also: first-stream, os-strms, stream>, stream?.

Source file: <src/lib/os.fs>.

last-tape-filename

 last-tape-filename (-- ca)

Address of the filename in last-tape-header.

See also: /tape-filename, tape-filename.

Source file: <src/lib/tape.fs>.

last-tape-filetype

 last-tape-filetype (-- ca)

Address of the file type (one byte) in last-tape-header.

See also: tape-filetype.

Source file: <src/lib/tape.fs>.

last-tape-header

 last-tape-header (-- ca)

Address of the second tape header, which is used by the ROM
routines while loading. Its structure is the identical to
tape-header.

It can be used by the application to know the details of
the last tape file that was loaded.

See also: last-tape-filename, last-tape-filetype,
last-tape-start, last-tape-length.

Source file: <src/lib/tape.fs>.

last-tape-length

 last-tape-length (-- a)

Address of the file length in last-tape-header.

See also: tape-length.

Source file: <src/lib/tape.fs>.

last-tape-start

 last-tape-start (-- a)

Address of the file start in last-tape-header.

See also: tape-start.

Source file: <src/lib/tape.fs>.

last-wordlist

 last-wordlist (-- a)

A variable. a is the address of a cell containing the data
field address of the latest word list created.

See also: wordlist, latest.

Source file: <src/kernel.z80s>.

lastblk

 lastblk (-- a) "last-b-l-k"

A user variable. a is the address of a cell containing the
block number of the block most recently or loaded (e.g. with
load, continued or load-program). lastblk is updated
by (load and used by reload.

Source file: <src/kernel.z80s>.

lastxt

 lastxt (-- a) "last-x-t"

A user variable. a is the address of a cell containing the
execution token of the last word defined.

See also: last.

Source file: <src/kernel.z80s>.

latest

 latest (-- nt)

nt is the name token of the last word defined is the system.

Definition:

 : latest (-- nt) last @ ;

Origin: Gforth.

See also: last, current-latest, fyi.

Source file: <src/kernel.z80s>.

latest>wordlist

 latest>wordlist (wid --) "latest-to-wordlist"

Associate the latest name to the word list identified by
wid.

See also: wordlist, wordlist-name!,
wordlist>vocabulary, wordlists, latest.

Source file: <src/lib/word_lists.fs>.

latestxt

 latestxt (-- xt) "latest-x-t"

Leave the execution token of the last word defined.

Origin: Gforth.

Source file: <src/kernel.z80s>.

lb

 lb (--) "l-b"

List bottom half of screen hold in scr.

See also: lt, lm, list, list-lines.

Source file: <src/lib/tool.list.blocks.fs>.

lcr

 lcr (--) "l-c-r"

If the cursor is neither at the home position nor at the
start of a line, move it to the next row. lcr is part
of the left-justified displaying system.

See also: lcr?, (lcr, ltype.

Source file: <src/lib/display.ltype.fs>.

lcr?

 lcr? (-- f) "l-c-r-question"

Is the cursor neither at the home position nor at the start of a
line? lcr? is part of the left-justified displaying system.

See also: lcr, ltype.

Source file: <src/lib/display.ltype.fs>.

ld#,

 ld#, (8b reg --) "l-d-number-sign-comma"

Compile the Z80 assembler instruction LD reg,8b.

See also: ld,, ldp#,.

Source file: <src/lib/assembler.fs>.

ld,

 ld, (reg1 reg2 --) "l-d-comma"

Compile the Z80 assembler instruction LD
reg2,reg1.

See also: ld#,, ldp,.

Source file: <src/lib/assembler.fs>.

ldai,

 ldai, (--) "l-d-a-i-comma"

Compile the Z80 assembler instruction LD A,I.

See also: ldia,, ldar,, ld,.

Source file: <src/lib/assembler.fs>.

ldar,

 ldar, (--) "l-d-a-r-comma"

Compile the Z80 assembler instruction LD A,R.

See also: ldra,, ldai,, ld,.

Source file: <src/lib/assembler.fs>.

ldd,

 ldd, (--) "l-d-d-comma"

Compile the Z80 assembler instruction LDD.

See also: ldi,, lddr,.

Source file: <src/lib/assembler.fs>.

lddr,

 lddr, (--) "l-d-d-r-comma"

Compile the Z80 assembler instruction LDDR.

See also: ldir,, ldd,.

Source file: <src/lib/assembler.fs>.

ldi,

 ldi, (--) "l-d-i-comma"

Compile the Z80 assembler instruction LDI.

See also: ldd,, ldir,.

Source file: <src/lib/assembler.fs>.

ldia,

 ldia, (--) "l-d-i-a-comma"

Compile the Z80 assembler instruction LD I,A.

See also: ldai,, ldra,, ld,.

Source file: <src/lib/assembler.fs>.

ldir,

 ldir, (--) "l-d-i-r-comma"

Compile the Z80 assembler instruction LDIR.

See also: lddr,, ldi,.

Source file: <src/lib/assembler.fs>.

ldp#,

 ldp#, (16b regp --) "l-d-p-number-sign-comma"

Compile the Z80 assembler instruction LD
regp,16b.

See also: ldp,, ld#,.

Source file: <src/lib/assembler.fs>.

ldp,

 ldp, (regp1 regp2 --) "l-d-p-comma"

Compile the Z80 assembler instructions required to load
register pair regp2 with register pair regp1.

Example: b d ldp, compiles the Z80 instructions LD
D,B and LD E,C.

See also: ld,, subp,, tstp,, clrp,.

Source file: <src/lib/assembler.fs>.

ldra,

 ldra, (--) "l-d-r-a-comma"

Compile the Z80 assembler instruction LD R,A.

See also: ldar,, ldir,, ld,.

Source file: <src/lib/assembler.fs>.

ldsp,

 ldsp, (--) "l-d-s-p-comma"

Compile the Z80 assembler instruction LD SP,HL.

Source file: <src/lib/assembler.fs>.

leapy-year?

 leapy-year? (n -- f) "leapy-year-question"

Is n a leapy year?

See also: set-date.

Source file: <src/lib/time.fs>.

leave

 leave (--) (R: loop-sys --)

Discard the loop control parameters for the current nesting
level. Continue execution immediately following the innermost
syntactically enclosing loop or +loop.

Origin: Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: ?leave, 0leave, unloop, do, ?do, +loop.

Source file: <src/kernel.z80s>.

lemit

 lemit (c --) "l-emit"

Display character c as part of the left-justified displaying
system.

See also: ltype, lspace.

Source file: <src/lib/display.ltype.fs>.

lengths

 lengths (ca1 len1 ca2 len2 -- ca1 len1 ca2 len2 len1 len2)

Duplicate lengths len1 and len2 of strings ca1 len1
and ca2 len2. lengths is a factor of s+.

lengths is written in Z80. Its equivalent definition in
Forth is the following:

 : lengths (ca1 len1 ca2 len2 -- ca1 len1 ca2 len2 len1 len2)
 2over nip over ;

Source file: <src/lib/strings.MISC.fs>.

less-of

 less-of
 Compilation: (C: -- of-sys)
 Run-time: (x1 x2 -- | x1)

less-of is an immediate and compile-only word.

Usage example:

 : test (x --)
 case
 10 of ." ten!" endof
 15 less-of ." less than 15" endof
 ." greater than 14"
 endcase ;

See also: case, greater-of, (less-of.

Source file: <src/lib/flow.case.fs>.

lex!

 lex! (b nt --) "lex-store"

Set the bits of the mask b in the length byte of nt.

See also: lex?, immediate, compile-only.

Source file: <src/kernel.z80s>.

lex?

 lex? (nt b -- f) "lex-question"

Test the bits at nt specified by the bitmask b.
Return true if the result is non-zero, else return false.

See also: lex!, immediate?, compile-only?.

Source file: <src/kernel.z80s>.

lhome

 lhome (--) "l-home"

Move the cursor used by ltype and related words to its
home position, at the top left (column 0, row 0).

Source file: <src/lib/display.ltype.fs>.

limit

 limit (-- a)

A variable. a is the address of a cell containing the
address above the highest address usable by the data space
(the data space is the region addressed by dp). Its default
value is zero, which is right above the highest memory address
($FFFF).

limit can be modified by a program in order to reserve a
memory zone for special purposes.

Origin: Fig-Forth’s limit constant.

See also: unused, farlimit, fyi, greeting.

Source file: <src/kernel.z80s>.

limit-heap

 limit-heap (n -- a)

Create a heap of n bytes right above limit and return
its address a. limit is moved down n bytes.

See also: allot-heap, bank-heap, farlimit-heap,
empty-heap.

Source file: <src/lib/memory.allocate.COMMON.fs>.

line

 line (n -- a)

Part of specforth-editor:
Leave address a of the beginning of line n in the
current block buffer. The block number is in scr.
Read the disk block from disk if it is not already in the
disk buffer.

See also: line>string.

Source file: <src/lib/prog.editor.specforth.fs>.

line>string

 line>string (n1 n2 -- ca len) "line-to-string"

Convert the line number n1 and the screen number n2 to a
string ca len in the disk buffer containing the data.

Definition:

 : line>string (n1 n2 -- ca len)
 >r c/l b/buf */mod r> + block + c/l ;

Origin: fig-Forth’s (line.

Source file: <src/kernel.z80s>.

lineblock>source

 lineblock>source (n u --) "line-block-to-source"

Set block u as the current source, starting from its
line n.

See also: block>source.

Source file: <src/lib/blocks.fs>.

lineload

 lineload (n u --) "line-load"

Begin interpretation at line n of block u.

Origin: Forth-83 (Uncontrolled Reference Words).

See also: load.

Source file: <src/lib/blocks.fs>.

link,

 link, (head --) "link-comma"

Create a new node in data space for the linked list head:

Before:

	
head → old_node

After:

	
head → new_node

	
new_node → old_node

See also: link@.

Source file: <src/lib/data.MISC.fs>.

link>name

 link>name (lfa -- nt) "link-to-name"

Get nt from its lfa.

See also: name>link.

Source file: <src/lib/compilation.fs>.

link@

 link@ (node1 -- node2) "link-fetch"

Fetch the node node2 from the linked list node node1.
link@ is an alias of @.

See also: link,.

Source file: <src/lib/data.MISC.fs>.

list

 list (u --)

Display block u and store u in scr.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Controlled Reference Words), Forth-94 (BLOCK EXT),
Forth-2012 (BLOCK EXT).

See also: scr, list-lines, lt, lm, lb.

Source file: <src/lib/tool.list.blocks.fs>.

list-line

 list-line (n u --)

List line n from block u, without trailing spaces.

See also: list-lines, .line#, .line. list, blk-line.

Source file: <src/lib/tool.list.blocks.fs>.

list-lines

 list-lines (u n1 n2 --)

List lines n2..n3 of block u and store u in scr.

See also: list, scr, list-line.

Source file: <src/lib/tool.list.blocks.fs>.

lit

 lit (-- x)

Return x, which was compiled by literal after lit.

lit is a compile-only word.

See also: clit, 2lit.

Source file: <src/kernel.z80s>.

literal

 literal (x --)

Compile x in the current definition.

literal is an immediate and compile-only word.

Definition:

 : literal (x --) postpone lit , ; immediate compile-only

See also: lit, cliteral, 2literal, xliteral,]l.

Source file: <src/kernel.z80s>.

lm

 lm (--) "l-m"

List middle part of screen hold in scr.

See also: lt, lb, list, list-lines.

Source file: <src/lib/tool.list.blocks.fs>.

load

 load (u --)

Save the current input-source specification. Store u in blk
(thus making block u the input source and setting the input buffer
to encompass its contents) and lastblk, set >in to zero, and
interpret. When the parse area is exhausted, restore the prior input
source specification.

An error is issued if u is zero.

Definition:

 : load (u --)
 dup 0= #-259 ?throw nest-source (load unnest-source ;

See also: (load, nest-source, unnest-source, lineload,
+load, thru, blk.

Source file: <src/kernel.z80s>.

load-program

 load-program ("name" --)

Load a program, i.e. a set of blocks that are loaded as a
whole. The blocks of a program don’t have block headers
except the first one, which contains name. Therefore
programs cannot have internal requisites, i.e. they use
need only to load from the library, which must be before
the blocks of the program on the disk or disks.

Programs don’t need --> or any similar word to control
the loading of blocks: The loading starts from the first
block of the disk that has name in its header (surrounded
by spaces), and continues until the last block of the disk
or until end-program is executed.

See also: loading-program, (load-program.

Source file: <src/lib/blocks.fs>.

loader

 loader (u "name" --)

Define a word name which, when executed, will load block
u.

Origin: Forth-79’s loads (Reference Word Set),
Forth-83’s loads (Appendix B. Uncontrolled Reference
Words).

Source file: <src/lib/blocks.fs>.

loading-program

 loading-program (-- a)

a is the address of a cell containing a flag: Is a
program being loaded by load-program? This flag is
modified by load-program and end-program.

Source file: <src/lib/blocks.fs>.

loading?

 loading? (-- f) "loading-question"

If a block is being loaded, i.e., if the content of
blk is non-zero, return true; else return false.

See also: ?loading, load.

Source file: <src/kernel.z80s>.

loads

 loads (u n --)

Load n blocks starting from block u.

Origin: MMSFORTH.

Source file: <src/lib/blocks.fs>.

local

 local (a --)

Save the value of variable a, which will be restored at
the end of the current definition.

local is a compile-only word.

Usage example:

 variable v
1 v ! v ? \ default value

: test (--)
 v local
 v ? 1887 v ! v ? ;

v ? \ default value

See also: 2local, clocal, arguments, anon.

Source file: <src/lib/locals.local.fs>.

localized,

 localized, (x[langs]..x[1] --)

Store a langs number of cells, from x[1] to x[langs]
in the data space, updating dp.

localized, is a factor of localized-word,
localized-string, far-localized-string and
far>localized-string.

See also: far-localized,.

Source file: <src/lib/translation.fs>.

localized-character

 localized-character (c[langs]..c[1] "name" -- c)

Create a word name that will return a character from
c[langs]..c[1], depending on lang. c[langs]..c[1]
are ordered by ISO language code, being TOS the first one.

See also: localized-word, localized-string, langs.

Source file: <src/lib/translation.fs>.

localized-string

 localized-string (ca[langs]..ca[1] "name" --)

Create a word name that will return a counted string from
ca[langs]..ca[1], depending on lang.
ca[langs]..ca[1], are the addresses where the strings
have been compiled. ca[langs]..ca[1], are ordered by ISO
language code, being TOS the first one.

See also: far-localized-string, far>localized-string,
localized-word, localized-character, langs.

Source file: <src/lib/translation.fs>.

localized-word

 localized-word (xt[langs]..xt[1] "name" --)

Create a word name that will execute an execution token
from xt[langs]..xt[1], depending on lang.
xt[langs]..xt[1], are the execution tokens of the
localized versions. xt[langs]..xt[1], are ordered by ISO
language code, being TOS the first one.

See also: localized-string, localized-character, langs.

Source file: <src/lib/translation.fs>.

locate

 locate ("name" -- block | false)

Locate the first block whose header contains name
(surrounded by spaces), and return its number block. If
not found, return false. The search is case-sensitive.

Only the blocks delimited by first-locatable and
last-locatable are searched.

See also: located.

Source file: <src/lib/002.need.fs>.

locate-need

 locate-need ("name" --)

If name is not found in the current search order, locate
the first block where name is included is the block
header (surrounded by spaces), and load it. If not found,
throw an exception #-268 ("needed, but not located").

locate-need is the default action of the deferred word
need (see defer).

See also: make-thru-index.

Source file: <src/lib/002.need.fs>.

locate-needed

 locate-needed (ca len --)

If the string ca len is not the name of a word found in
the current search order, locate the first block where ca
len is included in the block header (surrounded by
spaces), and load it. If not found, throw an exception
#-268 ("needed, but not located").

locate-needed is the default action of the deferred
word needed (see defer).

See also: make-thru-index.

Source file: <src/lib/002.need.fs>.

locate-reneed

 locate-reneed ("name" --)

Locate the first block whose header contains name
(surrounded by spaces), and load it. If not found, throw
an exception #-268 ("needed, but not located").

locate-reneed is the default action of the deferred
word reneed (see defer).

See also: make-thru-index.

Source file: <src/lib/002.need.fs>.

locate-reneeded

 locate-reneeded (ca len --)

Locate the first block whose header contains the string ca
len (surrounded by spaces), and load it. If not found,
throw an exception #-268 ("needed, but not located").

locate-reneeded is the default action of the deferred
word reneeded (see defer).

See also: make-thru-index.

Source file: <src/lib/002.need.fs>.

located

 located (ca len -- block | 0)

Locate the first block whose header contains the string ca
len (surrounded by spaces), and return its number. If not
found, return zero. The search is case-sensitive.

Only the blocks delimited by first-locatable and
last-locatable are searched`.

located is a deferred word (see defer) whose default
action is (located.

See also: need-from.

Source file: <src/lib/002.need.fs>.

log-in-disk

 log-in-disk (n -- ior)

Log in a new disk in phyisical drive unit n (0..1).

Source file: <src/kernel.plus3dos.z80s>.

loop

 loop
 Compilation: (do-sys --)

Compile (loop and resolve the do-sys address left by
do, or ?do.

loop is an immediate and compile-only word.

Origin: Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: +loop, -do.

Source file: <src/kernel.z80s>.

lower

 lower (c -- c')

Convert c to lowercase c'.

See also: lowers, upper.

Source file: <src/kernel.z80s>.

lower_

 lower_ (-- a)

A constant. a is the address of a routine that converts to
uppercase the ASCII character hold in the A register.

See also: lower, upper_.

Source file: <src/kernel.z80s>.

lowers

 lowers (ca len --)

Convert string ca len to lowercase.

See also: uppers, lower.

Source file: <src/lib/strings.MISC.fs>.

lpage

 lpage (--) "l-page"

Clear the display and init the cursor used by ltype and
related words.

Source file: <src/lib/display.ltype.fs>.

lshift

 lshift (x1 u -- x2) "l-shift"

Perform a logical left shift of u bit-places on x1,
giving x2. Put zeroes into the least significant bits
vacated by the shift.

Origin: Forth-94 (CORE), Forth-2012 (CORE).

See also: rshift, ?shift, clshift.

Source file: <src/lib/math.operators.1-cell.fs>.

lspace

 lspace (--) "l-space"

Display a space as part of the left-justified printing
system.

See also: lemit, ltype.

Source file: <src/lib/display.ltype.fs>.

lt

 lt (--) "l-t"

List top half of screen hold in scr.

See also: lm, lb, list, list-lines.

Source file: <src/lib/tool.list.blocks.fs>.

ltype

 ltype (ca len --) "l-type"

Display character string ca len left-justified from the
current cursor position.

See also: lwidth.

Source file: <src/lib/display.ltype.fs>.

ltype-indentation

 ltype-indentation (u --) "l-type-indentation"

Display an indentation of u spaces and update the
corresponding variables of the ltype system.

Source file: <src/lib/display.ltype.fs>.

ltyped

 ltyped (n --) "l-typed"

Update #ltyped with n characters typed by ltype.

Source file: <src/lib/display.ltype.fs>.

lwidth

 lwidth (-- ca) "l-width"

A byte variable containing the text width in columns used
by ltype and related words. Its default value is
columns, ie. the current width of the screen.

Source file: <src/lib/display.ltype.fs>.

m

m

 m (-- reg)

Return the identifier reg of Z80 assembler
pseudo-register "(HL)", i.e. the byte stored in the memory
address pointed by register pair "HL".

See also: a,
b, c,
d, e,
h, l,
ix, iy, sp.

Source file: <src/lib/assembler.fs>.

m

 m (--)

A command of gforth-editor:
Mark current position.

Source file: <src/lib/prog.editor.gforth.fs>.

m

 m (n --)

A command of specforth-editor: Move the cursor by n
characters. The position of the cursor on its line is shown
by a "_" (underline).

See also: b,
c,
d,
e,
f,
h,
i,
l,
n,
p,
r,
s,
t,
x, -move.

Source file: <src/lib/prog.editor.specforth.fs>.

m*

 m* (n1 n2 -- d) "m-star"

Multiply n1 by n2, giving the result d.

Definition:

 : m* (n1 n2 -- d)
 2dup xor >r
 abs swap abs um*
 r> ?dnegate ;

Origin: fig-Forth, Forth-94 (CORE), Forth-2012 (CORE).

See also: *, um*, d*, ?dnegate.

Source file: <src/kernel.z80s>.

m*/

 m*/ (d1 n1 +n2 -- d2) "m-star-slash"

Multiply d1 by n1 producing the triple-cell
intermediate result t. Divide t by +n2 giving the
double-cell quotient d2.

Origin: Forth-94 (DOUBLE), Forth-2012 (DOUBLE).

See also: */, m*.

Source file: <src/lib/math.operators.2-cell.fs>.

m+

 m+ (d1|ud1 n -- d2|ud2) "m-plus"

Add n to d1|ud1, giving the sum d2|ud2.

m+ is written in Z80. An equivalent definition in Forth
(1.48 slower, but 4 bytes smaller) is the following:

 : m+ (d1|ud1 n -- d2|ud2) s>d d+ ;

Origin: Forth-94 (DOUBLE) Forth-2012 (DOUBLE).

See also: +, d+.

Source file: <src/lib/math.operators.2-cell.fs>.

m/

 m/ (d n1 -- n2 n3) "m-slash"

A mixed magnitude math operator which leaves the signed
remainder n2 and signed quotient n3 from a double number
dividend d and divisor n1.

m/ is a deferred word (see defer) whose default action
is sm/rem, so it does a symmetric division (the remainder
takes its sign from the dividend), as in fig-Forth and
Forth-79. It can be set to execute fm/mod instead.

m/ is executed by all other division operators. Therefore
setting it to execute either sm/rem or fm/mod will change
the behaviour of all division operators.

Rationale:

The Forth-79 Standard specifies that the signed division
operators (/, /mod, mod, */mod, and */) round
non-integer quotients towards zero (symmetric division).
Forth-83 changed the semantics of these operators to round
towards negative infinity (floored division). To resolve this
issue, Forth-94 and Forth-2012 permit to supply either floored
or symmetric operators, and include a floored division
primitive (fm/mod), and a symmetric division primitive
(sm/rem).

Origin: fig-Forth.

Source file: <src/kernel.z80s>.

m?

 m? (-- op) "m-question"

Return the opcode op of the Z80 assembler instruction
jp m, to be used as condition and consumed by ?ret,,
?jp,, ?call,, aif, awhile or auntil.

See also: z?, nz?, c?, nc?, po?, pe?, p?.

Source file: <src/lib/assembler.fs>.

macro

 macro (name --)

Start the definition of an assembler macro name.

Usage example:

 macro dos-in, (--) DB c, #231 c, endm
 \ Assemble the Z80 instruction `in a,(#231)`, to page in
 \ the Plus D memory.

See also: endm, asm, code.

Source file: <src/lib/assembler.macro.fs>.

magenta

 magenta (-- b)

A cconstant that returns 3, the value that represents the
magenta color.

See also: black, blue, red, green, cyan,
yellow, white, contrast, papery, inversely.

Source file: <src/lib/display.attributes.fs>.

make

 make
 Interpretation: ("name" --)
 Compilation: (--)

Interpretation: Parse name, which is the name of a word
created by doer, and make it execute the colon definition
that follows.

Usage example:

 doer flashes
flashes \ does nothing
make flashes 8 0 ?do i border loop ;
flashes \ works

Compilation: Modify the next inline compiled word of the
current definition, which was created by doer, and make
it execute the rest of the definition after it.

Usage example:

 doer flashes
flashes \ does nothing
: activate (--) make flashes 8 0 ?do i border loop ;
activate
flashes \ works

make is an immediate word.

See also: ;and, undo.

Source file: <src/lib/flow.doer.fs>.

make-block-chars

 make-block-chars (a --)

Make the bit patterns of the 16 ZX Spectrum block
characters, originally assigned to character codes
128..143, and store them (128 bytes in total) from address
a.

make-block-chars is provided for easier conversion of
BASIC programs that use the original block characters.
These characters are part of the ZX Spectrum character set,
but they are not included in the ROM font. Instead, their
bitmaps are built on the fly by the BASIC ROM printing
routine. In Solo Forth there’s no such restriction, and
characters 0..255 can be redefined by the user.

make-block-chars is written in Z80 and uses 18 B of
code space, but the word block-chars is provided as an
alternative.

Source file: <src/lib/graphics.udg.fs>.

make-thru-index

 make-thru-index (--)

Create the blocks index and activate it. The current word
list and the current search order are preserved.

make-thru-index first creates a blocks index, i.e. a
word list from the names that are on the index (header)
line of every searchable block, ignoring duplicates;
second, it executes use-thru-index to activate the blocks
index, changing the default behaivour of need and related
words.

The words in the index have a fake execution token, which
is the block they belong to. This way, after indexing all
the disk blocks only once, need will search the word list
and load the block of the word found. On the contrary, the
default action of need is to search all the blocks every
time.

The default action of need and related words can be
restored with use-no-index.

Source file: <src/lib/blocks.indexer.thru.fs>.

manual-see

 manual-see (-- a)

A variable. a is the address of a cell containing a flag.
When the flag is non-zero, the decompilation of colon words
done by see can be controlled manually with some keys,
which are displayed at the start of the process.

See also: see-usage.

Source file: <src/lib/tool.see.fs>.

marker

 marker ("name" --)

Create a definition name. When name is executed, it
will restore all dictionary allocation and search order
pointers to the state they had just prior to the definition
of "name". Remove the definition of name and all
subsequent definitions.

The following data are preserved and restored: the
data-space pointer (here), the name-space pointer
(np@), the word lists pointer (last-wordlist), the
compilation word list (get-current), the search order
(order) and the word lists (dump-wordlists).

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: marker,, unmarker, anew.

Source file: <src/lib/tool.marker.fs>.

marker,

 marker, (--) "marker-comma"

Save the current state of the system before creating the
corresponding marker that will restore it with
unmarker. The data that describes the state of the system
is stored at the current data-space pointer (here), while
the data-space pointer itself is stored in the body of the
new marker. The saving process is the following:

Store at the current data-space pointer the names pointer
(np@), the latest definition pointers (latest and
latestxt), the word lists pointer (last-wordlist),
the current compilation word list (get-current), the
search order (order,) and the word lists (wordlists,)
at the current data-space pointer.

marker, is a factor of marker.

Source file: <src/lib/tool.marker.fs>.

mask+attr!

 mask+attr! (b1 b2 --) "mask-plus-attribute-store"

Set b1 as the current attribute mask
and b2 as the current attribute.

See also: mask+attr@, attr!, attr-mask!

Source file: <src/lib/display.attributes.fs>.

mask+attr-setter

 mask+attr-setter (b1 b2 "name" --) "mask-plus-attribute-setter"

Create a definition name that, when executed, will set
b1 as the current attribute mask and b2 as the
current attribute.

See also: attr-setter.

Source file: <src/lib/display.attributes.fs>.

mask+attr>perm

 mask+attr>perm (--) "mask-plus-attribute-to-perm"

Make the current attribute and mask permanent.

Words that use attributes don’t use the OS permanent
attribute but the temporary one, which is called "current
attribute" in Solo Forth.

Source file: <src/lib/display.attributes.fs>.

mask+attr@

 mask+attr@ (-- b1 b2) "mask-plus-attribute-fetch"

Set b as the current attribute mask.

See also: attr-mask!, perm-attr-mask@.

Source file: <src/lib/display.attributes.fs>.

match

 match (ca1 len1 ca2 len2 -- true n3 | false n4)

Part of specforth-editor:
Match the string ca2 len2 with all strings contained in
the string ca1 len1. If found leave n3 bytes until the
end of the matching string, else leave n4 bytes to end of
line.

See also: -text.

Source file: <src/lib/prog.editor.specforth.fs>.

max

 max (n1 n2 -- n3)

n3 is the greater of n1 and n2.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: min, umax, dmax, 0max, >.

Source file: <src/kernel.z80s>.

max-blocks

 max-blocks (-- u)

Return the number u of maximum blocks available in the
system. The number depends on #block-drives and
blocks/disk.

Source file: <src/kernel.z80s>.

max-char

 max-char (-- u)

u is the maximum value of any character in the character
set.

See also: address-unit-bits, /counted-string,
environment?.

Source file: <src/lib/environment-question.fs>.

max-d

 max-d (-- d)

d is the largest usable signed double.

See also: max-n, max-ud, environment?.

Source file: <src/lib/environment-question.fs>.

max-drives

 max-drives (-- b)

A cconstant. b is the maximum number of drives
available in the DOS.

See also: first-drive, drive.

Source file: <src/kernel.z80s>.

max-esc-order

 max-esc-order (-- n)

A constant that returns the maximum number of word lists in
the escaped strings search order.

Its default value is 4, but the application can define this
constant with any other value before loading the words that
need it, and it will be kept.

See also: esc-context, #esc-order, set-esc-order,
get-esc-order, >order.

Source file: <src/lib/strings.escaped.fs>.

max-l-refs

 max-l-refs (-- ca)

ca is the address of a byte containing the maximum number
(count) of unresolved assembler label references that can
be created by rl# or al#. Its default value is 16. The
program can change the value, but the default one should be
restored after the code word has been compiled.

max-l-refs is used by init-labels to allocate the
l-refs table.

Usage example:

 need l:
assembler-wordlist >order max-l-refs c@
 #20 max-l-refs c! previous

code my-word (--)
 \ Z80 code that needs #20 label references
end-code

assembler-wordlist >order max-l-refs c! previous

See also: max-labels.

Source file: <src/lib/assembler.labels.fs>.

max-labels

 max-labels (-- ca)

ca is the address of a byte containing the maximum number
(count) of assembler labels that can be defined by
l:. Its default value is 8, i.e. labels 0..7 can be
used. The program can change the value, but the default one
should be restored after the code word has been compiled.

max-labels is used by init-labels to allocate the
labels table.

Usage example:

 need assembler need l:
assembler-wordlist >order max-labels c@
 #24 max-labels c! previous

code my-word (--)
 \ Z80 code that needs #24 labels
end-code

assembler-wordlist >order max-labels c! previous

See also: max-l-refs.

Source file: <src/lib/assembler.labels.fs>.

max-n

 max-n (-- n)

n is the largest usable signed integer.

See also: max-u, max-d, environment?.

Source file: <src/lib/environment-question.fs>.

max-order

 max-order (-- n)

A constant. n is the maximum number of word lists in the
search order.

See also: context, #order, set-order, get-order, >order.

Source file: <src/kernel.z80s>.

max-u

 max-u (-- u)

u is the largest usable unsigned integer.

See also: max-n, max-ud, environment?.

Source file: <src/lib/environment-question.fs>.

max-ud

 max-ud (-- ud) "max-u-d"

ud is the largest usable unsigned double.

See also: max-u, max-d, environment?.

Source file: <src/lib/environment-question.fs>.

max>top

 max>top (n1 n2 -- n1 n2 | n2 n1)

Make sure the top of stack is the greater of n1 and n2.

See also: min>top, pair=.

Source file: <src/lib/math.operators.1-cell.fs>.

menu

 menu (--)

Activate the current menu, which has been set by set-menu
and displayed by .menu.

See also: new-menu,
menu-key-up, menu-key-down, menu-key-choose,
options-table, actions-table.

Source file: <src/lib/menu.sinclair.fs>.

menu-banner-attr

 menu-banner-attr (-- ca)

A cvariable. ca is the address of a byte containing the
attribute of the current menu banner. Its default value
is white ink on black paper, with bright.

See also: menu-body-attr, menu-highlight-attr,
.menu-banner, black, papery, white, brighty.

Source file: <src/lib/menu.sinclair.fs>.

menu-body-attr

 menu-body-attr (-- ca)

A cvariable. ca is the address of a byte containing the
attribute of the current menu background. Its default
value is black ink on white paper, with bright.

See also: menu-banner-attr, menu-highlight-attr,
.menu-options, white, papery, brighty.

Source file: <src/lib/menu.sinclair.fs>.

menu-highlight-attr

 menu-highlight-attr (-- ca)

A cvariable. ca is the address of a byte containing the
attribute used to highlight the current menu option. Its
default value is the combination of cyan, papery and
brighty, i.e. black ink on cyan bright paper.

See also: menu-banner-attr.

Source file: <src/lib/menu.sinclair.fs>.

menu-key-choose

 menu-key-choose (-- ca)

A cvariable. ca is the address of a byte containing the
key code used to move the current menu selection down.
Its default value is 13, i.e. the enter key.

See also: menu-key-up, menu-key-down.

Source file: <src/lib/menu.sinclair.fs>.

menu-key-down

 menu-key-down (-- ca)

A cvariable. ca is the address of a byte containing the
key code used to move the current menu selection down.
Its default value is character '6'.

See also: menu-key-up, menu-key-choose.

Source file: <src/lib/menu.sinclair.fs>.

menu-key-up

 menu-key-up (-- ca)

A cvariable. ca is the address of a byte containing the
key code used to move the current menu selection up.
Its default value is character '7'.

See also: menu-key-down, menu-key-choose.

Source file: <src/lib/menu.sinclair.fs>.

menu-options

 menu-options (-- ca)

A cvariable. ca is the address of a byte containing the
current menu number of options. menu-options is set
by set-menu.

See also: menu-width.

Source file: <src/lib/menu.sinclair.fs>.

menu-rounding

 menu-rounding (-- a)

A variable. a is the address of a cell containing a
flag. When the flag is non-zero, the top and the bottom
menu options are connected in a circular manner, i.e.
pressing menu-key-up at the top option leads to to the
botton option, and pressing menu-key-down at the bottom
option lead to the top.

See also: menu-key-choose, menu-highlight-attr.

Source file: <src/lib/menu.sinclair.fs>.

menu-title

 menu-title (-- a)

A 2variable. a is the address of a double cell
containing the address and length of a string which is the
title of the current menu. menu-title is set by
set-menu.

See also: menu-width, menu-xy, menu-banner-attr,
.menu-banner.

Source file: <src/lib/menu.sinclair.fs>.

menu-width

 menu-width (-- ca)

A cvariable. ca is the address of a byte containing the
width of the current menu in characters. menu-width
is set by set-menu.

See also: menu-title, menu-body-attr, menu-banner-attr,
menu-highlight-attr.

Source file: <src/lib/menu.sinclair.fs>.

menu-xy

 menu-xy (-- a) "menu-x-y"

A 2variable. a is the address of a double cell
containing the coordinates (column and row) of the current
menu. menu-xy is set by set-menu.

See also: menu-width, .menu-border, .menu-banner.

Source file: <src/lib/menu.sinclair.fs>.

message-warn

 message-warn (ca len -- ca len) "warn-dot-message"

If the contents of the user variable warnings is not zero
and the word name ca len is already defined in the
current compilation word list, display a warning message.

message-warn is an alternative action of the deferred
word warn (see defer).

See also: warnings, error-code-warn, error-warn, ?warn.

Source file: <src/lib/compilation.fs>.

method

 method (m v "name" -- m' `)

Define a selector.

Source file: <src/lib/objects.mini-oof.fs>.

middle-octave

 middle-octave (-- a)

Return the address of a 12-cell table that contains the
frequencies in dHz (tenths of Hz) of the middle octave.
They are used by beep>dhz to calculate the frequency of
any note.

Here is a diagram to show the offsets of all the notes in
the table, on the piano (extracted from the manual of the
ZX Spectrum +3 transcripted by Russell et al.):

	C#	D#			F#	G#	A#	
	Db	Eb			Gb	Ab	Bb	
	1	3			6	8	10	
	___	___			___	___	___	
0	2	4	5	7	9	11		
___	___	___	___	___	___	___		
 C D E F G A B

See also: beep, /octave, octave-changer.

Source file: <src/lib/sound.48.fs>.

min

 min (n1 n2 -- n3)

n3 is the lesser of n1 and n2.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: max, umin, dmin, <.

Source file: <src/kernel.z80s>.

min>top

 min>top (n1 n2 -- n1 n2 | n2 n1)

Make sure the top of stack is the lesser of n1 and n2.

See also: max>top, pair=.

Source file: <src/lib/math.operators.1-cell.fs>.

mini-64cpl-font

 mini-64cpl-font (-- a) "mini-64-c-p-l-font"

a is the address of a 4x8-pixel font compiled in data
space (336 bytes used), to be used in mode-64ao by
setting mode-64-font first.

This font is included also in disk 0 as "mini.f64".

See also: nbot-64cpl-font, omn1-64cpl-font,
omn2-64cpl-font, owen-64cpl-font.

Source file: <src/lib/display.mode.64.COMMON.fs>.

mod

 mod (n1 n2 -- n3)

Divide n1 by n2, giving the remainder n3.

Definition:

 : mod (n1 n2 -- n3) /mod drop ;

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-94
(CORE), Forth-2012 (CORE).

See also: m/, /mod, /_mod, /-rem, gcd.

Source file: <src/kernel.z80s>.

mode-32

 mode-32 (--)

Set the default 32-CPL display mode. Usually this is not
needed by the application, except when any other mode has
been used, e.g. mode-32iso, mode-42pw or mode-64ao.

When any other mode is loaded, mode-32 is automatically
loaded and made the default display mode (therefore
restored by restore-mode, which is called by warm and
cold).

See also: current-mode, set-font, set-mode-output,
columns, rows, mode-32-emit, mode-32-xy,
mode-32-at-xy, >form.

Source file: <src/lib/display.mode.32.fs>.

mode-32-at-xy

 mode-32-at-xy (col row --) "mode-32-at-x-y"

Default action of at-xy, in mode-32.

The system will crash if the coordinates are out of
screen. For the sake of speed, no check is done. If needed,
the program can use a wrapper word.

Source file: <src/kernel.z80s>.

mode-32-emit

 mode-32-emit (c --)

Send character c to the current channel, calling the ROM
routine at $0010.

mode-32-emit is the default action of emit.

mode-32-emit uses last-font-char the following way:
characters up to and including last-font-char (by default,
0 .. 127) are displayed through the ROM routine, while higher
characters (by default, 128 .. 255) are displayed by emit-udg
from the current UDG set. The following table shows the
effect of changing the value of last-font-char:

Table 31. Effect of mode-32-emit depending on the value of last-font-char.

	Value
	Effect

	126

	Characters 0 .. 126 are displayed by the ROM;
 characters 127 .. 255 are displayed by emit-udg.

	127

	Characters 0 .. 127 are displayed by the ROM;
 characters 128 .. 255 are displayed by emit-udg.

	143

	Characters 0 .. 143 are displayed by the ROM
 (this range includes the block graphics);
 characters 144 .. 255 are displayed by emit-udg.

	162

	Characters 0 .. 162 are displayed by the ROM
 (this range includes also the 128-BASIC UDG set 144 .. 162,
 corresponding to UDG characters 0 .. 18 in Solo Forth);
 characters 163 .. 255 are displayed by emit-udg.

	255

	Characters 0 .. 255 are displayed by the ROM
 (this range includes also the 128-BASIC tokens);
 no character is displayed by emit-udg.

When a standard character set is required, without the ROM
interpreting characters 128 .. 255 its own way,
mode-32iso-emit can be used instead.

See also: current-mode, mode-32, set-font, set-udg.

Source file: <src/kernel.z80s>.

mode-32-font

 mode-32-font (-- a)

A variable. a is the address of a cell containing the
address of the font used by mode-32. Note the address of
the font must be the address of its character 32 (space).

The default value of mode-32-font is rom-font plus
256 (the address of the space character in the ROM font).

Source file: <src/lib/display.mode.32.fs>.

mode-32-xy

 mode-32-xy (-- col row) "mode-32-x-y"

Return the current cursor coordinates col row in mode-32
and mode-32iso.

mode-32-xy is the action of xy when mode-32 or
mode-32iso are active, or by default when no alternative
display mode has been used (e.g. mode-64ao).

Definition:

 : mode_32-xy (-- col row)
 24 23689 c@ -
 33 23688 c@ - dup 32 = if drop 1+ 0 then swap ;
 \ 23688 = OS variable S_POSX
 \ 23689 = OS variable S_POSY

Source file: <src/kernel.z80s>.

mode-32iso

 mode-32iso (--)

Activate a 32-CPL display mode, an alternative to the
default mode-32. The only difference with mode-32 is
mode-32iso can use a ISO character set, i.e. it
displays characters 32..255 from the current font. See
mode-32iso-emit for details.

mode-32iso is useful when a ISO character set is
required (or any character set with more than 128
characters). A similar result could be obtained with
mode-32 and last-font-char, by treating the characters
greater than 128 as UDG and using set-udg. The advantage
of mode-32iso is the ISO font can be managed (e.g.
built, loaded from disk, allocated, etc.) as a whole, using
only the font address, and reserving the full UDG set for
graphics.

See also: current-mode, set-font, set-mode-output,
columns, rows, mode-32-xy, mode-32-at-xy, >form.

Source file: <src/lib/display.mode.32iso.fs>.

mode-32iso-emit

 mode-32iso-emit (c --)

Display character c in mode-32iso, i.e. using the ROM
routines but assuming the current font set by set-font
contains printable characters 32..255. See the low-level
factor mode-32iso-output_ for details how this is
achieved.

mode-32iso-emit is not affected by last-font-char.

mode-32iso-emit is a wrapper word which preserves the
Forth IP and calls mode-32iso-output_.

Source file: <src/lib/display.mode.32iso.fs>.

mode-32iso-font

 mode-32iso-font (-- a)

A variable. a is the address of a cell containing the
address of the font used by mode-32iso. Note the address
of the font must be the address of its character 32
(space).

The default value of mode-32iso-font is rom-font plus
256 (the address of the space character in the ROM font).

Source file: <src/lib/display.mode.32iso.fs>.

mode-32iso-output_

 mode-32iso-output_ (-- a) "mode-32-iso-output-underscore"

a is the address of a Z80 routine, the mode-32iso
driver, which displays the character in the A register.
calling the ROM routine at $09F4, but assuming the current
font set by set-font contains printable characters
32..255.

In order to force the ROM routine interpret characters
128..255 as ordinary characters (not block graphics, user
defined graphics or BASIC tokens, as mode-32-emit does),
mode-32iso-emit modifies c if needed and moves the
current font address accordingly before calling the ROM.
As a result, the ROM routine treats character ranges
128..223 and 224..255 as 32..127 and 32..63 respectively.

mode-32iso-output_ is called by mode-32iso-emit.

mode-32iso-output_ is activated by mode-32iso, i.e.
it’s set as the output routine of the current channel.

Source file: <src/lib/display.mode.32iso.fs>.

mode-42pw

 mode-42pw (--) "mode-42-p-w"

Start the 42-CPL display mode based on:

PRINT42.ASM
a routine from Your Sinclair #78 (Jun.1992) by P Wardle

Part of the VU-R Browser utility, written by Jim Grimwood:

http://www.users.globalnet.co.uk/~jg27paw4/pourri/pourri.htm

The only control character recognized is #13 (carriage
return).

See also: current-mode, set-font, set-mode-output,
columns, rows, mode-42pw-emit, mode-42pw-xy,
mode-42pw-font, >form, mode-42pw-output_,
mode-42rs.

Source file: <src/lib/display.mode.42pw.fs>.

mode-42pw-emit

 mode-42pw-emit (c --) "mode-42-p-w-emit"

Display character c in mode-42pw, by calling
mode-64ao-output_.

mode-42pw-emit is configured by mode-42pw as the
action of emit.

Source file: <src/lib/display.mode.42pw.fs>.

mode-42pw-font

 mode-42pw-font (-- a) "mode-42-p-w-font"

A variable. a is the address of a cell containing the
address of the font used by mode-42pw. The font is a
standard ZX Spectrum font (8x8-pixel characters, 32
characters per line), which is converted to 42 characters
per line at real time. Note the address of the font must
be the address of its character 32 (space).

The default value of mode-42pw-font is rom-font plus
256 (the address of the space character in the ROM font).

Source file: <src/lib/display.mode.42pw.fs>.

mode-42pw-output_

 mode-42pw-output_ (-- a)

a is the address of a Z80 routine that displays the
character in register A in mode-42pw.

The only control character recognized is
#13 (move cursor to next line, column 0).

Source file: <src/lib/display.mode.42pw.fs>.

mode-42pw-xy

 mode-42pw-xy (-- col row) "mode-42-p-w-x-y"

Return the current cursor coordinates col row in
mode-42pw. mode-64ao-xy is the action of xy when
mode-42pw is active.

Source file: <src/lib/display.mode.42pw.fs>.

mode-42rs

 mode-42rs (--) "mode-42-r-s"

Start the 42-CPL display mode based on a routine written by
Ricardo Serral Wigge, published on Microhobby, issue 66
(1986-02), page 24:

	
http://microhobby.org/numero066.htm

	
http://microhobby.speccy.cz/mhf/066/MH066_24.jpg

mode-42rs is under development. See the source
code for details.

See also: current-mode, mode-42pw.

Source file: <src/lib/display.mode.42rs.fs>.

mode-64-font

 mode-64-font (-- a)

A variable. a is the address of a cell containing the
address of the 4x8-pixel font used by mode-64ao. Note the
address of the font must be the address of its character 32
(space). The size of a 4x8-pixel font is 336 bytes. The
program is responsible for initializing the contents of
this variable before executing mode-64ao.

If mode-64-font is changed when mode-64ao is
on, for example to use a new font, mode-64ao must be
executed again in order to make the change effective.

See also: mini-64cpl-font, nbot-64cpl-font,
omn1-64cpl-font, omn2-64cpl-font, owen-64cpl-font.

Source file: <src/lib/display.mode.64.COMMON.fs>.

mode-64ao

 mode-64ao (--) "mode-64-a-o"

Start the 64-CPL display mode based on:

4x8 FONT DRIVER
(c) 2007, 2011 Andrew Owen
optimized by Crisis (to 602 bytes)
http://www.worldofspectrum.org/forums/discussion/14526/redirect/p1

The control characters recognized are 8 (left), 13
(carriage return) and 22 (at).

The "at" control character is followed by column
and row, i.e. the order of the coordinates is inverted
compared to the Sinclair BASIC convention and mode-32.
This will be changed in a later version of the code.

See also: current-mode, set-font, set-mode-output,
columns, rows, mode-64ao-emit, mode-64ao-xy,
mode-64-font, >form, mode-64ao-output_, mode-64es.

Source file: <src/lib/display.mode.64ao.fs>.

mode-64ao-emit

 mode-64ao-emit (c --) "mode-64-a-o-emit"

Display character c in mode-64ao, by calling
(mode-64ao-output_.

mode-64ao-emit is configured by mode-64ao as the
action of emit.

Source file: <src/lib/display.mode.64ao.fs>.

mode-64ao-output_

 mode-64ao-output_ (-- a) "mode-64-a-o-output-underscore"

a is the address of a Z80 routine, the entry to
mode-64ao driver, which preserves the Forth IP and then
displays the character in the A register by calling
(mode-64ao-output_.

Source file: <src/lib/display.mode.64ao.fs>.

mode-64ao-xy

 mode-64ao-xy (-- col row) "mode-64-a-o-x-y"

Return the current cursor coordinates col row in
mode-64ao. mode-64ao-xy is the action of xy when
mode-64ao is active.

Source file: <src/lib/display.mode.64ao.fs>.

mode-64es

 mode-64es (--) "mode-64-e-s"

Start the 64-CPL display mode based on:

4x8 FONT DRIVER
(c) 2007, 2011 Andrew Owen
optimized by Crisis (to 602 bytes)
http://www.worldofspectrum.org/forums/discussion/14526/redirect/p1

Version with integrated driver, adapted from 64#4, written
by Einar Saukas:
https://sites.google.com/site/zxgraph/home/einar-saukas/fonts
http://www.worldofspectrum.org/infoseekid.cgi?id=0027130

mode-64es is under development. See the source
code for details.

See also: current-mode, mode-64ao.

Source file: <src/lib/display.mode.64es.fs>.

module

 module ("name" -- parent-wid)

Start the definition of a new module named name.
end-module ends the module and export exports a word.

Usage example:

 module greet

 : hello (--) ." Hello" ;
 : mods (--) ." Modules" ;

 : hi (--) hello ." , " mods ." !" cr ;

export hi

end-module

Now only the exported definitions of the module are
available.

 hi \ displays "Hello, Modules!"
hello \ error, not found

The module name is defined as a constant that holds the
word list identifier the module words are defined into.
Therefore, to expose the internal words of a module, you
can use name >order, where name is the name of the
module.

See also: internal, isolate, package, privatize,
seclusion.

Source file: <src/lib/modules.module.fs>.

more-cat

 more-cat (--)

Copy the last catalogue entry of cat-buffer to the first
position in the buffer, in order to get the next chunk of
the catalogue.

more-cat is a factor of wcat.

See also: (cat.

Source file: <src/lib/dos.plus3dos.fs>.

more-cat?

 more-cat? (n -- f) "more-cat-question"

There may be more catalague entries to come after n of
them have been completed in cat-buffer?

more-cat? is a factor of wcat and wacat.

See also: (cat.

Source file: <src/lib/dos.plus3dos.fs>.

more-words?

 more-words? (nt|0 -- nt|0 f) "more-words-question"

A common factor of words and words-like.

Source file: <src/lib/tool.list.words.fs>.

move

 move (a1 a2 u --)

If u is greater than zero, copy the contents of u
consecutive bytes at a1 to the u consecutive bytes at
a2. After move completes, the u consecutive bytes at
a2 contain exactly what the u consecutive bytes at a1
contained before the move.

See also: cmove, cmove>.

Origin: Forth-83 (Uncontrolled Reference Words), Forth-94
(STRING), Forth-2012 (STRING).

Source file: <src/kernel.z80s>.

move<far

 move<far (a1 a2 len --) "move-from-far"

If len is greater than zero, copy len consecutive
cells from far-memory address a1 to main-memory
address a2.

Source file: <src/lib/memory.far.fs>.

move>far

 move>far (a1 a2 len --) "move-to-far"

If len is greater than zero, copy len consecutive
cells from main-memory address a1 to far-memory
address a2.

Source file: <src/lib/memory.far.fs>.

ms

 ms (u --)

Wait at least u ms (miliseconds).

Origin: Forth-94 (FACILITY EXT), Forth-202 (FACILITY
EXT).

See also: seconds, ticks-pause.

Source file: <src/lib/time.fs>.

ms/tick

 ms/tick (-- n) "ms-slash-tick"

Return the duration n of one clock tick in miliseconds.

See also: ticsk/second`, ticks.

Source file: <src/lib/time.fs>.

ms>ticks

 ms>ticks (n1 -- n2) "ms-to-ticks"

Convert n1 milisecnods to the corresponding number n2
of ticks.

See also: ms/tick.

Source file: <src/lib/time.fs>.

mt*

 mt* (d n -- t) "m-t-star"

t is the signed product of d times n.

Source file: <src/lib/math.operators.3-cell.fs>.

multiline-(located

 multiline-(located (ca len -- block | 0) "multiline-paren-located"

Locate the first block whose multiline header
contains the string ca len (surrounded by spaces), and
return its number. If not found, return zero. The search
is case-sensitive.

Only the blocks delimited by first-locatable and
last-locatable are searched.

multiline-(located is the default action of (located.

Source file: <src/lib/002.need.fs>.

n

n

 n (--)

A command of gforth-editor:
Go to next screen.

See also:
p,
c,
a,
g,
t,
scr, top.

Source file: <src/lib/prog.editor.gforth.fs>.

n

 n (--)

A command of specforth-editor: Find the next occurrence
of the string found by an
f command.

See also: b,
c,
d,
e,
f,
h,
i,
l,
m,
p,
r,
s,
t,
x,
find.

Source file: <src/lib/prog.editor.specforth.fs>.

n!

 n! (x[u]..x[1] u a --) "n-store"

If u is not zero, store u cells at address a, being
x[1] the first cell stored there and x[u] the last one.

See also: nn!, !, n@.

Source file: <src/lib/memory.MISC.fs>.

n,

 n, (x[u]..x[1] u --) "n-comma"

If u is not zero, store u cells x[u]..x[1] into data
space, being x[1] the first one stored and x[u] the
last one.

See also: ,, far-n,, nn,, n@, n!.

Source file: <src/lib/memory.MISC.fs>.

n>r

 n>r (x#1..x#n n --) (R: -- x#1..x#n n) "n-to-r"

Remove n+1 items from the data stack and store them for
later retrieval by nr>. The return stack may be used to
store the data. Until this data has been retrieved by
nr>:

	
this data will not be overwritten by a subsequent
invocation of n>r and

	
a program may not access data placed on the return stack
before the invocation of n>r.

Origin: Forth-2012 (TOOLS EXT).

Source file: <src/lib/return_stack.fs>.

n>str

 n>str (n -- ca len) "n-to-s-t-r"

Convert n to string ca len.

See also: u>str, d>str, char>string.

Source file: <src/lib/strings.MISC.fs>.

n@

 n@ (a u -- x[u]..x[1]) "n-fetch"

If u is not zero, read u cells x[u]..x[1] from a,
being x[1] the first one stored and x[u] the last one.

See also: nn@, @, nn!.

Source file: <src/lib/memory.MISC.fs>.

name-indexed?

 name-indexed? (ca len -- false | block true) "name-indexed-question"

Search the index for word ca len. If found, return
its block and true, else return false.

Source file: <src/lib/blocks.indexer.COMMON.fs>.

name<name

 name<name (nt1 -- nt2) "name-from-name"

Get the previous nt2 from nt1, i.e. nt2 is the
word that was defined before nt1.

See also: name>name.

Source file: <src/lib/compilation.fs>.

name>

 name> (nt -- xt) "name-to"

Definition:

 : name> (nt -- xt) [2 cells] literal - far@ ;

See also: >name, name>body, name>str, name>string,
name>immediate?, name>name.

Source file: <src/kernel.z80s>.

name>>

 name>> (nt -- xtp) "name-from-from"

Convert nt into its corresponding xtp.

See also: >>name, name>, name>body, name>name.

Source file: <src/lib/compilation.fs>.

name>body

 name>body (nt -- dfa) "name-to-body"

Get dfa from its nt.

See also: body>name, >body, name>, name>>, name>name.

Source file: <src/lib/compilation.fs>.

name>compile

 name>compile (nt -- x xt) "name-to-compile"

Compilation token x xt represents the compilation
semantics of the word nt. The returned xt has the
stack effect (i*x x — j*x). Executing xt consumes
x and performs the compilation semantics of the word
represented by nt.

Origin: Forth-2012 (TOOLS EXT).

See also: name>interpret, comp', (comp', name>.

Source file: <src/lib/compilation.fs>.

name>immediate?

 name>immediate? (nt -- xt f)

f is true if the word nt is immediate. xt is the
corresponding execution token of nt.

Definition:

 : name>immediate? (nt -- xt f) dup name> swap immediate? ;

See also: immediate?, name>, name>body, name>str,
name>string.

Source file: <src/kernel.z80s>.

name>interpret

 name>interpret (nt -- xt | 0) "name-to-interpret"

Return xt that represents the interpretation semantics of
the word nt. If nt has no interpretation semantics,
return zero.

Origin: Forth-2012 (TOOLS EXT).

See also: name>compile, ', compile-only?, name>.

Source file: <src/lib/compilation.fs>.

name>link

 name>link (nt -- lfa) "name-to-link"

Convert nt into its corresponding lfa.

See also: link>name, name>, name>body, name>>,
name>name.

Source file: <src/lib/compilation.fs>.

name>name

 name>name (nt1 -- nt2) "name-to-name"

Get the next nt2 from nt1, i.e. nt2 is the word that
was defined after nt1.

name>name is not absolutely reliable, because
nt2 is calculated after the name length of nt1. If
something was compiled in name space or the name-space
pointer np was altered between the definition identified
by nt1 and the following definition, the result nt2
will be wrong.

See also: name<name, name>, name>body, name>>.

Source file: <src/lib/compilation.fs>.

name>str

 name>str (nt -- ca len) "name-to-s-t-r"

Convert the name token nt to its name string ca len in
far memory.

See also: name>string, name>immediate?, name>,
name>body.

Source file: <src/lib/compilation.fs>.

name>string

 name>string (nt -- ca len) "name-to-string"

Convert the name token nt to its name string ca len in
the stringer.

See also: name>str, name>immediate?, name>, name>body.

Source file: <src/lib/compilation.fs>.

nbot-64cpl-font

 nbot-64cpl-font (-- a) "n-bot-64-c-p-l-font"

a is the address of a 4x8-pixel font compiled in data
space (336 bytes used), to be used in mode-64ao by setting
mode-64-font first.

This font is included also in disk 0 as "nbot.f64".

See also: mini-64cpl-font, omn1-64cpl-font,
omn2-64cpl-font, owen-64cpl-font.

Source file: <src/lib/display.mode.64.COMMON.fs>.

nc?

 nc? (-- op) "n-c-question"

Return the opcode op of the Z80 assembler instruction
jp nc, to be used as condition and consumed by ?ret,,
?jp,, ?call,, ?jr,, aif, rif, awhile, rwhile,
auntil or runtil.

See also: z?, nz?, c?, po?, pe?, p?, m?.

Source file: <src/lib/assembler.fs>.

ndrop

 ndrop (x1...xn n --) "n-drop"

Drop n cell items from the stack.

See also: 2ndrop, drop, 2drop.

Source file: <src/lib/data_stack.fs>.

need

 need ("name" --)

If name is not found in the current search order, locate
the first block where name is included is the block
header (surrounded by spaces), and load it. If not found,
throw an exception #-268 ("needed, but not located").

need is a deferred word (see defer) whose default
action is locate-need.

See also: make-thru-index.

Source file: <src/lib/002.need.fs>.

need-from

 need-from ("name" --)

Locate the first block whose header contains name
(surrounded by spaces), and set it the first one located
will search from. If not found, throw an exception #-268
("needed, but not located").

need-from is intended to prevent undesired name clashes
during the execution of need and related words. name is
supposed to be a conventional marker.

Usage example:

 (x)

: x (--) ." Wrong x!" ;

(use-x)

need-from ==data-structures== need x

x

(y ==data-structures==)

: y ." Y data structure; ;

(x)

: x ." X data structure; ;

Source file: <src/lib/002.need.fs>.

need-here

 need-here ("name" --)

If name is not a word found in the current search order,
load the current block.

need-here is a faster alternative to need, when the
needed word is in the same block, and conditional
compilation is used with ?\, ?(or [if].

Source file: <src/lib/002.need.fs>.

needed

 needed (ca len --)

If the string ca len is not the name of a word found in
the current search order, load the first block where ca
len is included in the block header (surrounded by
spaces). If not found, throw an exception #-268
("needed, but not located").

needed is a deferred word (see defer) whose default
action is locate-needed.

See also: make-thru-index.

Source file: <src/lib/002.need.fs>.

needed-word

 needed-word (-- a)

A 2variable. a is the address of a double-cell
containing the address and length of the string containing
the word currently needed by need and friends.

Source file: <src/lib/002.need.fs>.

needing

 needing ("name" -- f)

Parse name. If there’s no unresolved need, needed,
reneed or reneeded, return true. Otherwise, if name
is the needed word specified by the last execution of
need or needed, return true, else return false.

See also: unneeding.

Source file: <src/lib/002.need.fs>.

neg,

 neg, (--) "neg-comma"

Compile the Z80 assembler instruction NEG.

See also: cpl,, scf,, ccf,.

Source file: <src/lib/assembler.fs>.

negate

 negate (n1 -- n2)

Negate n1, giving its arithmetic inverse n2.

Origin: Forth-79 (Required Word Set), Forth-83 (Required
Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: ?negate, 0=, inverse, dnegate.

Source file: <src/kernel.z80s>.

neither

 neither (x1 x2 x3 -- f)

Return true if x1 is not equal to either x2 or x3;
else return false.

Origin: IsForth.

See also: either, ifelse, any?.

Source file: <src/lib/math.operators.1-cell.fs>.

nest-source

 nest-source (R: -- source-sys)

source-sys describes the current source specification for
later use by unnest-source.

nest-source is a compile-only word.

Definition:

 : nest-source (R: -- source-sys)
 r>
 input-buffer 2@ 2>r
 source-id >r
 >in @ >r
 blk @ >r
 #tib @ >r
 >r ; compile-only

See also: #tib, blk, >in, (source-id, input-buffer.

Source file: <src/kernel.z80s>.

new

 new (class -- o)

Create a new incarnation of the class class.

Source file: <src/lib/objects.mini-oof.fs>.

new-key

 new-key (-- c)

Remove all keys from the keyboard buffer, then return
character c of the key struck, a member of the a member
of the defined character set.

See also: new-key-, key, xkey, -keys.

Source file: <src/lib/keyboard.MISC.fs>.

new-key-

 new-key- (--) "new-key-minus"

Remove all keys from the keyboard buffer, then wait for a
key press and discard it. Finally remove all keys from the
keyboard buffer.

See also: new-key, key, xkey, -keys.

Source file: <src/lib/keyboard.MISC.fs>.

new-menu

 new-menu (a1 a2 ca len col row n1 n2 --)

Set, display an activate a new menu at cursor coordinates
col row, with n2 options, n1 characters width, title
ca len, actions table a1 (a cell array of n2
execution tokens) and option texts table a2 (a cell array
of n2 addresses of counted strings).

Usage example:

 need menu need :noname

:noname (--) unnest unnest ;
:noname (--) 2 border ;
:noname (--) 1 border ;
:noname (--) 0 border ;

create actions> , , , ,

here s" EXIT" s,
here s" Red" s,
here s" Blue" s,
here s" Black" s,

create texts> , , , ,

: menu-pars (-- a1 a2 ca len col row n1 n2)
 actions> texts> s" Border" 7 7 14 4 ;

menu-pars new-menu

See also: set-menu, .menu, menu.

Source file: <src/lib/menu.sinclair.fs>.

new-needed-word

 new-needed-word (ca1 len -- ca2 len')

Remove trailing and leading spaces from the word ca1 len,
which is the parameter of the latest need needed,
reneed or reneeded, store it in the stringer
and return it as ca2 len' for further processing.

Source file: <src/lib/002.need.fs>.

newline

 newline (-- ca len)

ca len is a character string containing the character(s)
used to mark the start of a new line of text in file
operations.

The string is stored at newline> as a counted string,
which can be configured by the application.

Origin: Gforth.

See also: 'cr', 'lf'.

Source file: <src/lib/display.control.fs>.

newline>

 newline> (-- ca) "new-line-to"

ca is the address of a counted string containing the
character(s) (maximum 2) used to mark the start of a new
line of text in file operations.

The string can be configured by the application. By default
it contains only the character 'cr'.

The string is returned by newline.

See also: 'lf'.

Source file: <src/lib/display.control.fs>.

newton-sqrt

 newton-sqrt (n1 -- n2) "newton-square-root"

Integer square root n2 of radicand n1 by Newton’s
method. newton-sqrt is 7..8 times slower than
baden-sqrt.

Loading newton-sqrt makes it the action of sqrt.

Source file: <src/lib/math.operators.1-cell.fs>.

next

 next (-- a)

A constant. a is the address of the main entry point of the
Forth inner interpreter. It is the address Forth words jump
to at the end. The code at a executes the word whose
execution token is in the address pointed by the Forth IP (the
Z80 BC register).

In Solo Forth, the Z80 IX register contains a, which must be
preserved across Forth words.

See also: pushhl, pusha.

Source file: <src/kernel.z80s>.

nextname

 nextname (ca len --)

The next defined word will have the name ca len; the
defining word will leave the input stream alone.
nextname works with any defining word.

Origin: Gforth.

See also: nextname-header, nextname-string.

Source file: <src/lib/define.MISC.fs>.

nextname-header

 nextname-header (--)

Create a dictionary header using the name string set by
nextname. Then restore the default action of header.

Origin: Gforth.

See also: nextname-string. default-header.

Source file: <src/lib/define.MISC.fs>.

nextname-string

 nextname-string (-- a)

A 2variable. a is the address of a double-cell
containing the address and length of a name to be used by
the next defining word. This variable is set by
nextname.

Origin: Gforth.

See also: nextname-header.

Source file: <src/lib/define.MISC.fs>.

nip

 nip (x1 x2 -- x2)

Drop the first item below the top of stack.

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: drop, tuck, 2nip.

Source file: <src/kernel.z80s>.

nn!

 nn! (x[u]..x[1] u a --) "n-n-store"

Store the count u at a. If u is not zero, store also
u cells x[u]..x[1] at the next cell address, being
x[1] the first one stored and x[u] the last one.

See also: n!, !, nn@.

Source file: <src/lib/memory.MISC.fs>.

nn,

 nn, (x[u]..x[1] u --) "n-n-comma"

Store the count u into data space. If u is not zero,
store also u cells x[u]..x[1] into data space, being
x[1] the first one stored and x[u] the last one.

See also: ,, n,, nn!.

Source file: <src/lib/memory.MISC.fs>.

nn@

 nn@ (a -- x[1]..x[u] u | 0) "n-n-fetch"

Read the count u from a. If it’s zero, return it. If
u is not zero, read u cells x[u]..x[1] from the next
cell address, being x[1] the first cell stored there and
x[u] the last one.

See also: n@, @, nn!.

Source file: <src/lib/memory.MISC.fs>.

no-exit

 no-exit (--)

Recover the data-space cell used by the exit compiled by
the ; of the latest colon definition. no-exit can be
used after a colon definition that contains and end-less
loop, or exits only through an explicit exit, quit or
other means. In such cases the exit compiled by ; can
never be reached, so its space is wasted.

Usage examples:

 : forever (--)
 begin ." Forever! " again ; no-exit

: maybe-forever (--)
 begin ." Forever? " break-key? until quit ; no-exit

The same effect can be achieved by replacing ; with [
and finish-code:

 : forever (--)
 begin ." Forever!" again [finish-code

: maybe-forever (--)
 begin ." Forever? " break-key? until quit [finish-code

finish-code is factor of ;. It’s not an immediate
word, so [is needed to enter interpretation state.

Origin: Pygmy Forth’s recover.

Source file: <src/lib/compilation.fs>.

no-ltyped

 no-ltyped (--) "no-l-typed"

Set #ltyped and #indented to zero.

See also: ltyped.

Source file: <src/lib/display.ltype.fs>.

no-warnings?

 no-warnings? (-- f) "no-warnings-question"

Are the warnings deactivated?

See also: ?warn, warnings.

Source file: <src/lib/compilation.fs>.

no?

 no? (-- f) "no-question"

Wait for a valid key press for a y/n question
and return true if it’s the current value of "n",
else return false.

See also: yes?, y/n?.

Source file: <src/lib/keyboard.yes-question.fs>.

noname?

 noname? (-- a) "no-name-question"

A variable. a is the address of a cell containing a flag:
Was the word being defined created by :noname? noname?
is set by :noname and reset by ;.

Source file: <src/kernel.z80s>.

noop

 noop (--) "no-op"

Do nothing.

See also: noop_.

Source file: <src/kernel.z80s>.

noop_

 noop_ (-- a) "no-op-underscore"

A constant. a is the address of a routine that does nothing,
except executing a Z80 ret to return.

noop_ is used as the default jump point of circle-pixel.

See also: noop.

Source file: <src/kernel.z80s>.

nop,

 nop, (--) "nop-comma"

Compile the Z80 assembler instruction NOP.

Source file: <src/lib/assembler.fs>.

not-block-drive

 not-block-drive (-- c)

c is a constant identifier used by set-block-drives,
-block-drives and other related words to mark unused
elements of block-drives.

Source file: <src/lib/dos.COMMON.fs>.

not-redefined?

 not-redefined? (ca len -- ca len xt false | ca len true) "not-redefined-question"

Is the word name ca len not yet defined in the
compilation word list?

See also: ?warn.

Source file: <src/lib/compilation.fs>.

not-understood

 not-understood (--)

throw exception code #-256 ("not understood").

not-understood is used in interpret-table.

See also: compilation-only.

Source file: <src/kernel.z80s>.

np

 np (-- a) "n-p"

A constant. a is the address of a cell containing the
name-space pointer, which points to the next free address
where the next word header will be stored.

Name space is in "far memory": a 64-KiB memory formed by 4
configurable memory banks.

See also: np0, np@, dp, far-banks.

Source file: <src/kernel.z80s>.

np!

 np! (a --) "n-p-store"

Store a into the name-space pointer np.

np! is written in Z80. Its equivalent definition in
Forth is the following:

 : np! (a --) np ! ;

Source file: <src/lib/memory.far.fs>.

np0

 np0 (-- a) "n-p-zero"

A constant. a is the the bottom (initial) address of the
name-space pointer np.

Source file: <src/kernel.z80s>.

np@

 np@ (-- a) "n-p-fetch"

Fetch the content of the name-space pointer np.

np@ is written in Z80. Its equivalent definition in Forth
is the following:

 : np@ (-- a) np @ ;

Source file: <src/kernel.z80s>.

nr>

 nr> (-- x#1..x#n n) (R: x#1..x#n n --) "n-r-from"

Retrieve the items previously stored by an invocation of
n>r. n is the number of items placed on the data
stack.

Origin: Forth-2012 (TOOLS EXT).

Source file: <src/lib/return_stack.fs>.

nuf?

 nuf? (-- f) "nuf-question"

If no key is pressed return false. If a key is pressed,
discard it and wait for a second key. Then return true if
it’s a carriage return, else return false.

Usage example:

 : listing (--)
 begin ." bla " nuf? until ." Aborted" ;

See also: aborted?.

Source file: <src/lib/keyboard.MISC.fs>.

number

 number (ca len -- n | d)

Attempt to convert a string ca len into a number. If
a valid point is found, return d; if there is no
valid point, return n. If conversion fails due to an
invalid character, throw an exception #-275 ("wrong
number").

See also: number?, >number.

Source file: <src/lib/math.number.conversion.fs>.

number-base

 number-base (ca len -- ca' len' n)

If the first character of string ca len is a radix prefix,
return its value n and the updated string ca' len' (which
does not include the radix prefix). Otherwise return ca
len untouched and the current value of base n.

Definition:

 : number-base (ca len -- ca' len' n)
 dup if
 over c@
 dup '$' = if drop 1 /string #16 exit then
 dup '%' = if drop 1 /string #2 exit then
 '#' = if 1 /string #10 exit then
 then
 base @ ;

Source file: <src/kernel.z80s>.

number-point?

 number-point? (c -- f) "number-point-question"

f is true if character c is a valid point in a number.
number-point? is a deferred word (see defer) used in
number?. Its default action is standard-number-point?,
which only allows the period.

See also: classic-number-point?, extended-number-point?, dpl.

Source file: <src/kernel.z80s>.

number?

 number? (ca len -- 0 | n 1 | d 2) "number-question"

Convert a string ca len to a number, using the current value
of base.. Return 0 if the conversion is not possible. If the
result is a single number, return n and 1. If the result is
a double number, return d and 2.

number? accepts valid point anywhere on the number and
updates dpl with the position of the last one. If no point
is found, dpl contains -1.

Characters between single quotes are recognized, after
Forth-2012.

Definition:

 : number? (ca len -- 0 | n 1 | d 2)

 dup 0= if 2drop 0 exit then \ reject empty strings

 2dup char? if nip nip 1 exit then \ character format

 over c@ number-point? \ first character is a point?
 if 2drop 0 exit then \ is so, reject the string

 base @ >r number-base base ! (R: radix)
 skip-sign? >r (R: radix sign)
 0 0 2swap dpl on

 begin (d ca len) >number dup while

 over c@ number-point? 0= \ invalid point?
 if 2drop 2drop rdrop r> base ! 0 exit then

 dup dpl @ = \ previous character was a point?
 if 2drop 2drop rdrop r> base ! 0 exit then

 dup 1- dpl ! \ update the position of the last point
 1 /string \ skip the point

 repeat

 2drop \ discard the empty string
 dpl @ 0< \ single-cell number?
 if d>s r> ?negate 1 \ single-cell number
 else r> ?dnegate 2 \ double-cell number
 then r> base ! ; \ restore the radix

See also: >number, number-point?, skip-sign?, dpl,
number.

Source file: <src/kernel.z80s>.

nup

 nup (x1 x2 -- x1 x1 x2)

This word is defined in Z80. Its equivalent definition in
Forth is the following:

 : nup (x1 x2 -- x1 x1 x2) over swap ;

See also: dup, tuck, drup, dip.

Source file: <src/lib/data_stack.fs>.

nx

 nx (--) "n-x"

Give next quick index, calculated from scr.

See also: qx, px.

Source file: <src/lib/tool.list.blocks.fs>.

nz?

 nz? (-- op) "n-z-question"

Return the opcode op of the Z80 assembler instruction
jp nz, to be used as condition and consumed by ?ret,,
?jp,, ?call,, ?jr,, aif, rif, awhile, rwhile,
auntil or runtil.

See also: z?, c?, nc?, po?, pe?, p?, m?.

Source file: <src/lib/assembler.fs>.

o

object

 object (-- a)

The base class of all objets.

Source file: <src/lib/objects.mini-oof.fs>.

ocr

 ocr (col row -- c | 0) "o-c-r"

Try to recognize the character printed at the given cursor
coordinates, using the character set whose first printable
character is pointed by the variable ocr-font. The
character variable ocr-chars contains the number of
characters in the set, and its counterpart ocr-first
contains the code of its first character. If succesful,
return the character number c according to the said
variables. Otherwise return 0. Inverse characters are not
recognized.

The name ocr stands for "Optical Character
Recognition".

See also: udg-ocr, ascii-ocr.

Source file: <src/lib/graphics.ocr.fs>.

ocr-chars

 ocr-chars (-- ca) "o-c-r-chars"

A cvariable. ca is the address of a byte
containing the number of characters used by ocr, from the
address pointed by ocr-font. By default it contais 95,
the number of printable ASCII characters in the ROM
character set.

The configuration of ocr, including this variable, can be
changed by ascii-ocr and udg-ocr.

See also: ocr-first, ocr-font.

Source file: <src/lib/graphics.ocr.fs>.

ocr-first

 ocr-first (-- ca) "o-c-r-first"

A cvariable. ca is the address of a byte
containing the code of the first printable character in the
character set used by ocr, pointed by ocr-font. By
default it contais bl, the code of the space character.

The configuration of ocr, including this variable, can be
changed by ascii-ocr and udg-ocr.

See also: ocr-chars, ocr-font.

Source file: <src/lib/graphics.ocr.fs>.

ocr-font

 ocr-font (-- a) "o-c-r-font"

A variable. a is the address of a cell containing the
address of the first printable character in the character
set used by ocr. By default it contains 0x3D00, the
address of the space character in the rom-font.

The configuration of ocr, including this variable, can be
changed by ascii-ocr and udg-ocr.

See also: ocr-chars, ocr-first.

Source file: <src/lib/graphics.ocr.fs>.

octave-changer

 octave-changer (-- a)

a is the address of an execution table that contains the
three execution tokens used to calculate the frequency of
notes from any octave. a is the address of the second
execution token (cell offset 0).

See also: change-octave, beep>dhz, middle-octave.

Source file: <src/lib/sound.48.fs>.

odd?

 odd? (n -- f) "odd-question"

Is n an odd number?

odd? is written in Z80. Its equivalent definition in
Forth is the following:

 : odd? (n -- f) 1 and 0<> ;

See also: odd?.

Source file: <src/lib/math.operators.1-cell.fs>.

of

 of
 Compilation: (C: -- orig)
 Run-time: (x1 x2 --)

of is an immediate and compile-only word.

Compilation: Put orig onto the control flow stack.
Append the run-time semantics given below to the current
definition. The semantics are incomplete until resolved by
a consumer of orig such as endof.

Run-time: If x1 and x2 are not equal, discard x2 and
continue execution at the location specified by the
consumer of orig, e.g. following the next endof.
Otherwise discard x1 x2 and continue execution in line.

of is an immediate and compile-only word.

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: default-of, less-of, greater-of, between-of,
within-of, or-of, any-of.

Source file: <src/lib/flow.case.fs>.

off

 off (a --)

Store false at a.

off is written in Z80. Its equivalent definition in Forth
is the following:

 : off (a --) false swap ! ;

Origin: Comus.

See also: on, coff.

Source file: <src/kernel.z80s>.

ok

 ok (--)

A deferred word (see defer) called by quit after
interpreting a command. Its default action is the word .ok.

Source file: <src/kernel.z80s>.

omn1-64cpl-font

 omn1-64cpl-font (-- a) "omn-1-64-c-p-l-font"

a is the address of a 4x8-pixel font compiled in data
space (336 bytes used), to be used in mode-64ao by setting
mode-64-font first.

This font is included also in disk 0 as "omn1.f64".

See also: mini-64cpl-font, nbot-64cpl-font,
omn2-64cpl-font, owen-64cpl-font.

Source file: <src/lib/display.mode.64.COMMON.fs>.

omn2-64cpl-font

 omn2-64cpl-font (-- a) "omn-2-64-c-p-l-font"

a is the address of a 4x8-pixel font compiled in data
space (336 bytes used), to be used in mode-64ao by setting
mode-64-font first.

This font is included also in disk 0 as "omn2.f64".

See also: mini-64cpl-font, nbot-64cpl-font,
omn1-64cpl-font, owen-64cpl-font.

Source file: <src/lib/display.mode.64.COMMON.fs>.

on

 on (a --)

Store true at a.

on is written in Z80. Its equivalent definition in Forth
is the following:

 : on (a --) true swap ! ;

Origin: Comus.

See also: off, con.

Source file: <src/kernel.z80s>.

only

 only (--)

Set the search order to the minimum search order.

Definition:

 : only (--) -1 set-order ;

Origin: Forth-94 (SEARCH EXT), Forth-2012 (SEARCH EXT).

See also: also, set-order, previous, order.

Source file: <src/kernel.z80s>.

only-one-pressed

 only-one-pressed (-- false | b a true)

Return the key identifier b a (key bitmask and keyboard
row port) of the only key from table kk-ports that
happens to be pressed, and true; if no key is pressed or
more than one key is pressed at the same time, return
false.

See also: pressed, pressed?.

Source file: <src/lib/keyboard.MISC.fs>.

open-disk

 open-disk (c fid -- ior)

Open disk c ('A'..'P') as a single file fid (0..15).

Source file: <src/kernel.plus3dos.z80s>.

open-file

 open-file (ca len fam -- fid ior)

Open the file named in the character string specified by
ca len, and open it with file access method _fam_.

If the file was successfully and opened, ior is zero,
fid is the file identifier and the file has been
positioned to the start of the file. Otherwise ior is
the I/O result code and fid is undefined.

Origin: Forth-94 (FILE), Forth-2012 (FILE).

See also: close-file, create-file, r/o, w/o, r/w,
s/r, bin.

Source file: <src/lib/dos.plus3dos.fs>.

option

 option (x "name" --)

Compile the action name of an option x in an options[
…​]options control structure.

See options[for a usage example.

Source file: <src/lib/flow.options-bracket.fs>.

options-table

 options-table (-- a)

A variable. a is the address of a cell containing the
address of a cell array, which holds the counted strings of
the current menu options. options-table is set by
set-menu.

See also: actions-table.

Source file: <src/lib/menu.sinclair.fs>.

options[

 options["options-left-bracket"

Compilation: ( — a1 a2 a3)

Start an options[…​]options structure.

The addresses left on the stack will be resolved by
]options:

	
a1 = address of exit point

	
a2 = address of the xt of the default option

	
a3 = address of number of options

Usage example:

 : say10 ." dek" ;
: say100 ." cent" ;
: say1000 ." mil" ;
: say-other ." alia" ;

: say (n)
 options[
 10 option say10
 100 option say100
 1000 option say1000
 default-option say-other
]options ;

10 say 100 say 1000 say 1001 say

options[is an immediate and compile-only word.

Source file: <src/lib/flow.options-bracket.fs>.

or

 or (x1 x2 -- x3)

x3 is the bit-by-bit inclusive-or of x1 with x2.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: and, xor, negate, 0=, dor.

Source file: <src/kernel.z80s>.

or#,

 or#, (b --) "or-number-sign-comma"

Compile the Z80 assembler instruction OR b.

See also: xor#,, and#,, add#,.

Source file: <src/lib/assembler.fs>.

or,

 or, (reg --) "or-comma"

Compile the Z80 assembler instruction OR reg.

See also: and,, xor,.

Source file: <src/lib/assembler.fs>.

or-of

 or-of
 Compilation: (C: -- of-sys)
 Run-time: (x1 x2 x3 -- | x1)

A variant of of.

Compilation:

Put of-sys onto the control flow stack. Append the
run-time semantics given below to the current definition.
The semantics are incomplete until resolved by a consumer
of of-sys, such as endof.

Run-time:

If x1 is equal to x2 or x1 is equal to x3 discard
x1 x2 x3 and continue execution in line; otherwise
discard x2 x3 and continue execution at the location
specified by the consumer of of-sys, e.g., following the
next endof.

or-of is an immediate and compile-only word.

Usage example:

 : test (x --)
 case
 1 of ." one" endof
 2 3 or-of ." two or three" endof
 4 of ." four" endof
 endcase ;

See also: case, any-of, (or-of.

Source file: <src/lib/flow.case.fs>.

order

 order (--)

Display the word lists in the search order in their search
order sequence, from first searched to last searched. Also
display the word list into which new definitions will be
placed.

Origin: Forth-2012 (SEARCH EXT).

See also: .context, .current, .wordlist, set-order.

Source file: <src/lib/tool.list.word_lists.fs>.

order,

 order, (--)

Compile the current search order by executing get-order
and nn,.

order, is a useful factor of marker.

See also: @order, wordlists,.

Source file: <src/lib/tool.marker.fs>.

orif

 orif "or-if"
 Compilation: (C: -- orig)
 Run-time: (f --)

Short-circuit or variant of if.

orif is an immediate and compile-only word.

Usage example:

 : is-alphanum? (c -- f) cond dup is-lower? orif
 dup is-upper? orif
 dup is-digit?
 thens nip ;

Compare with the following equivalent definition, where all
three conditions are always checked:

 : is-alphanum? (c -- f) dup is-lower?
 over is-upper? or
 swap is-digit? or ;

See also: andif, cond, thens.

Source file: <src/lib/flow.MISC.fs>.

orthodraw

 orthodraw (gx gy gxinc gyinc len --)

Draw a line formed by len pixels, starting from gx gy
and using gxinc gyinc as increments to calculate the
coordinates of every next pixel.

The status of inverse and overprint modes are obeyed;
the screen attributes and the system graphic coordinates
are updated. That’s what makes orthodraw much slower
than ortholine.

See also: adraw176, rdraw176.

Source file: <src/lib/graphics.lines.fs>.

ortholine

 ortholine (gx gy gxinc gyinc len --)

Draw a line formed by len pixels, starting from gx gy
and using gxinc gyinc as increments to calculate the
coordinates of every next pixel.

The status of inverse and overprint modes is ignored;
the attributes of the screen are not modified; and the
system graphic coordinates are not updated. That’s what
makes ortholine almost twice faster than orthodraw.

Source file: <src/lib/graphics.lines.fs>.

orx,

 orx, (disp regpi --) "or-x-comma"

Compile the Z80 assembler instruction OR
(regpi+disp).

See also: andx,, xorx,, cpx,.

Source file: <src/lib/assembler.fs>.

os-attr-p

 os-attr-p (-- ca) "o-s-attribute-p"

A constant that returns the address ca of 1-byte system
variable ATTR_P, which holds the current permanent color
attribute, as set up by color statements.

See also: os-attr-t, os-mask-p.

Source file: <src/lib/os.variables.fs>.

os-attr-t

 os-attr-t (-- ca) "o-s-attribute-t"

A constant that returns the address ca of 1-byte system
variable ATTR_T, which holds the current temporary color
attribute, as set up by color statements.

See also: os-attr-p, os-mask-t.

Source file: <src/lib/os.variables.fs>.

os-chans

 os-chans (-- a) "o-s-chans"

A constant that returns the address a of the system
variable CHANS, which holds the address of the channel data
table. Each element of the table has the following
structure:

Table 32. Structure of a system channel.

	Offset (bytes)
	Content

	+0

	Address of the channel output routine

	+2

	Address of the channel input routine

	+4

	Channel identifier character

The default contents of the channel data table are the
following:

Table 33. Default system channel data table.

	Offset (bytes)
	Content

	+0

	$09F4 (print-out)

	+2

	$10A8 (key-input)

	+4

	'K'

	+5

	$09F4 (print-out)

	+7

	$15C4 (report-j)

	+9

	'S'

	+10

	$08F1 (add-char)

	+12

	$15C4 (report-j)

	+14

	'R'

	+15

	$09F4 (print-out)

	+17

	$15C4 (report-j)

	+19

	'P'

The elements of the channel data table are pointed
from os-strms by 1-indexed byte offsets, i.e. $0001
points to the first element of the channel data table,
channel 'K'.

See also: .os-chans.

Source file: <src/lib/os.variables.fs>.

os-chars

 os-chars (-- a) "o-s-chars"

A constant that returns the address of system variable
CHARS, which holds the bitmap address of character 0 of the
current font (actual characters 32..127). By default this
system variables holds ROM address 15360 ($3C00).

See also: set-font, get-font, rom-font, os-udg.

Source file: <src/lib/os.variables.fs>.

os-coords

 os-coords (-- a) "o-s-coords"

A constant that returns the address a of 2-byte system
variable COORDS which holds the graphic coordinates of the
last point plotted.

See also: set-pixel, plot, os-coordx, os-coordy.

Source file: <src/lib/os.variables.fs>.

os-coordx

 os-coordx (-- ca) "o-s-coord-x"

A constant that returns the address ca of 1-byte system
variable COORDX which holds the graphic x coordinate of the
last point plotted.

See also: set-pixel, plot, os-coords, os-coordy.

Source file: <src/lib/os.variables.fs>.

os-coordy

 os-coordy (-- ca) "o-s-coord-y"

A constant that returns the address ca of 1-byte system
variable COORDY which holds the graphic y coordinate of the
last point plotted.

See also: set-pixel, plot, os-coords, os-coordx.

Source file: <src/lib/os.variables.fs>.

os-flags2

 os-flags2 (-- ca) "o-s-flags-two"

A constant that returns the address ca of 1-byte system
variable FLAGS2, which holds several flags.

See also: capslock.

Source file: <src/lib/os.variables.fs>.

os-frames

 os-frames (-- a) "o-s-frames"

A constant that returns the address a of the 24-bit
system variable FRAMES (least significant byte first),
containing the counter of frames, which is incremented
every 20 ms by the interrupt routine of the OS. This
counter is returned by ticks and used by its related
words.

See also: set-ticks, reset-ticks,
ticks-pause, ?ticks-pause.

Source file: <src/lib/os.variables.fs>.

os-mask-p

 os-mask-p (-- ca) "o-s-mask-p"

A constant that returns the address ca of 1-byte system
variable MASK_P, which holds the permanent color attribute
mask, used for transparent colors, etc. Any bit that is 1
shows that the corresponding attribute bit is taken not
from os-attr-p but from what is already on the screen.

See also: os-attr-p, os-mask-t.

Source file: <src/lib/os.variables.fs>.

os-mask-t

 os-mask-t (-- ca) "o-s-mask-t"

A constant that returns the address ca of 1-byte system
variable MASK_T, which holds the temporary color attribute
mask, used for transparent colors, etc. Any bit that is 1
shows that the corresponding attribute bit is taken not
from os-attr-t but from what is already on the screen.

See also: os-attr-t, os-mask-p.

Source file: <src/lib/os.variables.fs>.

os-p-flag

 os-p-flag (-- ca) "o-s-p-flag"

A constant that returns the address ca of 1-byte system
variable P_FLAG, which holds some flags related to
printing.

Source file: <src/lib/os.variables.fs>.

os-prog

 os-prog (-- a) "o-s-prog"

A constant that returns the address a of 2-byte system
variable PROG which holds the address of the BASIC program.

See also: os-stkend, os-ramtop, os-chans.

Source file: <src/lib/os.variables.fs>.

os-ramtop

 os-ramtop (-- a) "o-s-ram-top"

A constant that returns the address a of 2-byte system
variable RAMTOP which holds the address of the last byte of
BASIC system area.

See also: os-stkend, os-prog, os-chans.

Source file: <src/lib/os.variables.fs>.

os-seed

 os-seed (-- a) "o-s-seed"

A constant that returns the address a of system variable
SEED, which holds the seed of the BASIC random number
generator.

Source file: <src/lib/os.variables.fs>.

os-sp

 os-sp (-- a) "os-s-p"

A variable. a is the address of a cell containing a copy of
the OS stack pointer, which is saved when the Forth system is
entered from BASIC, and then restored by (bye before
returning to BASIC.

Source file: <src/kernel.z80s>.

os-stkend

 os-stkend (-- a) "o-s-stack-end"

A constant that returns the address a of 2-byte system
variable STKEND which holds the address of the start of
spare space of BASIC system area.

See also: os-prog, os-chans.

Source file: <src/lib/os.variables.fs>.

os-strms

 os-strms (-- a) "o-s-streams"

A constant that returns the address a of a 38-byte
(19-cell) system variable STRMS which holds one cell per
stream, containing the address of the channel attached to
it, as follows:

Table 34. Structure of the system streams table.

	Offset (cells)
	Stream
	Content

	+0

	-3

	$0001 (offset to channel 'K')

	+1

	-2

	$0006 (offset to channel 'S')

	+2

	-1

	$000B (offset to channel 'R')

	+3

	0

	$0001 (offset to channel 'K')

	+4

	1

	$0001 (offset to channel 'K')

	+5

	2

	$0006 (offset to channel 'S')

	+6

	3

	$0010 (offset to channel 'P')

	+7..+18

	4..15

	$0000..$0000 (not attached)

The contents are 1-index offsets from the address
os-chans. When the content of a stream cell is zero, the
stream is not attached to a channel.

See also: .os-strms.

Source file: <src/lib/os.variables.fs>.

os-udg

 os-udg (-- a) "o-s-u-d-g"

A constant that returns the address a of system variable
UDG, which holds the address of the first character bitmap
of the current User Defined Graphics set (characters
128..255 or 0..255, depending on the words used to access
them).

See also: set-udg, get-udg, os-chars.

Source file: <src/lib/os.variables.fs>.

os-unused

 os-unused (-- u) "o-s-unused"

u is the amount of unused space by the OS and the BASIC
interpreter.

See also: unused, farunused.

Source file: <src/lib/os.fs>.

othercase

 othercase (x --)

Mark the default option of a thiscase structure that
checked x.

See also: ifcase, exitcase.

Source file: <src/lib/flow.thiscase.fs>.

othercase>

 othercase> (orig counter "name" --) "other-case-from"

Compile the default option of a cases: to be the word
name. This must be the last option of the structure and
is mandatory. When no default action is required,
othercase> noop can be used.

See cases: for an usage example.

Source file: <src/lib/flow.cases-colon.fs>.

out,

 out, (b --) "out-comma"

Compile the Z80 assembler instruction OUT (b),A.

See also: in,, outbc,.

Source file: <src/lib/assembler.fs>.

outbc,

 outbc, (reg --) "out-b-c-comma"

Compile the Z80 assembler instruction OUT ©,reg.

See also: inbc,, out,.

Source file: <src/lib/assembler.fs>.

outlet-autochars

 outlet-autochars (a --)

Create a modified, bolder copy of the ZX Spectrum ROM font
and store it at a. 768 bytes will be used from a. Then
activate the new font by modifing the contents of
os-chars.

The code of outlet-autochars has been adapted from the
Autochars routine used by the Outlet magazine, published in
its issue #1 (1987-09).

Usage example:

 create outlet-font 768 allot
need outlet-autochars
outlet-font outlet-autochars

See also: set-font, rom-font.

Source file: <src/lib/display.fonts.fs>.

over

 over (x1 x2 -- x1 x2 x1)

Place a copy of x1 on top of the stack.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: dup, swap, 2over.

Source file: <src/kernel.z80s>.

overprint

 overprint (f --)

If f is zero, turn the overprint mode off; else
turn it on.

See also: overprint-on, overprint-off, inverse.

Source file: <src/lib/display.attributes.fs>.

overprint-off

 overprint-off (--)

Turn the overprint mode off.

See also: overprint-on, overprint, inverse-off.

Source file: <src/lib/display.attributes.fs>.

overprint-on

 overprint-on (--)

Turn the overprint mode on.

See also: overprint-off, overprint, inverse-on.

Source file: <src/lib/display.attributes.fs>.

owen-64cpl-font

 owen-64cpl-font (-- a) "owen-64-c-p-l-font"

a is the address of a 4x8-pixel font compiled in data
space (336 bytes used), to be used in mode-64ao by
setting mode-64-font first.

This font is included also in disk 0 as "owen.f64".

See also: mini-64cpl-font, nbot-64cpl-font,
omn1-64cpl-font, omn2-64cpl-font.

Source file: <src/lib/display.mode.64.COMMON.fs>.

p

p

 p (--)

A command of gforth-editor:
Go to previous screen.

See also:
n,
c,
a,
g,
t,
scr, top.

Source file: <src/lib/prog.editor.gforth.fs>.

p

 p (n "ccc<eol>" --)

A command of specforth-editor: Put ccc on line n.

See also: b,
c,
d,
e,
f,
h,
i,
l,
m,
n,
r,
s,
t,
x, text.

Source file: <src/lib/prog.editor.specforth.fs>.

p?

 p? (-- op) "p-question"

Return the opcode op of the Z80 assembler instruction
jp p, to be used as condition and consumed by ?ret,,
?jp,, ?call,, aif, awhile or auntil.

See also: z?, nz?, c?, nc?, po?, pe?, m?.

Source file: <src/lib/assembler.fs>.

package

 package ("name" -- wid0 wid1)

If the package name has been previously defined, open it.
Otherwise create it.

wid1 is the word list of the package name; wid0
is the word list in which the package name was created.

end-package ends the package; public start public
definitions and private starts private definitions.

Syntax:

 package package-name
... private definitions here ...
public
... public definitions here ...
private
... more private definitions maybe ...
end-package

In the above, private definitions are placed in the
package-name word list. Public definitions are placed
in whatever word list was current before package
package-name. If a package called package-name
already exists prior to the above, then it is reused,
rather than redefined.

Usage example:

 package example

defer text
: ex1 (-- ca len) s" This is an example" ;
' ex1 ' text defer!

public

: .example (--) text cr type ;

private

: ex2 (-- ca len) s" This is an example (cont.)" ;

end-package

At this point, .example is a new word in whatever the
current wordlist was, and text, ex1 and ex2 are
all words in the example word list. example itself
is created in the current wordlist if it didn’t already
exist. (if example exists and isn’t a package, this
is an unchecked error which will probably be revealed when
public runs.)

If this code is in a library, code including the library
can then run .example freely.

If there’s some need to reopen the package, this is easily
done:

 package example

:noname (-- ca len) s" This is yet another example" ; '
text defer!

end-package

.example

Use case: loading a package using library with a prelude:

Suppose that you need to load a package with some alien
definitions, you can put them in a package with the same
name before loading the code, and this will only affect
that package:

 package some-package

\ This package's code relies on ``place`` appending a nul byte.

: place (ca1 len1 ca2 --) 2dup + 0 swap c! place ;

end-package

include some-lib.fs

Origin: SwiftForth.

See also: internal, isolate, module, privatize,
seclusion.

Source file: <src/lib/modules.package.fs>.

pad

 pad (-- ca)

ca is the address of a transient region that can be used to
hold data for intermediate processing. It’s a fixed offset
(/hold bytes) above here.

Definition:

 : pad (-- ca) here /hold + ;

pad is specifically intended as a programmer
convenience. No standard words use it.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE EXT), Forth-2012 (CORE
EXT).

See also: /pad.

Source file: <src/kernel.z80s>.

padding-spaces

 padding-spaces (len1 len2 --)

If len2 minus len1 is a positive number, display that
number of spaces; else do nothing.

See also: type-left-field.

Source file: <src/lib/display.type.fs>.

page

 page (--)

Move to another page for output. On a terminal, page clears
the screen and resets the cursor position to the upper left
corner. On a printer, page performs a form feed.

Origin: Forth-79 (Reference Word Set), Forth-83 (Uncontrolled
Reference Words), Forth-94 (FACILITY), Forth-2012 (FACILITY).

See also: cls.

Source file: <src/kernel.z80s>.

pair=

 pair= (x1 x2 x3 x4 -- f)

f is true if and only if x1 x2 is the same pair as x3
x4, i.e. both components of the each pair are in the other
pair, no matter the order.

See also: str<>, min>top, max>top.

Source file: <src/lib/math.operators.1-cell.fs>.

paper-mask

 paper-mask (-- b)

A cconstant. b is the bitmask of the bits used to
indicate the paper in an attribute byte.

See also: unpaper-mask, papery, set-paper, attr!,
ink-mask, bright-mask, flash-mask.

Source file: <src/lib/display.attributes.fs>.

paper.

 paper. (b --) "paper-dot"

Set paper color to b (0..9), by printing the
corresponding control characters. If b is greater than
9, 9 is used instead.

paper. is much slower than set-paper or attr!, but
it can handle pseudo-colors 8 (transparent) and 9
(contrast), setting the corresponding system variables
accordingly.

See also: ink., (0-9-color..

Source file: <src/lib/display.attributes.fs>.

papery

 papery (b1 -- b2)

Convert paper color b1 to its equivalent attribute b2.

papery is an alias of 8*, which is written in Z80.

See also: brighty, flashy, attr>paper, contrast,
inversely.

Source file: <src/lib/display.attributes.fs>.

parse

 parse (char "ccc<char>" -- ca len)

Parse ccc delimited by the delimiter char. ca is the
address (within the input buffer) and len is the length of
the parsed string. If the parse area was empty, the resulting
string has a zero length.

Definition:

 : parse (char "ccc<char>" -- ca len)
 stream 2dup 2>r rot scan
 dup if char- then
 2r> rot - parsed
 tuck - ;

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: stream, scan, parsed, parse-name, parse-char,
parse-string.

Source file: <src/kernel.z80s>.

parse-all

 parse-all ("ccc" -- ca len)

Parse the rest of the source.

parse-all is a useful factor of text, which is part
of specforth-editor.

Source file: <src/lib/parsing.fs>.

parse-char

 parse-char ("c" -- c)

Parse the next character in the input stream and return its
code c.

See also: parse-name, parse, parsed, stream.

Source file: <src/lib/parsing.fs>.

parse-esc-char>chars

 parse-esc-char>chars ("c" -- c[n-1]..c[0] n) "parse-esc-char-to-chars"

Parse and translate a escaped char 'c' to a number of chars
c[n-1]..c[0] and their count _n.

The translation is done by searching the name of the
escaped char in the current search order, which has been
set by calling set-esc-order in
parse-esc-string.

Source file: <src/lib/strings.escaped.fs>.

parse-esc-string

 parse-esc-string ("ccc<quote>" -- ca len)

Parse a text string delimited by a double quote,
translating some configurable characters that are escaped
with a backslash. Return the translated string ca len in
the stringer.

The characters that must be escaped depend on the search
order set by set-esc-order.
By default, the escaped characters are those
described in Forth-2012’s s\".

parse-esc-string is a common factor of s\" and .\".

See also: (parse-esc-string.

Source file: <src/lib/strings.escaped.fs>.

parse-name

 parse-name ("name" -- ca len)

Parse name and return it as string ca len within the input
buffer. If the parse area is empty or contains only white
space, the len is zero.

Definition:

 : parse-name ("name" -- ca len)
 stream (ca0 len0)
 dup >r -leading (ca1 len1) (R: len0)
 over >r bl scan (ca2 len2) (R: len0 ca1)
 dup if char- then \ skip trailing delimiter
 r> r> rot - parsed \ update ``>in``
 tuck - (ca len)
 2dup parsed-name 2! ;

Origin: Forth-2012 (CORE EXT).

See also: parse, parse-name-thru, parse-char, word,
parse-string, stream, scan, parsed, parsed-name,
>in, -leading.

Source file: <src/kernel.z80s>.

parse-name-thru

 parse-name-thru ("name" -- ca len)

Parse name and return it as string ca len within the
input buffer. If the parse area is empty, use refill to
fill it from the input source. If the input source is
exhausted, throw an exception #-289 ("input source
exhausted").

See also: parse-name, parse.

Source file: <src/lib/parsing.fs>.

parse-string

 parse-string
 Compilation: (c "ccc<char>" --)
 Interpretation: (c "ccc<char>" -- ca len)
 Run-time: (-- ca len)

Parse ccc delimited by character c. If interpreting, copy
the parsed string to the stringer and return it as ca len.
If compiling, compile the parsed string and return it at
run-time as ca len.

parse-string is a state-smart word (see state).

Definition:

 : parse-string \ Compilation: (c "ccc<char>" --)
 \ Interpretation: (c "ccc<char>" -- ca len)
 \ Run-time: (-- ca len)
 parse compiling? if postpone sliteral exit then >stringer ;

See also: parse-name, compiling?, sliteral, >stringer,
parse-char, parse.

Source file: <src/kernel.z80s>.

parsed

 parsed (len --)

Add the given len to >in.

Definition:

 : parsed (len --) >in +! ;

See also: parse.

Source file: <src/kernel.z80s>.

parsed-name

 parsed-name (-- a)

A variable. a is the address of a double cell containing the
address and length of the most recently name parsed by
parse-name. It is displayed by .error-word.

As a special case, parsed-name is set also by ?located.

Source file: <src/kernel.z80s>.

past?

 past? (u -- f) "past-question"

Return true if the ticks clock has passed u.

Usage example: The following word will execute the
hypothetical word test for u clock ticks:

 : try (u --) ticks + begin test dup past? until drop ;

Origin: lina.

See also: dpast?, elapsed, timer.

Source file: <src/lib/time.fs>.

pe?

 pe? (-- op) "p-e-question"

Return the opcode op of the Z80 assembler instruction
jp pe, to be used as condition and consumed by ?ret,,
?jp,, ?call,, aif, awhile or auntil.

See also: z?, nz?, c?, nc?, po?, p?, m?.

Source file: <src/lib/assembler.fs>.

perform

 perform (a --)

If the cell stored at a is zero, do nothing. Otherwise
execute it as an execution token.

perform is written in Z80. Its equivalent definition in
Forth is the following:

 : perform (a --) @ ?dup if execute then ;

perform is called @execute in other Forth systems.

See also: execute, +perform.

Source file: <src/kernel.z80s>.

perm-attr!

 perm-attr! (b --) "perm-attribute-store"

Set b as the permanent attribute.

Words that use attributes don’t use the OS permanent
attribute but the temporary one, which is called "current
attribute" in Solo Forth.

See also: perm-attr@, attr!.

Source file: <src/lib/display.attributes.fs>.

perm-attr-mask!

 perm-attr-mask! (b --) "perm-attribute-mask-store"

Set b as the permanent attribute mask.

Words that use attributes don’t use the OS permanent
attribute but the temporary one, which is called "current
attribute" in Solo Forth.

See also: perm-attr-mask@, attr-mask!.

Source file: <src/lib/display.attributes.fs>.

perm-attr-mask@

 perm-attr-mask@ (-- b) "perm-attribute-mask-fetch"

Get the permanent attribute mask b.

Words that use attributes don’t use the OS permanent
attribute but the temporary one, which is called "current
attribute" in Solo Forth.

See also: perm-attr-mask!, attr-mask@.

Source file: <src/lib/display.attributes.fs>.

perm-attr@

 perm-attr@ (-- b) "perm-attribute-fetch"

Get the permanent attribute b.

Words that use attributes don’t use the OS permanent
attribute but the temporary one, which is called "current
attribute" in Solo Forth.

See also: perm-attr!, attr@.

Source file: <src/lib/display.attributes.fs>.

pick

 pick (x#u...x#1 x#0 u -- x#u...x#1 x#0 x#u)

Remove u copy the x#u to the top of the stack. 0
pick is equivalent to dup and 1 pick is equivalent
to over.

Origin: Forth-83 (Required Word Set), Forth-94 (CORE EXT),
Forth-2012 (CORE EXT).

See also: unpick, roll, rot.

Source file: <src/lib/data_stack.fs>.

pixel-pan-right

 pixel-pan-right (--)

Pan the whole screen one pixel to the right.
pixel-pan-right is a wrapper that calls
(pixel-pan-right saving the BC register.

See (pixel-pan-right, pixels-pan-right,
pixel-scroll-up.

Source file: <src/lib/graphics.scroll.fs>.

pixel-scroll-up

 pixel-scroll-up (--)

Scroll the whole screen one pixel up. pixel-scroll-up
is a wrapper that calls (pixel-scroll-up saving the BC
register.

See also: pixel-pan-right, pixels-scroll-up.

Source file: <src/lib/graphics.scroll.fs>.

pixels

 pixels (-- u)

Return the number u of pixels that are set on the screen.
pixels is a deferred word (see defer) set by
fast-pixels or slow-pixels.

See also: bits.

Source file: <src/lib/graphics.pixels.fs>.

pixels-pan-right

 pixels-pan-right (u --)

Pan the whole screen u pixels to the right.

See pixel-pan-right, pixels-scroll-up.

Source file: <src/lib/graphics.scroll.fs>.

pixels-scroll-up

 pixels-scroll-up (u --)

Scroll the whole screen u pixels up.

See also: pixel-scroll-up, pixels-pan-right.

Source file: <src/lib/graphics.scroll.fs>.

place

 place (ca1 len1 ca2 --)

Store the string ca1 len1 as a counted string at ca2. The
source and destination strings are permitted to overlap.

place is written in Z80. Its equivalent definition in
Forth is the following:

 : place (ca1 len1 ca2 --) 2dup c! char+ smove ;

See also: +place, smove.

Source file: <src/kernel.z80s>.

play

 play (ca --)

Play a 14-byte sound definition stored at ca.

See also: sound,, sound, !sound, edit-sound.

Source file: <src/lib/sound.128.fs>.

plot

 plot (gx gy --)

Set a pixel, changing its attribute on the screen and the
current graphic coordinates. gx is 0..255; gy is
0..191.

See also: set-pixel, plot176, xy>gxy.

Source file: <src/lib/graphics.pixels.fs>.

plot176

 plot176 (gx gy --) "plot-176"

Set a pixel, changing its attribute on the screen and the
current graphic coordinates, using only the top 176 pixel
rows of the screen (the lower 16 pixel rows are not used).
gx is 0..255; gy is 0..175.

plot176 is equivalent to Sinclair BASIC’s PLOT
command.

If parameters are out of range, the ROM will throw
a BASIC error, and the system will crash.

See also: set-pixel176, plot, xy>gxy176.

Source file: <src/lib/graphics.pixels.fs>.

po?

 po? (-- op) "p-o-question"

Return the opcode op of the Z80 assembler instruction
jp op, to be used as condition and consumed by ?ret,,
?jp,, ?call,, aif, awhile or auntil.

See also: z?, nz?, c?, nc?, pe?, p?, m?.

Source file: <src/lib/assembler.fs>.

polarity

 polarity (n -- -1|0|1)

If n is zero, return zero.
If n is negative, return negative one.
If n is positive, return positive one.

polarity is written in Z80. These are example
implementations in Forth:

 : polarity (n -- -1|0|1) dup 0= ?exit 0< ?dup ?exit 1 ;

: polarity (n -- -1|0|1) dup 0= ?exit 0< 2* 1+ ;

: polarity (n -- -1|0|1) -1 max 1 min ;

See also: <=>, negate, within, between.

Source file: <src/lib/math.operators.1-cell.fs>.

pop,

 pop, (regp --) "pop-comma"

Compile the Z80 assembler instruction PUSH regp.

See also: pop,, ret,, sp.

Source file: <src/lib/assembler.fs>.

positional-case:

 positional-case: ("name" --) "positional-case-colon"

Create a positional case word name. At runtime, name
will execute the n-th word compiled in its definition,
depending upon the value on the stack. No range checking.

Usage example:

 : say0 (--) ." nul" ;
: say1 (--) ." unu" ;
: say2 (--) ." du" ;

positional-case: say (n --) say0 say1 say2 ;

0 say cr 1 say cr 2 say cr

Source file: <src/lib/flow.positional-case-colon.fs>.

possibly

 possibly ("name" --)

Parse name. If name is the name of a word in the
current search order, execute it; else do nothing.

See also: exec, defined, name>, execute, anew.

Source file: <src/lib/compilation.fs>.

postpone

 postpone ("name" --)

Skip leading space delimiters. Parse name delimited by a
space. Find name. Append the compilation semantics of name
to the current definition.

postpone is an immediate word.

Definition:

 : postpone ("name" --)
 defined dup ?defined
 name>immediate? 0= if compile compile then compile, ;
 immediate

Origin: Forth-94 (CORE), Forth-2012 (CORE).

See also: [compile], compile, defined, ?defined,
name>immediate?, compile,, 0if.

Source file: <src/kernel.z80s>.

prefix?

 prefix? (ca1 len1 ca2 len2 -- f) "prefix-question"

Is string ca2 len2 the prefix of string ca1 len1?

See also: suffix?, -prefix.

Source file: <src/lib/strings.MISC.fs>.

pressed

 pressed (-- false | b a true)

Return the key identifier b a (key bitmask and keyboard
row port) of the first key from table kk-ports
that happens to be pressed, and true; if no key is
pressed, return false.

See also: only-one-pressed, pressed?.

Source file: <src/lib/keyboard.MISC.fs>.

pressed?

 pressed? (b a -- f) "pressed-question"

Is a keyboard key b a pressed? b is the key bitmask
and a is the keyboard row port.

See also: pressed, only-one-pressed.

Source file: <src/lib/keyboard.MISC.fs>.

previous

 previous (--)

Remove the top word list (the word list that is searched
first) from the search order.

Definition:

 : previous (--) get-order nip 1- set-order ;

Origin: Forth-94 (SEARCH EXT), Forth-2012 (SEARCH EXT).

See also: >order, get-order, set-order.

Source file: <src/kernel.z80s>.

previous-mode

 previous-mode (-- a)

A variable. a is the address of a cell containing the
execution token of the word that activates the screen mode
that was active before executing bye (e.g. mode-32,
mode-32iso, mode-64ao). previous-mode is updated by
bye, and used by warm to restore the current-mode.

Source file: <src/kernel.z80s>.

printer

 printer (--)

Select the printer as output.

See also: terminal, printing.

Source file: <src/lib/display.control.fs>.

printing

 printing (-- a)

A variable. a is the address of a cell containing the
printer flag. printing is set by printer, reset by
terminal and checked by page. printing should not be
changed directly by the program.

Source file: <src/kernel.z80s>.

private

 private (wid0 wid1 -- wid0 wid1)

Mark subsequent definitions invisible outside the current
package. This is the default condition following the usage
of package.

wid1 is the word list of the current package; wid0
is the word list in which the current package was created.

Origin: SwiftForth.

See also: end-package, public.

Source file: <src/lib/modules.package.fs>.

private{

 private{ (--) "private-curly-bracket"

Start private definitions. See privatize for a usage
example.

Source file: <src/lib/modules.privatize.fs>.

privatize

 privatize (--)

Hide all words defined between the latest valid pair of
private{ and }private.

Usage example:

 private{

\ Everything between ``private{`` and ``}private``
\ will become private.

: foo ;
: moo ;

}private

: goo foo moo ; \ can use ``foo`` and ``moo``
privatize \ hide ``foo`` and ``moo``
' foo \ will fail

See also: internal, isolate, module, package,
seclusion.

Source file: <src/lib/modules.privatize.fs>.

prt,

 prt, (--) "p-r-t-comma"

Compile the Z80 assembler instruction rst $16.
Therefore prt, is equivalent to $16 rst,.

See also: rst,, hook,.

Source file: <src/lib/assembler.fs>.

public

 public (wid0 wid1 -- wid0 wid1)

Mark subsequent definitions available outside the current
package defined with package.

wid1 is the word list of the current package; wid0
is the word list in which the current package was created.

Origin: SwiftForth.

See also: end-package, private.

Source file: <src/lib/modules.package.fs>.

push,

 push, (regp --) "push-comma"

Compile the Z80 assembler instruction PUSH regp.

See also: push,, ret,, sp.

Source file: <src/lib/assembler.fs>.

pusha

 pusha (-- a) "push-a"

A constant. a is the address of a secondary entry point of
the Forth inner interpreter. The code at a pushes the A
register onto the stack and then continues at the address
returned by next.

pusha is useful for exiting from a code word using an
absolute conditional jump, or to save the bytes needed to
prepare an 8-bit register to be pushed on the stack.

See also: pushhl, pushhlde.

Source file: <src/kernel.z80s>.

pushdosior

 pushdosior (-- a) "push-dos-I-O-R"

Address of an entry point to the Forth inner interpreter.
This entry point is jumped to at the end of a code word, in
order to convert a dosior into a ior and push it.

Input:
 A = +3DOS error result (0..36)
Output (no error):
 TOS = zero
Output (error):
 TOS = Forth exception code (-1036..-1000)

See also: dosior>ior.

Source file: <src/kernel.plus3dos.z80s>.

pushhl

 pushhl (-- a) "push-h-l"

A constant. a is the address of a secondary entry point of
the Forth inner interpreter. The code at a pushes the HL
register onto the stack and then continues at the address
returned by next.

pushhl is useful for exiting from a code word using an
absolute conditional jump.

See also: pusha, pushhlde.

Source file: <src/kernel.z80s>.

pushhlde

 pushhlde (-- a) "push-h-l-d-e"

a is the address of a secondary entry point of the Forth
inner interpreter. The code at a pushes registers DE and
HL onto the stack and then continues at the address
returned by next.

DE is pushed first, so HL is left on top of the
stack. This is equivalent to pushing the double number
formed by both registers, being HL the high part and DE the
lower part.

pushhlde is useful for exiting from a code word using
an absolute conditional jump.

See also: pusha, pushhl.

Source file: <src/lib/assembler.MISC.fs>.

px

 px (--) "p-x"

Give previous quick index, calculated from scr.

See also: qx, nx.

Source file: <src/lib/tool.list.blocks.fs>.

q

query

 query (--)

Make the user input device the input source. Receive input
into the terminal input buffer, replacing any previous
contents. Make the result, whose address is returned by tib,
the input buffer. Set >in to zero.

The function of query may be performed with accept and
evaluate.

Definition:

 : query (--)
 tib /tib 2dup blank accept #tib ! space terminal>source ;

Origin: fig-forth, Forth-79 (Required Word Set), Forth-83
(Controlled Reference Words), Forth-94 (CORE EXT,
obsolescent).

Source file: <src/kernel.z80s>.

quit

 quit (--)

Empty the return stack, make the terminal the current source
and enter interpretation state. Then repeat the following:

	
Accept a line from the input source into the input buffer,
set >in to zero and interpret.

	
Display the system prompt, if in interpretation state.

Definition:

 : quit (--)
 rp0 @ rp! postpone [
 begin
 cr query interpret
 interpreting? if ok then
 again ;

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: [, query, interpret, ok, abort.

Source file: <src/kernel.z80s>.

qx

 qx (--) "q-x"

Give a quick index. The number and width of the columns
depend on the current screen mode. The current block,
stored in scr, is highlighted.

Origin: Gforth’s blocked editor.

See also: nx, px.

Source file: <src/lib/tool.list.blocks.fs>.

qx-bounds

 qx-bounds (-- u1 u2) "q-x-bounds"

Blocks to be included in the quick index, from block u2
to block u1-1. They depend on scr.

See also: qx.

Source file: <src/lib/tool.list.blocks.fs>.

qx-columns

 qx-columns (-- n) "q-x-columns"

n is the number of columns (2..4) of the quick index. It
depends on the columns (32, 42, 64…​) of the current
screen mode.

See also: qx, /qx-column.

Source file: <src/lib/tool.list.blocks.fs>.

r

r

 r ("ccc<eol>" --)

A command of gforth-editor:
replace marked area with ccc.

See also:
d,
m,
a,
d,
f,
h,
i.

Source file: <src/lib/prog.editor.gforth.fs>.

r

 r (n --)

A command of specforth-editor: Replace line n with the
text in pad.

See also: b,
c,
d,
e,
f,
h,
i,
l,
m,
n,
p,
s,
t,
x, -move.

Source file: <src/lib/prog.editor.specforth.fs>.

r#

 r# (-- a) "r-slash"

A variable. a is the address of a cell containing the
location of the editing cursor, an offset from the top of
the current block. Its default value is zero.

r# is used by specforth-editor and gforth-editor.

Origin: fig-Forth’s user variable r#.

See also: top.

Source file: <src/lib/prog.editor.COMMON.fs>.

r'@

 r'@ (-- x1) (R: x1 x2 -- x1 x2) "r-tick-fetch"

Fetch x1 from the return stack.

See also: r@.

Source file: <src/lib/return_stack.fs>.

r/o

 r/o (-- fam) "r-o"

Return the "read only" file access method fam.

See also: w/o, r/w, s/r, bin,
create-file, open-file.

Origin: Forth-94 (FILE), Forth-2012 (FILE).

Source file: <src/lib/dos.plus3dos.fs>.

r/w

 r/w (-- fam) "r-w"

Return the "read/write" file access method fam.

See also: r/o, w/o, s/r, bin,
create-file, open-file.

Origin: Forth-94 (FILE), Forth-2012 (FILE).

Source file: <src/lib/dos.plus3dos.fs>.

r>

 r> (-- x) (R: x --) "r-from"

Move x from the return stack to the data stack.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: >r, r@, 2r>.

Source file: <src/kernel.z80s>.

r>xy

 r>xy (--) (R: col row --) "r-to-x-y"

Restore the current cursor coordinates from the return
stack.

See also: xy>r, restore-mode.

Source file: <src/lib/display.cursor.fs>.

r@

 r@ (-- x) (R: x -- x) "r-fetch"

Copy x from the return stack to the data stack.

Origin: Forth-79 (Required Word Set), Forth-83 (Required Word
Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: >r, r>, rdrop, r'@.

Source file: <src/kernel.z80s>.

ragain

 ragain (dest cs-id --) "r-again"

Compile a Z80 assembler unconditional relative-jump
instruction to address dest, as part of a
relative-address control-flow structure rbegin ..
ragain, identified by cs-id.

See also: aagain, (runtil.

Source file: <src/lib/assembler.fs>.

rahead

 rahead (-- orig) "r-ahead"

Compile a Z80 assembler forward relative jump. Leave its
unresolved address orig, to be resolved by >rresolve.

Source file: <src/lib/assembler.fs>.

ram

 ram (-- n)

A constant. n is the total RAM size in kibibytes.

On G+DOS, the RAM size includes the 8 KiB of the Plus D
interface.

See also: banks.

Source file: <src/kernel.z80s>.

random

 random (n1 -- n2)

Return a random number n2 from 0 to n1 minus 1.

See also: rnd, random-within, fast-random.

Source file: <src/lib/random.fs>.

random-between

 random-between (n1 n2 -- n3)

Return a random number n3 from n1 (min) to n2 (max).

See also: random-within, random, between.

Source file: <src/lib/random.fs>.

random-within

 random-within (n1 n2 -- n3)

Return a random number n3 from n1 (min) to n2-1
(max).

See also: random-between, random, within.

Source file: <src/lib/random.fs>.

randomize

 randomize (n --)

Set the seed used by fast-rnd and fast-random to n.

See also: randomize0.

Source file: <src/lib/random.fs>.

randomize0

 randomize0 (--) "randomize-zero"

Set the seed used by fast-rnd and fast-random to n;
if n is zero use the system frames counter instead.

See also: randomize.

Source file: <src/lib/random.fs>.

rbegin

 rbegin (-- dest cs-id) "r-begin"

Mark the start of an assembler sequence for repetitive
execution, leaving dest to be resolved by the
corresponding runtil, ragain or rrepeat. Also, leave
the control-flow structure identifier_cs-id_ to be checked
by the corresponding same word.

rbegin is part of the assembler relative-address
control-flow structures rbegin .. ragain, rbegin
.. runtil and rbegin .. rwhile .. rrepeat.

See also: abegin.

Source file: <src/lib/assembler.fs>.

rbuf

 rbuf (-- ca)

Return the address ca of the 100-byte replace buffer used
by the gforth-editor.

See also: ibuf, fbuf,
r.

Source file: <src/lib/prog.editor.gforth.fs>.

rdepth

 rdepth (-- +n) "r-depth"

+n is the number of single-cell values contained in the
return stack.

See also: rp0, rp, depth, fdepth.

Source file: <src/lib/return_stack.fs>.

rdraw176

 rdraw176 (gx gy --) "r-draw-176"

Draw a line relative gx gy to the current coordinates,
using only the top 176 pixel rows of the screen (the lower
16 pixel rows are not used). gx is 0..255; gy is
0..175.

rdraw176 is equivalent to Sinclair BASIC’s DRAW
command.

See also: adraw176.

Source file: <src/lib/graphics.lines.fs>.

rdrop

 rdrop (R: x --) "r-drop"

Remove x from the return stack.

See also: r@, drop.

Origin: Comus.

Source file: <src/kernel.z80s>.

read-block

 read-block (u --)

Read disk block u to the buffer.

Definition:

 : read-block (u --) read-mode transfer-block ;

See also: read-mode, transfer-block, write-block,
block.

Source file: <src/kernel.z80s>.

read-byte

 read-byte (fid -- c ior)

Read byte c from file fid, returning I/O result code
ior. If ior is non-zero, c is undetermined.

See also: write-byte, reposition-file, file-position.

Source file: <src/lib/dos.plus3dos.fs>.

read-file

 read-file (ca len1 fid -- len2 ior)

Read len1 consecutive characters to ca from the
current position of the file identified by fid.

If len1 characters are read without an exception, ior
is zero and len2 is equal to len1.

If the end of the file is reached before len1 characters
are read, ior is zero and len2 is the number of
characters actually read.

If the operation is initiated when the value returned by
file-position is equal to the value returned by
file-size for the file identified by fid, _len2 is zero
and ior is zero.

If an exception occurs, ior is the I/O result code and
len2 is the number of characters transferred to ca
without an exception.

At the conclusion of the operation, file-position returns
the next file position after the last character read.

See also: bank-read-file, read-byte, open-file,
write-file.

Source file: <src/lib/dos.plus3dos.fs>.

read-line

 read-line (ca1 len1 fid -- len2 f ior)

Read the next line from the file specified by fid into
memory at the address ca1. At most len1 characters
are read. One line-terminating character, defined in
newline>, may be read into memory at the end of the
line, but is not included in the count len2. The line
buffer provided by ca1 should be at least len1+1
characters long.

If the operation succeeded, f is true and ior is zero.
If a line terminator was received before len1 characters
were read, then len2 is the number of characters, not
including the line terminator, actually read (0 ⇐ len2
⇐ len1). When len1 = len2 the line terminator has
yet to be reached.

If the operation is initiated when the value returned by
file-position is equal to the value returned by
file-size for the file identified by fid, f is false,
ior is zero, and len2 is zero. If ior is non-zero,
an exception occurred during the operation and ior is
the I/O result code.

An ambiguous condition exists if the operation is
initiated when the value returned by file-position is
greater than the value returned by file-size for the
file identified by fid, or if the requested operation
attempts to read portions of the file not written.

At the conclusion of the operation, file-position
returns the next file position after the last character
read.

This implementation of read-line is not fully
standard, because 2-character line terminators are not
supported.

Origin: Forth-94 (FILE), Forth-2012 (FILE).

See also: read-file, read-byte, write-line, create-file,
open-file.

Source file: <src/lib/dos.plus3dos.fs>.

read-mode

 read-mode (--)

Set the read mode for transfer-sector and transfer-block.

See also: write-mode.

Source file: <src/kernel.plus3dos.z80s>.

realias

 realias (xt "name" --)

Set the alias name to execute xt.

See alias, alias!.

Source file: <src/lib/define.alias.fs>.

recurse

 recurse (--)

Append the execution semantics of the current definition to
the current definition.

recurse is an immediate and compile-only word.

Origin: Forth-83 (Controlled Reference Words), Forth-94
(CORE), Forth-2012 (CORE).

Source file: <src/lib/flow.MISC.fs>.

red

 red (-- b)

A cconstant that returns 2, the value that represents the
red color.

See also: black, blue, magenta, green, cyan,
yellow, white, contrast, papery, inversely.

Source file: <src/lib/display.attributes.fs>.

ref-xdbp

 ref-xdbp (c -- a ior) "ref-X-D-B-P"

Return the address a of the XDPB of drive c ('A'..'P').

Source file: <src/kernel.plus3dos.z80s>.

refill

 refill (-- f)

Definition:

 : refill (-- f)
 loading? if blk @ 1+ dup block>source block? exit then
 false source-id ?exit 0= query ;

Origin: Forth-94 (CORE EXT, BLOCK EXT); Forth-2012 (CORE EXT,
BLOCK EXT).

Source file: <src/kernel.z80s>.

reload

 reload (--)

Load the most recently loaded block.

See also: load, lastblk.

Source file: <src/lib/blocks.fs>.

relse

 relse (orig1 cs-id -- orig2 cs-id) "r-else"

Check the Z80 assembler control-flow structure identifier
cs_id, and resolve the forward reference orig1, both
left by rif; then compile a Z80 assembler unconditional
relative-address jump, putting its unresolved forward
reference orig2 and control-flow structure identifier
cs-id on the stack, to be resolved by rthen.

relse is part of the assembler relative-address
control-flow structure rif .. relse .. rthen.

See also: aelse, ?pairs, (rif.

Source file: <src/lib/assembler.fs>.

rename-file

 rename-file (ca1 len1 ca2 len2 -- ior)

Rename the file named by the character string ca1 len1 to
the name in the character string ca2 len2 and return the
I/O error code ior.

Origin: Forth-94 (FILE EXT), Forth-2012 (FILE EXT).

See also: (rename-file, delete-file.

Source file: <src/lib/dos.plus3dos.fs>.

reneed

 reneed ("name" --)

Load the first block whose header contains name
(surrounded by spaces).

reneed is a deferred word (see defer) whose default
action is locate-reneed.

See also: make-thru-index.

Source file: <src/lib/002.need.fs>.

reneeded

 reneeded (ca len --)

Load the first block whose header contains the string ca
len (surrounded by spaces). If not found, throw an
exception #-268 ("needed, but not located").

reneeded is a deferred word (see defer) whose default
action is locate-reneeded.

See also: make-thru-index.

Source file: <src/lib/002.need.fs>.

repeat

 repeat
 Compilation: (C: orig dest --)
 Run-time: (--)

Compilation: Compile an unconditional branch to the backward
reference dest, usually left by begin. Resolve the
forward reference orig, usually left by while.

Run-time: Continue execution at the location specified by
dest.

repeat is an immediate and compile-only word.

Definition:

 : repeat \ Compilation: (C: orig dest --)
 \ Run-time: (--)
 postpone again postpone then ; immediate compile-only

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: again, then, until.

Source file: <src/kernel.z80s>.

replace

 replace (ca1 len1 ca2 len2 --)

Replace the contents of zone ca2 len2 with string ca1
len1. If len1 is greater than len2, only len2 bytes
are replaced.

See also: insert, delete, replaces.

Source file: <src/lib/strings.MISC.fs>.

replaces

 replaces (ca1 len1 ca2 len2 --)

Set the string ca1 len1 as the text to substitute for the
substitution named by ca2 len2. If the substitution does
not exist it is created. The program may then reuse the
buffer ca1 len1 without affecting the definition of the
substitution.

The name of a substitution should not contain the "%"
delimiter character.

replaces allots data space and creates a definition.

Origin: Forth-2012 (STRING EXT).

See also: substitute, unescape, substitution,
find-substitution, substitute-wordlist, replace.

Source file: <src/lib/strings.replaces.fs>.

reposition-file

 reposition-file (ud fid -- ior)

Reposition the file identified by fid to ud and return
the I/O result code ior.

Origin: Forth-94 (FILE), Forth-2012 (FILE).

See also: file-position, open-file, create-file.

Source file: <src/lib/dos.plus3dos.fs>.

res,

 res, (reg b --) "res-comma"

Compile the Z80 assembler instruction RES b,reg.

See also: bit,, set,, sub#,.

Source file: <src/lib/assembler.fs>.

reserve

 reserve (n -- a)

Reserve n bytes of data space, erase the zone and return
its address a.

See also: buffer:, allot, allotted, here, erase.

Source file: <src/lib/memory.MISC.fs>.

reset-bit

 reset-bit (b1 n -- b2)

Reset bit n of b1, returning the result b2.

See also: bit?, set-bit, bit>mask.

Source file: <src/lib/memory.MISC.fs>.

reset-default-mode

 reset-default-mode (--)

Set default-mode to its default action noop.
reset-default-mode is executed by cold.

Source file: <src/kernel.z80s>.

reset-dticks

 reset-dticks (--) "reset-d-ticks"

Reset the system clock to zero ticks.

See also: reset-ticks, dticks, set-dticks, ticks/second,
bench{.

Source file: <src/lib/time.fs>.

reset-pixel

 reset-pixel (gx gy --)

Reset a pixel without changing its attribute on the screen
or the current graphic coordinates. gx is 0..255; gy
is 0..191.

See also: set-pixel, toggle-pixel, reset-pixel176.

Source file: <src/lib/graphics.pixels.fs>.

reset-pixel176

 reset-pixel176 (gx gy --) "reset-pixel-176"

Reset a pixel without its attribute on the screen or the
current graphic coordinates, and using only the top 176
pixel rows of the screen (the lower 16 pixel rows are not
used). gx is 0..255; gy is 0..175.

See also: set-pixel176, toggle-pixel176, reset-pixel,
set-pixel, toggle-pixel, plot, plot176.

Source file: <src/lib/graphics.pixels.fs>.

reset-ticks

 reset-ticks (--)

Reset the low 16 bits of the OS clock to zero ticks.

See also: ticks, set-dticks, ticks/second, bench{.

Source file: <src/lib/time.fs>.

reset-time

 reset-time (--)

Reset the current time to 00:00:00.

See also: get-time.

Source file: <src/lib/time.fs>.

resize

 resize (a1 -- a2 ior)

Change the allocation of the contiguous data space starting
at the address a1, previously allocated by allocate or
resize, to u bytes. u may be either larger or
smaller than the current size of the region. The data-space
pointer is unaffected by this operation.

If the operation succeeds, a2 is the starting address of
u bytes of allocated memory and ior is zero. a2 may
be, but need not be, the same as a1. If they are not
the same, the values contained in the region at a1 are
copied to a2, up to the minimum size of either of the
two regions. If they are the same, the values contained in
the region are preserved to the minimum of u or the
original size. If a2 is not the same as a1, the region
of memory at a1 is returned to the system according to
the operation of free.

If the operation fails, a2 equals a1, the region of
memory at a1 is unaffected, and ior is the I/O result
code.

resize is a deferred word (see defer) whose action
can be charlton-resize, depending on the heap
implementation used by the application.

Origin: Forth-94 (MEMORY), Forth-2012 (MEMORY).

See also: allocate, free, empty-heap.

Source file: <src/lib/memory.allocate.COMMON.fs>.

resolve-al#

 resolve-al# (orig b --) "resolve-a-l-number-sign"

Resolve an absolute reference at orig to label b.

See also: resolve-rl#, (resolve-ref, >l.

Source file: <src/lib/assembler.labels.fs>.

resolve-refs

 resolve-refs (n --)

Resolve all references to assembler label n, which was
defined by l:.

resolve-refs is a factor of l!.

Source file: <src/lib/assembler.labels.fs>.

resolve-rl#

 resolve-rl# (orig b --) "resolve-r-l-number-sign"

Resolve a relative reference at orig to assembler label
b.

See also: resolve-al#, (resolve-ref, >l.

Source file: <src/lib/assembler.labels.fs>.

restore-ip_

 restore-ip_ (-- a) "restore-I-P-underscore"

Address of a routine that restores the Forth IP (Z80 register
BC), previously saved by the routine pointed by save-ip_.

See also: dos-ix-preserve-ip_, dos-tos_.

Source file: <src/kernel.plus3dos.z80s>.

restore-mode

 restore-mode (--)

Restore the screen mode that was saved in previous-mode by
save-mode.

restore-mode is executed by warm.

Definition:

 : restore-mode (--) previous-mode perform ;

See also: current-mode, perform.

Source file: <src/kernel.z80s>.

results

 results (+n --)

Define the number +n of local variables to leave on the
stack as results. Used with locals created by arguments.

results is a compile-only word.

Source file: <src/lib/locals.arguments.fs>.

resx,

 resx, (disp regpi b --) "res-x-comma"

Compile the Z80 assembler instruction RES
b,(regpi+disp).

See also: bitx,, setx,, subx,, sbcx,, andx,, xorx,,
orx,, decx,.

Source file: <src/lib/assembler.fs>.

ret,

 ret, (--) "ret-comma"

Compile the Z80 assembler instruction RET.

See also: ?ret,, call,, pop,.

Source file: <src/lib/assembler.fs>.

retry

 retry (--)

Do an unconditional branch to the start of the word.

retry is an immediate and compile-only word.

See also: ?retry.

Source file: <src/lib/flow.MISC.fs>.

return-stack-cells

 return-stack-cells (-- n)

n is the maximum size of the return stack, in cells.

See also: stack-cells, environment?.

Source file: <src/lib/environment-question.fs>.

reveal

 reveal (--)

Reveal the latest definition by resetting its smudge bit.

Definition:

 : reveal (--) latest revealed ;

See also: revealed, hide.

Source file: <src/kernel.z80s>.

revealed

 revealed (nt --)

Reveal the definition nt by resetting its smudge bit.

See also: reveal, hidden.

Source file: <src/kernel.z80s>.

rif

 rif (op -- orig cs-id) "r-if"

Compile a Z80 assembler conditional relative-jump
instruction op, which was put on the stack by z?,
nz?, c? or nc?. Return the address orig to be
resolved by relse or rthen and the control-structure
identifier cs-id.

rif is part of the assembler relative-address
control-flow structure rif .. relse .. rthen.

See also: aif, rbegin, jp>jr, inverse-cond.

Source file: <src/lib/assembler.fs>.

rl#

 rl# (n -- a) "r-l-number-sign"

Create a relative reference to assembler label number n,
defined by l:. If label n is already defined, a is
its value. Otherwise a is a temporary address to be
consumed by the relative jump instruction, and the actual
address will be resolved when the label is defined by l:.

Usage example:

 code my-code (--)
 #2 rl# jr, \ a relative jump to label #2
 nop,
 #2 l: \ definition of label #2
 ret,
end-code

rl# is used before the Z80 command, while its
counterpart al# is used after the Z80 command.

Source file: <src/lib/assembler.labels.fs>.

rl,

 rl, (reg --) "r-l-comma"

Compile the Z80 assembler instruction RL reg.

See also: rr,, rla,, rlc,, rlca,.

Source file: <src/lib/assembler.fs>.

rl-id

 rl-id (-- b) "r-l-i-d"

b is the identifier of relative references created by
rl#. rl-id is used as a bitmask added to the
assembler label number stored in l-refs.

See also: al-id.

Source file: <src/lib/assembler.labels.fs>.

rla,

 rla, (--) "r-l-a-comma"

Compile the Z80 assembler instruction RLA.

See also: rra,, rl,, rlc,, rlca,, rld,.

Source file: <src/lib/assembler.fs>.

rlc,

 rlc, (reg --) "r-l-c-comma"

Compile the Z80 assembler instruction RLC reg.

See also: rrc,, rlca,, rl,, rla,.

Source file: <src/lib/assembler.fs>.

rlca,

 rlca, (--) "r-l-c-a-comma"

Compile the Z80 assembler instruction RLCA.

See also: rrca,, rlc,, rl,, rla,, rld,.

Source file: <src/lib/assembler.fs>.

rlcx,

 rlcx, (disp regpi --) "r-l-c-x-comma"

Compile the Z80 assembler instruction RLC
(regpi+disp).

See also: rrcx,, rlx,, rrx,, slax,, srax,, sllx,,
srlx,, bitx,, resx,, setx,.

Source file: <src/lib/assembler.fs>.

rld,

 rld, (--) "r-l-d-comma"

Compile the Z80 assembler instruction RLD.

See also: rla,, rlca,, rra,.

Source file: <src/lib/assembler.fs>.

rlx,

 rlx, (disp regpi --) "r-l-x-comma"

Compile the Z80 assembler instruction RL
(regpi+disp).

See also: rlcx,, rrcx,, rrx,, slax,, srax,, sllx,,
srlx,, bitx,, resx,, setx,.

Source file: <src/lib/assembler.fs>.

rnd

 rnd (-- x) "r-n-d"

Generate a single-cell random number x.

See also: random, random-within, fast-rnd.

Source file: <src/lib/random.fs>.

roll

 roll (x#u x#u-1...x#0 u -- x#u-1...x#0 x#u)

See also: pick, rot.

Source file: <src/lib/data_stack.fs>.

rom-font

 rom-font (-- a)

A constant. a is the address of the ROM font, which is
15360 ($3C00), the bitmap address of character 0, 256 bytes
below the bitmap of the space (character 32), which is the
first printable character. a is the default value of
os-chars.

See also: default-font, set-font, get-font,
outlet-autochars.

Source file: <src/lib/display.fonts.fs>.

root

 root (--)

Transform the search order consisting of wid#n .. wid#2
wid#1 (where wid#1 is searched first) into wid#n ..
wid#2 wid#r, where wid#r is the word-list identifier
returned by root-wordlist. I.e., replace the top word list
of the search order with root-wordlist.

root is the vocabulary corresponding to root-wordlist.

See also: forth, wordlist.

Source file: <src/kernel.z80s>.

root-wordlist

 root-wordlist (-- wid)

Return wid, the identifier of the word list that includes
the words defined in the minimum search order. The words
defined in the word list identified by root-wordlist are
aliases of the definitions in forth-wordlist.

See also: only, wordlist, set-order,
assembler-wordlist, alias.

Source file: <src/kernel.z80s>.

rot

 rot (x1 x2 x3 -- x2 x3 x1)

Rotate the top three stack entries.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: -rot, over, tuck, swap, roll, pick.

Source file: <src/kernel.z80s>.

row

 row (-- row)

Current row (y coordinate).

See also: column, last-row, rows.

Source file: <src/lib/display.cursor.fs>.

rows

 rows (-- n)

Return the number of rows in the current screen mode. The
default value is 24.

See also: columns, last-row, row.

Source file: <src/lib/display.mode.COMMON.fs>.

rp

 rp (-- a) "r-p"

A constant. a is the address of the return stack pointer.

See also: rp@, rp!.

Source file: <src/kernel.z80s>.

rp!

 rp! (a --) "r-p-store"

Store a into the return stack pointer.

rp! is written in Z80. Its equivalent definition in Forth
is the following:

 : rp! (a --) rp ! ;

See also: rp, rp@.

Source file: <src/kernel.z80s>.

rp0

 rp0 (-- a) "r-p-zero"

A user variable. a is the address of a cell containing the
address of the bottom of the return stack.

Origin: fig-Forth’s r0.

Source file: <src/kernel.z80s>.

rp@

 rp@ (-- a) "r-p-fetch"

Fetch the content of the return stack pointer.

rp@ is written in Z80. Its equivalent definition in Forth
is the following:

 : rp@ (-- a) rp @ ;

See also: rp, rp!.

Source file: <src/kernel.z80s>.

rr,

 rr, (reg --) "r-r-comma"

Compile the Z80 assembler instruction RR reg.

See also: rl,, rra,, rrc,, rrca,.

Source file: <src/lib/assembler.fs>.

rra,

 rra, (--) "r-r-a-comma"

Compile the Z80 assembler instruction RRA.

See also: rla,, rr, rrc,, rrca,.

Source file: <src/lib/assembler.fs>.

rrc,

 rrc, (reg --) "r-r-c-comma"

Compile the Z80 assembler instruction RRC reg.

See also: rlc,, rr,, rra,, rrca,.

Source file: <src/lib/assembler.fs>.

rrca,

 rrca, (--) "r-r-c-a-comma"

Compile the Z80 assembler instruction RRCA.

See also: rlca,, rrc,, rr,, rra,.

Source file: <src/lib/assembler.fs>.

rrcx,

 rrcx, (disp regpi --) "r-r-c-x-comma"

Compile the Z80 assembler instruction RRC
(regpi+disp).

See also: rlcx,, rlx,, rrx,, slax,, srax,, sllx,,
srlx,, bitx,, resx,, setx,.

Source file: <src/lib/assembler.fs>.

rrepeat

 rrepeat (dest cs-id1 orig cs-id2 --) "r-repeat"

Compile a Z80 assembler unconditional relative-jump
instruction to address dest, left by rbegin, and check
its control-flow identifier cs-id1. Resolve the forward
reference orig, usually left by rwhile, and check its
control-flow structure cs-id2.

rrepeat is part of the assembler relative-address
control-flow structure rbegin .. rwhile .. rrepeat.

See also: arepeat, ragain.

Source file: <src/lib/assembler.fs>.

rresolve

 rresolve (orig dest --) "r-resolve"

Resolve a Z80 assembler relative branch.

See also: <rresolve, >rresolve, ?rel.

Source file: <src/lib/assembler.fs>.

rrx,

 rrx, (disp regpi --) "r-r-x-comma"

Compile the Z80 assembler instruction RR
(regpi+disp).

See also: rlcx,, rrcx,, rlx,, slax,, srax,, sllx,,
srlx,, bitx,, resx,, setx,.

Source file: <src/lib/assembler.fs>.

rshift

 rshift (x1 u -- x2) "r-shift"

Perform a logical right shift of u bit-places on x1,
giving x2. Put zeroes into the most significant bits
vacated by the shift.

Origin: Forth-94 (CORE), Forth-2012 (CORE).

See also: lshift, ?shift.

Source file: <src/lib/math.operators.1-cell.fs>.

rst,

 rst, (b --) "r-s-t-comma"

Compile the Z80 assembler instruction RST b.

Source file: <src/lib/assembler.fs>.

rstep

 rstep (dest cs-id --) "r-step"

rstep is part of the assembler relative-address
control-flow structure rbegin .. rstep.

See also: (runtil.

Source file: <src/lib/assembler.fs>.

rthen

 rthen (orig cs-id --) "r-then"

Check the control-flow structure identifier cs-id. Then
resolve the address orig left by rif or relse

rthen is part of the assembler relative-address
control-flow structure rif .. relse .. rthen.

See also: athen, >rresolve.

Source file: <src/lib/assembler.fs>.

ruler

 ruler (c len -- ca len)

Return a string ca len of characters c, in the
stringer.

See also: chars>string, char>string, s+.

Source file: <src/lib/strings.MISC.fs>.

run:

 run: (a n "ccc<semicolon>" -- a) "run-colon"

Add a clause to a [switch structure whose head is a.
The key value of the clause is n and its associated
behavior is one or more previously defined words, ending
with ;.

Origin: SwiftForth.

See also: switch].

Source file: <src/lib/flow.bracket-switch.fs>.

runs

 runs (a n "name" --)

Add a clause to a [switch structure whose head is a.
The key value of the clause is n and its associated
behavior is the previously defined name.

Origin: SwiftForth.

See also: [switch, switch].

Source file: <src/lib/flow.bracket-switch.fs>.

runtil

 runtil (dest cs-id op --) "r-until"

Compile a Z80 assembler conditional relative-jump
instruction op to address dest, as part of a
relative-address control-flow structure rbegin ..
runtil, identified by cs-id.

See also: auntil, (runtil, jp>jr, inverse-cond.

Source file: <src/lib/assembler.fs>.

rwhile

 rwhile (op -- orig cs-id) "r-while"

Compile a Z80 assembler relative-jump instruction op,
which was put on the stack by z?, nz?, c? or nc?.
Put the location of a forward reference orig onto the
stack, to be resolved by rrepeat, and the
control-structure identifier cs-id.

rwhile is part of the assembler relative-address
control-flow structures rbegin .. rwhile ..
rrepeat.

See also: awhile.

Source file: <src/lib/assembler.fs>.

s

s

 s (u "ccc<eol>" | u --)

A command of gforth-editor:
Search for ccc until screen u. If ccc is empty, use
the string of the previous search.

See also:
f,
c,
a,
g,
n,
p,
t.

Source file: <src/lib/prog.editor.gforth.fs>.
==== s

 s (n --)

A command of specforth-editor: Spread at line n. Line
n and following lines are are moved down one line. Line
n becomes blank. Line 15 is lost.

See also: b,
c,
d,
e,
f,
h,
i,
l,
m,
n,
p,
r,
t,
x.

Source file: <src/lib/prog.editor.specforth.fs>.

s"

 s" "s-quote"
 Compilation: ("ccc<quote>" --)
 Interpretation: ("ccc<quote>" -- ca len)
 Run-time: (-- ca len)

Parse ccc delimited by a double quote. If interpreting, copy
the parsed string to the stringer and return it as ca len.
If compiling, compile the parsed string and return it at
run-time as ca len.

s" is an immediate word.

Definition:

 : s" \ Compilation: ("ccc<quote>" --)
 \ Interpretation: ("ccc<quote>" -- ca len)
 \ Run-time: (-- ca len)
 '"' parse-string ; immediate

Origin: Forth-94 (CORE, FILE), Forth-2012 (CORE, FILE).

See also: parse-string, s\", s', s"", .", ,".

Source file: <src/kernel.z80s>.

s""

 s"" (-- ca len) "s-quote-quote"

Return an empty string in the stringer.

See also: s", s\", s'.

Source file: <src/lib/strings.MISC.fs>.

s'

 s' "s-tick"
 Compilation: ("ccc<char>" --)
 Run-time: (-- ca len)

Identical to the standard word s", but using single
quote as delimiter. A simple alternative to s\" when only
double quotes are needed in a string.

s' is an immediate word.

Source file: <src/lib/strings.MISC.fs>.

s+

 s+ (ca1 len1 ca2 len2 -- ca3 len3) "s-plus"

Append the string ca2 len2 to the end of string ca1
len1 returning the string ca3 len3 in the stringer.

See also: /string, string/, lengths.

Source file: <src/lib/strings.MISC.fs>.

s,

 s, (ca len --) "s-comma"

Compile the string ca len.

Definition:

 : s, (ca len --) tuck here place char+ allot ;

See also: c,, here, cmove, allot, count, fars,.

Source file: <src/kernel.z80s>.

s/r

 s/r (-- fam) "s-r"

Return the "shared read" file access method fam.

See also: r/o, w/o, r/w, bin,
create-file, open-file.

Source file: <src/lib/dos.plus3dos.fs>.

s>d

 s>d (n -- d) "s-to-d"

Sign extend a single number n to form a double number d.

Definition:

 : s>d (n -- d)
 dup 0< ;

Origin: fig-Forth’s s->d, Forth-94 (CORE), Forth-2012
(CORE).

See also: d>s, u>ud.

Source file: <src/kernel.z80s>.

s\"

 s\"
 Compilation: ("ccc<quote>" --)
 Interpretation: ("ccc<quote>" -- ca len)
 Run-time: (-- ca len)
"s-backslash-quote"

When s\" is loaded, esc-standard-chars-wordlist
is set as the only word list by set-esc-order. That is
the standard behaviour. Alternative escaped chars can be
configured with esc-block-chars-wordlist and
esc-udg-chars-wordlist.

s\" is an immediate word.

Origin: Forth-2012 (CORE EXT, FILE EXT).

See also: parse-esc-string, set-esc-order, .\".

Source file: <src/lib/strings.escaped.fs>.

save-buffers

 save-buffers (--)

If the disk buffer has been modified, transfer its contents to
disk and mark it as unmodified.

Definition:

 : save-buffers (--)
 updated? 0exit
 buffer-block dup write-block disk-buffer ! ;

Origin: Forth-79 (Required Word Set), Forth-83 (Required Word
Set), Forth-94 (BLOCK), Forth-2012 (BLOCK).

See also: empty-buffers, flush, block, buffer,
buffer-block, disk-buffer.

Source file: <src/kernel.z80s>.

save-ip_

 save-ip_ (-- a) "save-I-P-underscore"

Address of a routine that saves the Forth IP (Z80 register
BC), which must be restored later by the routine pointed by
restore-ip_.

This routine used when a ROM call needs many parameters and
not all of them can be taken from the stack in order to push
BC before the call. dos-ix-preserve-ip_ is not useful in
those cases.

Source file: <src/kernel.plus3dos.z80s>.

save-mode

 save-mode (--)

Store the contents of current-mode into previous-mode.

save-mode is executed by bye before setting the default
screen mode (e.g. mode-32, mode-32iso, mode-64ao).

Definition:

 : save-mode (--) current-mode @ previous-mode ! ;

See also: restore-mode.

Source file: <src/kernel.z80s>.

sbc#,

 sbc#, (b --) "s-b-c-number-sign-comma"

Compile the Z80 assembler instruction SBC A,b.

Source file: <src/lib/assembler.fs>.

sbc,

 sbc, (reg --) "s-b-c-comma"

Compile the Z80 assembler instruction SBC reg.

See also: sub,, adc,, add,, subp,.

Source file: <src/lib/assembler.fs>.

sbcp,

 sbcp, (regp --) "s-b-c-p-comma"

Compile the Z80 assembler instruction SBC HL,regp.

See also: subp,, sbc,.

Source file: <src/lib/assembler.fs>.

sbcx,

 sbcx, (disp regpi --) "s-b-c-x-comma"

Compile the Z80 assembler instruction SBC
(regpi+disp).

See also: subx,, adcx,.

Source file: <src/lib/assembler.fs>.

scan

 scan (ca1 len1 c -- ca2 len2)

Scan the string ca1 len1 for the first occurence of
character c. Leave match address ca2 and length remaining
len2. If no match occurred then len2 is zero and ca2 is
ca1+len1.

Source file: <src/kernel.z80s>.

scf,

 scf, (--) "s-c-f-comma"

Compile the Z80 assembler instruction SCF.

See also: cpl,, ccf,, neg,, set,, and,.

Source file: <src/lib/assembler.fs>.

sconstant

 sconstant (ca len "name" --) "s-constant"

Create a character string constant name with value ca
len. The character string is stored into data space. When
name is later executed, it returns the corresponding ca2
len, being ca2 the address where the original string was
stored by sconstant.

See also: sconstants.

Source file: <src/lib/strings.MISC.fs>.

sconstants

 sconstants (0 ca[n]..ca[1] "name" -- n) "s-constants"

Create a table of string constants name, using counted
strings ca[n]..ca[1], being 0 a mark for the last
string on the stack, and return the number n of compiled
strings.

When name is executed, it converts the index on the stack
(0..n-1) to the correspondent string ca len.

Usage example:

 0 \ end of strings
 here ," kvar" \ string 4
 here ," tri" \ string 3
 here ," du" \ string 2
 here ," unu" \ string 1
 here ," nul" \ string 0
sconstants digitname
 constant digitnames

cr .(There are) digitnames . .(digit names:)
0 digitname cr type
1 digitname cr type
2 digitname cr type
3 digitname cr type cr

See also: sconstant, ,", begin-stringtable.

Source file: <src/lib/strings.MISC.fs>.

scr

 scr (-- a) "s-c-r"

A user variable. a is the address of a cell containing the
number of the block most recently listed by list. scr
is used by the block editors.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Controlled Reference Words), Forth-94 (BLOCK EXT), Forth-2012
(BLOCK EXT).

See also: editor.

Source file: <src/kernel.z80s>.

scra>attra

 scra>attra (a1 -- a2) "s-c-r-a-to-a-t-t-r-a"

Convert screen bitmap address a1 to its correspondent
attribute address a2.

Source file: <src/lib/graphics.pixels.fs>.

seal

 seal (--)

Remove all word lists from the search order other than the
word list that is currently on top of the search order.
I.e., change the search order such that only the word list
at the top of the search order will be searched.

Origin: Gforth.

See also: only, set-order, #order.

Source file: <src/lib/word_lists.fs>.

search

 search (ca1 len1 ca2 len2 -- ca3 len3 f)

Search the string ca1 len1 for the string ca2 len2. If f
is true, a match was found at ca3 with len3 characters
remaining. If f is false there was no match and ca3 len3
is ca1 len1.

Origin: Forth-94 (STRING), Forth-2012 (STRING).

See also: compare, hunt.

Source file: <src/kernel.z80s>.

search-wordlist

 search-wordlist (ca len wid -- 0 | xt 1 | xt -1)

Find the definition identified by the string ca len in
the word list identified by wid. If the definition is not
found, return zero. If the definition is found, return its
xt and one (1) if the definition is immediate, minus-one
(-1) otherwise.

Origin: Forth-94 (SEARCH), Forth-2012 (SEARCH).

See also: find-name, find-name-from, find-name-in,
find.

Source file: <src/lib/word_lists.fs>.

seclusion

 seclusion (-- wid1 wid2)

Start a seclusion module. Private definitions follow.

Modules hide the internal implementation and leave visible
the words of the outer interface.

wid1 is the identifier of the compilation word list
before seclusion was executed. wid2 is the identifier
of the word list where private definitions of the seclusion
module will be created. They are used by -seclusion,
which marks the start of public definitions, +seclusion,
which optionally marks the start of new private
definitions, and end-seclusion, which ends the module.

Usage example:

 seclusion
 \ Inner/private words.
-seclusion
 \ Interface/public words.
+seclusion
 \ More inner/private words.
-seclusion
 \ More interface/public words.
 \ Etc.
end-seclusion

A copy of wid2 may be kept by the application in order to
access private words later, e.g.
seclusion dup constant my-module.

See also: internal, isolate, module, package,
privatize.

Source file: <src/lib/modules.MISC.fs>.

seconds

 seconds (u --)

Wait at least u seconds.

See also: ?seconds, ms, ticks.

Source file: <src/lib/time.fs>.

sector#>dos

 sector#>dos (n -- x) "sector-number-sign-to-dos"

Convert the sequential disk sector n (0 index) to the disk
sector id x, in the format required by +3DOS: The high byte
of x is the logical track (0 index); its low byte is the
logical sector (0 index).

Definition:

 : sector#>dos (n -- x) sectors/track /mod sector>dos ;

See also: sectors/track, sector>dos, transfer-sector.

Source file: <src/kernel.plus3dos.z80s>.

sector>dos

 sector>dos (sector track -- x) "sector-to-dos"

Convert the 8-bit sector number sector and the 8-bit track
number track to the 16-bit number x in the format used by
+3DOS: The high byte of x is the track, and its low byte is
the sector.

sector>dos is a factor of sector#>dos and
block-sector#>dos.

sector>dos is written in Z80. Its equivalent definition in
Forth is the following:

 : sector>dos (sector track -- x) flip or ;

Source file: <src/kernel.plus3dos.z80s>.

sectors/block

 sectors/block (-- b) "sectors-slash-block"

A cconstant. b is the number of sectors per block.

See also: b/sector, sectors/track, blocks/disk.

Source file: <src/kernel.z80s>.

sectors/track

 sectors/track (-- b) "sectors-slash-track"

A cconstant. b is the number of sectors per track.

See also: b/sector, sectors/block, blocks/disk.

Source file: <src/kernel.z80s>.

see

 see ("name" --)

Decode the word’s definition name.

Origin: Forth-94 (TOOLS), Forth-2012 (TOOLS).

See also: see-name, see-xt, see-colon, see-colon-body,
see-colon-body>.

Source file: <src/lib/tool.see.fs>.

see-colon

 see-colon (nt --)

Decode the colon word’s definition nt.

See also: see, see-name, see-colon-body.

Source file: <src/lib/tool.see.fs>.

see-colon-body

 see-colon-body (dfa --)

Decode the colon word’s definition whose body is dfa.
see-colon-body is a factor of see-colon.

See also: see, see-colon-body>, see-xt, see-usage.

Source file: <src/lib/tool.see.fs>.

see-colon-body>

 see-colon-body> (a --) "see-colon-body-to"

Decode the colon word’s definition from a, which is part
of its body. see-colon-body> is useful to decode words
that use exit in the midle of the definition, because
see stops at the first exit found.

See also: see-colon-body, see-xt, see-name.

Source file: <src/lib/tool.see.fs>.

see-name

 see-name (nt --)

Decode the word’s definition nt.

see-name is a factor of see.

See also: see, see-xt, see-colon.

Source file: <src/lib/tool.see.fs>.

see-usage

 see-usage (--)

Display the usage of see. see-usage is executed when
manual-see contains non-zero.

Source file: <src/lib/tool.see.fs>.

see-xt

 see-xt (xt --) "see-x-t"

Decode the word’s definition xt.

The listing can be paused with the space bar, then stopped
with the return key or resumed with any other key.

See also: see, see-name, see-colon.

Source file: <src/lib/tool.see.fs>.

sentry:

 sentry: (ca len wid "name" --) "s-entry-colon"

Create a string entry name in the associative-list
wid, with value ca len.

See also: entry:, centry:, 2entry:, create-entry.

Source file: <src/lib/data.associative-list.fs>.

set,

 set, (reg b --) "set-comma"

Compile the Z80 assembler instruction SET b,reg.

See also: bit,, res,, add#,.

Source file: <src/lib/assembler.fs>.

set-1346

 set-1346 (n1 n2 n3 n4 --) "set-1-3-4-6"

Set the +3DOS configuration of RAM banks 1, 3, 4 and 6,
which are organized as an array of 128 sector buffers, each
of 512 bytes. The cache and the RAM disk occupy two
separate (contiguous) areas of this array.

	

n1

	
first sector buffer of cache

	

n2

	
number of cache sector buffers

	

n3

	
first sector buffer of RAM disk

	

n4

	
number of RAM disk sector buffers

See also: get-1346, default-1346, bank.

Source file: <src/lib/dos.plus3dos.fs>.

set-anon

 set-anon (x#n ... x#1 n --)

Store the given n cells into the buffer pointed by
anon>, which will be accessed by anon.

Usage example:

 here anon> ! 5 cells allot

: test (x4 x3 x2 x1 x0 --)
 5 set-anon
 [0] anon ? \ display _x0_
 123 [0] anon !
 [0] anon ? \ display 123
 [2] anon ? \ display _x2_
 555 [2] anon !
 [2] anon ? \ display 555
 ;

Source file: <src/lib/locals.anon.fs>.

set-bit

 set-bit (b1 n -- b2)

Set bit n of b1, returning the result b2.

See also: bit?, set-bit, bit>mask.

Source file: <src/lib/memory.MISC.fs>.

set-block-drives

 set-block-drives (c#n..c#1 n --)

Set the drives specified by drive identifiers c#n..c#1 as
block drives. Subsequently drive c#1 will be searched
first for blocks from block number 0 to block number
blocks/disk 1-; drive c#2 will be searched for blocks
from block number blocks/disk to block number
blocks/disk 2 * 1-; and so on.

If n is zero, no drive is used for blocks.

set-block-drives sets last-locatable to the
last block available on the new configuration, but
first-locatable is not modified.

See also: -block-drives, #block-drives, block-drive!,
get-block-drives.

Source file: <src/lib/dos.COMMON.fs>.

set-bright

 set-bright (f --)

If f is true, turn bright on by setting the
corresponding bit of the current attribute. If f is
false, turn bright off by resetting the bit. Other
non-zero values of f will turn bright on or off depending
on them having a common bit with bright-mask.

See also: get-bright, attr!, bright., set-paper,
set-ink, set-flash, bright-mask.

Source file: <src/lib/display.attributes.fs>.

set-capslock

 set-capslock (--)

Set capslock.

See also: unset-capslock, capslock?, toggle-capslock,
capslock, cset.

Source file: <src/lib/keyboard.caps_lock.fs>.

set-circle-pixel

 set-circle-pixel (a --)

Set the address a of the routine circle-pixel will jump
to.

set-circle-pixel is used to make circle-pixel jump
to colored-circle-pixel, uncolored-circle-pixel, or
other routine provided by the application, therefore
configuring circle.

Source file: <src/lib/graphics.circle.fs>.

set-current

 set-current (wid --)

Set the compilation word list to the word list identified by
wid.

Definition:

 : set-current (wid --) current ! ;

Origin: Forth-94 (SEARCH), Forth-2012 (SEARCH).

Source file: <src/kernel.z80s>.

set-date

 set-date (day month year --)

Set the current date. The default date is 2016-01-01. It
can be fetch with get-date. The date is not updated by
the system.

See also: get-date, date, .date, leapy-year?.

Source file: <src/lib/time.fs>.

set-drive

 set-drive (c -- ior)

Set drive c ('A'..'P') as the current one, i.e. the drive
implied by all filenames that do not specify a drive, and the
drive used by transfer-sector and transfer-block,
returning the I/O result code ior. If the drive is
successfully selected, ior is zero, otherwise it’s an
exception code. The default drive is 'A'.

set-drive does not access the drive, but merely checks
that there is a driver for it (which does not imply that the
drive exists).

See also: get-drive, ?set-drive, drive, set-block-drives,
2-block-drives, set-user.

Source file: <src/kernel.plus3dos.z80s>.

set-dticks

 set-dticks (d --) "set-d-ticks"

Set the system clock to d ticks.

See also: set-ticks, dticks, reset-dticks,
ticks/second, bench{.

Source file: <src/lib/time.fs>.

set-esc-order

 set-esc-order (widn..wid1 n --)

Set the escaped strings search order to the word lists
identified by widn..wid1. Subsequently, word list wid1
will be searched first, and word list widn searched last.
If n is zero, empty the escaped strings search order.

See also: get-esc-order, >esc-order,
esc-standard-chars-wordlist, esc-block-chars-wordlist,
esc-udg-chars-wordlist.

Source file: <src/lib/strings.escaped.fs>.

set-filename-drive

 set-filename-drive (c -- ior)

Set drive c ('A'..'P') as the current default drive, i.e.
the drive implied by all filenames that do not specify a
drive.

Does not access the drive, but merely checks that there is a
driver for it (which does not imply that the drive exists).

See also: get-filename-drive.

Source file: <src/kernel.plus3dos.z80s>.

set-flash

 set-flash (f --)

If f is true, turn flash on by setting the
corresponding bit of the current attribute. If f is
false, turn flash off by resetting the bit. Other
non-zero values of f will turn flash on or off depending
on them having a common bit with flash-mask.

See also: get-flash, attr!, flash., set-paper,
set-ink, set-bright, flash-mask.

Source file: <src/lib/display.attributes.fs>.

set-font

 set-font (a --)

Set address a as the current font by setting the system
variable os-chars

set-font is used by all screen modes. The character
bitmap a points to depends on the mode.

The last character used from the font can be configured by
last-font-char.

See also: get-font, rom-font, default-font, mode-32,
mode-32iso, mode-42pw, mode-64ao.

Source file: <src/kernel.z80s>.

set-heap

 set-heap (a u b --)

Set the values of the current heap: its address a
(returned by heap), its size u (returned by /heap)
and its bank b (stored in heap-bank).

set-heap and get-heap are useful when more than one
memory heap are needed by the application.

Source file: <src/lib/memory.allocate.COMMON.fs>.

set-ink

 set-ink (b --)

Set ink color b (0..7) by modifying bits 0-2 of the
current attribute.

set-ink is written in Z80. Its equivalent definition in
Forth is the following:

 : set-ink (b --) attr@ unink-mask and or attr! ;

See also: get-ink, attr!, ink., set-paper, set-flash,
set-bright, unink-mask.

Source file: <src/lib/display.attributes.fs>.

set-menu

 set-menu (a1 a2 ca len col row n1 n2 --)

Set the current menu to cursor coordinates col row, n2
options, n1 characters width, title ca len, actions
table a1 (a cell array of n2 execution tokens) and
option texts table a2 (a cell array of n2 addresses of
counted strings).

See also: new-menu, .menu, menu, menu-xy, menu-title,
actions-table, menu-options, menu-width,
menu-body-attr, menu-highlight-attr,
menu-banner-attr.

Source file: <src/lib/menu.sinclair.fs>.

set-mixer

 set-mixer (b --)

Set the mixer register of the AY-3-8912 sound
generator to b.

Register 7 (Mixer - I/O Enable)

This controls the enable status of the noise and tone
mixers for the three channels, and also controls the I/O
port used to drive the RS232 and Keypad sockets.

	

Bit 0

	
Channel A Tone Enable (0=enabled).

	

Bit 1

	
Channel B Tone Enable (0=enabled).

	

Bit 2

	
Channel C Tone Enable (0=enabled).

	

Bit 3

	
Channel A Noise Enable (0=enabled).

	

Bit 4

	
Channel B Noise Enable (0=enabled).

	

Bit 5

	
Channel C Noise Enable (0=enabled).

	

Bit 6

	
I/O Port Enable (0=input, 1=output).

	

Bit 7

	
Not used.

~ Disassembly of the ZX Spectrum 128k ROM0

See also: get-mixer, -mixer, !sound.

Source file: <src/lib/sound.128.fs>.

set-mode-output

 set-mode-output (a --)

Associate the output routine at a to the system channels
"K", "S" and "P".

Source file: <src/lib/display.mode.COMMON.fs>.

set-order

 set-order (-1 | 0 | wid#n .. wid#1 n --)

Set the search order to the word lists identified by wid#n ..
wid#1. Subsequently, word list wid1 will be searched first,
and word list wid#n searched last. If n is zero, empty the
search order. If n is minus one, set the search order to the
implementation-defined minimum search order.

Definition:

 : set-order (-1 | 0 | wid#n .. wid#1 n --)
 dup -1 = if drop root-wordlist dup 2 then
 dup ?order dup #order !
 0 ?do i cells context + ! loop ;

Origin: Forth-94 (SEARCH), Forth-2012 (SEARCH).

See also: get-order, >order.

Source file: <src/kernel.z80s>.

set-paper

 set-paper (b --)

Set paper color b (0..7) by modifying the corresponding
bits of the current attribute.

set-paper is written in Z80. Its equivalent definition
in Forth is the following:

 : set-paper (b --) papery attr@ unpaper-mask and or attr! ;

See also: get-paper, attr!, paper., set-ink, set-flash,
set-bright, paper-mask.

Source file: <src/lib/display.attributes.fs>.

set-pixel

 set-pixel (gx gy --)

Set a pixel without changing its attribute on the screen or
the current graphic coordinates. gx is 0..255; gy is
0..191.

See also: plot, plot176, reset-pixel,
toggle-pixel, xy>gxy.

Source file: <src/lib/graphics.pixels.fs>.

set-pixel176

 set-pixel176 (gx gy --) "set-pixel-176"

Set a pixel without changing its attribute on the screen or
the current graphic coordinates, and using only the top 176
pixel rows of the screen (the lower 16 pixel rows are not
used). gx is 0..255; gy is 0..175.

See also: set-save-pixel176, set-pixel, plot,
plot176, reset-pixel, toggle-pixel, reset-pixel176,
toggle-pixel176, xy>gxy176.

Source file: <src/lib/graphics.pixels.fs>.

set-save-pixel176

 set-save-pixel176 (gx gy --) "set-save-pixel-176"

Set a pixel without changing its attribute on the screen,
and using only the top 176 pixel rows of the screen (the
lower 16 pixel rows are not used). gx is 0..255; gy is
0..175. set-save-pixel176 updates the graphic
coordinates (contrary to set-pixel176).

See also: set-pixel, plot, plot176, reset-pixel,
toggle-pixel, reset-pixel176, toggle-pixel176.

Source file: <src/lib/graphics.pixels.fs>.

set-sector-unit

 set-sector-unit (n -- ior)

Set unit n (0..1) as the default unit for sector-level
access, i.e. the unit used by transfer-sector and
transfer-block. The default unit is initially 0.

See also: set-sector-unit.

Source file: <src/kernel.plus3dos.z80s>.

set-source

 set-source (ca len --)

Set the memory zone ca len as the current source by pointing
input-buffer to it.

Definition:

 : set-source (ca len --) input-buffer 2! >in off ;

See also: >in, terminal>source, block>source.

Source file: <src/kernel.z80s>.

set-tape-filename

 set-tape-filename (ca len --)

Store filename ca len into the tape-filename field of
tape-header.

Source file: <src/lib/tape.fs>.

set-tape-memory

 set-tape-memory (ca len --)

Configure tape-header with the memory zone ca len (to
be read or written), by storing len into tape-length
and ca into tape-start.

Source file: <src/lib/tape.fs>.

set-ticks

 set-ticks (d --)

Set the system clock to n ticks.

See also: set-dticks, ticks, reset-ticks,
ticks/second, bench{.

Source file: <src/lib/time.fs>.

set-time

 set-time (second minute hour --)

Set the current time.

See also: get-time.

Source file: <src/lib/time.fs>.

set-udg

 set-udg (a --) "set-u-d-g"

Set address a as the the current UDG set (characters
0..255), by changing the system variable os-udg. a
must be the bitmap address of character 0.

See also: get-udg, set-font.

Source file: <src/lib/graphics.udg.fs>.

set-user

 set-user (n -- ior)

Set the current user area n, i.e. the user area implied
by all filenames that do not specify a user number. ior
is the I/O result code.

See also: get-user, set-drive.

Source file: <src/lib/dos.plus3dos.fs>.

setx,

 setx, (disp regpi b --) "set-x-comma"

Compile the Z80 assembler instruction SET
b,(regpi+disp).

See also: bitx,, resx,, addx,, adcx,, andx,, xorx,,
orx,, incx,.

Source file: <src/lib/assembler.fs>.

sfalign

 sfalign (--) "s-f-align"

If the data space is not single-float aligned, reserve
enough space to make it so.

In Solo Forth, sfalign does nothing: it’s an immediate
alias of noop.

Origin: Forth-94 (FLOATING EXT), Forth-2012 (FLOATING EXT).

See also: sfaligned, falign, dfalign, float.

Source file: <src/lib/math.floating_point.rom.fs>.

sfaligned

 sfaligned (a -- fa) "s-f-aligned"

fa is the first single-float-aligned address greater than
or equal to a

In Solo Forth, sfaligned does nothing: it’s an
immediate alias of noop.

Origin: Forth-94 (FLOATING EXT), Forth-2012 (FLOATING EXT).

See also: sfalign, faligned, dfaligned, float.

Source file: <src/lib/math.floating_point.rom.fs>.

sign

 sign (n --)

If n is negative, add a minus sign to the beginning of the
pictured numeric output string.

Definition:

 : sign (n --) 0< if '-' hold then ;

Origin: Forth 94 (CORE), Forth-2012 (CORE).

See also: <#, #>, hold.

Source file: <src/kernel.z80s>.

silence

 silence (--)

Execute -mixer to disable the noise and tone mixers for
the three channels of the AY-3-8912 sound generator. Then
set the volume of the three channels to zero.

See also: !volume.

Source file: <src/lib/sound.128.fs>.

simple-accept

 simple-accept (ca1 len1 -- len2)

Receive a string of at most len1 characters. No characters
are received or transferred if len1 is zero. Display
graphic characters as they are received.

Input terminates when the Return key is pressed. When input
terminates, nothing is appended to the string or displayed on
the screen.

The only control key accepted is Delete.

len2 is the length of the string stored at ca1.

simple-accept is the default action of the deferred word
accept (see defer).

Definition:

 : simple-accept (ca len -- len')
 over + over (bot eot cur)
 begin xkey dup 13 <> \ not carriage return?
 while (bot eot cur c)
 dup 12 = \ delete?
 if drop >r over r@ < dup \ any chars?
 if 8 dup emit bl emit emit then r> +
 else \ maybe printable
 >r 2dup <> \ more?
 r@ [bl 1-] literal > and \ and printable?
 if r@ over c! char+ r@ emit then r> drop
 then
 repeat (bot eot cur c) drop nip swap - ;

See also: query.

Source file: <src/kernel.z80s>.

sinclair-stripes

 sinclair-stripes (-- ca)

Return address ca where the following pair of UDG
definitions, used to create Sinclair stripes, are stored:

0 0 0 0 0 0 0 1 X
0 0 0 0 0 0 1 1 XX
0 0 0 0 0 1 1 1 XXX
0 0 0 0 1 1 1 1 XXXX
0 0 0 1 1 1 1 1 XXXXX
0 0 1 1 1 1 1 1 XXXXXX
0 1 1 1 1 1 1 1 XXXXXXX
1 1 1 1 1 1 1 1 XXXXXXXX

1 1 1 1 1 1 1 0 XXXXXXX
1 1 1 1 1 1 0 0 XXXXXX
1 1 1 1 1 0 0 0 XXXXX
1 1 1 1 0 0 0 0 XXXX
1 1 1 0 0 0 0 0 XXX
1 1 0 0 0 0 0 0 XX
1 0 0 0 0 0 0 0 X
0 0 0 0 0 0 0 0

See also: .sinclair-stripes, sinclair-stripes$.

Source file: <src/lib/menu.sinclair.fs>.

sinclair-stripes$

 sinclair-stripes$ (-- ca len)

Return a string ca len containing the following character
codes:

Table 35. Characters of sinclair-stripes$.

	Code(s)
	Meaning

	$10 $02

	set ink 2 (red)

	$80

	first stripe UDG

	$11 $06

	set paper 6 (yellow)

	$81

	second stripe UDG

	$10 $04

	set ink 4 (green)

	$80

	first stripe UDG

	$11 $05

	set paper 5 (cyan)

	$81

	second stripe UDG

	$10 $00

	set ink 0 (black)

	$80

	first stripe UDG

Definitions for UDG codes $80 and $81 are provided
optionally by sinclair-stripes.

See also: .sinclair-stripes.

Source file: <src/lib/menu.sinclair.fs>.

skip

 skip (ca1 len1 c -- ca2 len2 | ca1 len1)

Skip over leading occurences of the character c in the string
ca1 len1. Leave the address of the first non-matching
character ca2 and length remaining len2. If no characters were
skipped leave ca1 len1.

Source file: <src/kernel.z80s>.

skip-sign?

 skip-sign? (ca len -- ca' len' f) "skip-sign-question"

If number string ca len starts with a minus sign, remove it
and return the result string ca' len' and a true flag f;
else ca' len' is identical to ca len and f is false.

Definition:

 : skip-sign? (ca len -- ca' len' f)
 over c@ '-' = dup >r abs /string r> ;

See also: number?, ?negate.

Source file: <src/kernel.z80s>.

sla,

 sla, (reg --) "s-l-a-comma"

Compile the Z80 assembler instruction SLA reg.

Source file: <src/lib/assembler.fs>.

slax,

 slax, (disp regpi --) "s-l-a-x-comma"

Compile the Z80 assembler instruction SLA
(regpi+disp).

See also: rlcx,, rrcx,, rlx,, rrx,, srax,, sllx,,
srlx,, bitx,, resx,, setx,.

Source file: <src/lib/assembler.fs>.

slit

 slit (-- ca len) "s-lit"

Return a string that is compiled after the calling word, and
adjust the instruction pointer to step over the inline string.

Definition:

 : slit (-- ca len) r@ count dup char+ r> + >r ;

Source file: <src/kernel.z80s>.

sliteral

 sliteral "s-literal"
 Compilation: (ca1 len1 --)
 Run-time: (-- ca2 len1)

Compile slit and string ca len in the current definition.
At run-time slit will return string ca1 len1 as ca2
len1.

sliteral is an immediate and compile-only word.

Definition:

 : sliteral (ca len --)
 postpone slit s, ; immediate compile-only

Origin: Forth-94 (STRING), Forth-2012 (STRING).

See also: s,, csliteral.

Source file: <src/kernel.z80s>.

sll,

 sll, (reg --) "s-l-l-comma"

Compile the Z80 assembler instruction SLL reg.

Source file: <src/lib/assembler.fs>.

sllx,

 sllx, (disp regpi --) "s-l-l-x-comma"

Compile the Z80 assembler instruction SLL
(regpi+disp).

See also: rlcx,, rrcx,, rlx,, rrx,, slax,, srax,,
srlx,, bitx,, resx,, setx,.

Source file: <src/lib/assembler.fs>.

slow-gxy>scra_

 slow-gxy>scra_ (-- a) "slow-g-x-y-to-s-c-r-a-underscore"

Return address a of an alternative entry point to the
PIXEL-ADD ROM routine ($22AA), to let the range of the y
coordinate be 0..191 instead of 0..175.

slow-gxy>scra_ is the default action of gxy>scra_.

When fast-gxy>scra_ (which is faster but bigger, and
requires the assembler) is needed, the application must use
need fast-gxy>scra_ before need set-pixel or any
other word that needs gxy>scra_.

Input registers:

	
C = x cordinate (0..255)

	
B = y coordinate (0..191)

Output registers:

	
HL = address of the pixel byte in the screen bitmap

	
A = position of the pixel in the byte address (0..7),
note: position 0=bit 7, position 7=bit 0.

See also: gxy176>scra_.

Source file: <src/lib/graphics.pixels.fs>.

slow-pixels

 slow-pixels (-- n)

Return the number u of pixels that are set on the screen.
slow-pixels is the alternative action of the deferred
word pixels (see defer). slow-pixels simply
executes bits with the screen address and length on the
stack.

See also: fast-pixels.

Source file: <src/lib/graphics.pixels.fs>.

sm/rem

 sm/rem (d n1 -- n2 n3) "s-m-slash-rem"

Symmetric division:

 D = n3*n1+n2;

sign(n2) = sign(d1) or 0

Divide d by n1, giving the symmetric quotient n3 and the
remainder n2. Input and output stack arguments are signed.

Table 36. Symmetric Division Example

	Dividend
	Divisor
	Remainder
	Quotient

	10

	7

	3

	1

	-10

	7

	-3

	-1

	10

	-7

	3

	-1

	-10

	-7

	-3

	1

Definition:

 : sm/rem (d1 n1 -- n2 n3) \ symmetric signed division
 2dup xor >r \ sign of quotient
 over >r \ sign of remainder
 abs >r dabs r> um/mod
 swap r> ?negate
 swap r> ?negate ;

Origin: Forth-94 (CORE), Forth-2012 (CORE).

See also: fm/mod, m/.

Source file: <src/kernel.z80s>.

smove

 smove (ca1 len1 ca2 --) "s-move"

Move the string ca1 len1 to ca2.

smove is the equivalent of the idiom swap move, but
faster.

See also: cmove, cmove>, move.

Source file: <src/kernel.z80s>.

smudge

 smudge (--)

Toggle the "smudge bit" of the latest definition’s name
field. This prevents an uncompleted definition from being
found during dictionary searches, until compiling is
completed without error.

smudge is obsolete. hide and reveal are used
instead.

Origin: fig-Forth.

See also: smudged.

Source file: <src/lib/compilation.fs>.

smudge-mask

 smudge-mask (-- b)

A cconstant. b is the bitmask of the smudge bit.

See also: word-length-mask, immediate-mask,
compile-only-mask.

Source file: <src/kernel.z80s>.

smudged

 smudged (nt --)

Toggle the "smudge bit" of the given nt.

smudged is obsolete. hidden and revealed are used
instead.

See also: smudge, smudge-mask.

Source file: <src/lib/compilation.fs>.

sound

 sound (b[0]..b[13] "name" --)

Create a word name that will play the 14-byte sound
defined by b[0]..b[13].

See also: sound,, play, edit-sound.

Source file: <src/lib/sound.128.fs>.

sound,

 sound, (b[0]..b[13] --) "sound-comma"

Compile the 14-byte sound definition b[0]..b[13].

See also: play, sound.

Source file: <src/lib/sound.128.fs>.

sound-register-port

 sound-register-port (-- a)

The I/O port used to select a register of the AY-3-8912
sound generator, before writing a value into it using
sound-write-port, or before reading a value from it using
sound-register-port again.

sound-register-port is a fast constant defined with
const. Its value is $FFFD.

See also: sound-write-port, !sound, @sound.

Source file: <src/lib/sound.128.fs>.

sound-write-port

 sound-write-port (-- a)

The I/O port used to write to a register of the AY-3-8912
sound generator.

sound-write-port is a fast constant defined with
const. Its value is $BFFD.

See also: sound-register-port, !sound, @sound.

Source file: <src/lib/sound.128.fs>.

source

 source (-- ca len)

ca is the address of, and len is the number of characters
in, the input buffer.

Definition:

 : source (-- ca len)
 blk @ ?dup if block b/buf exit then
 input-buffer 2@ ;

Origin: Forth-94 (CORE), Forth-2012 (CORE).

See also: input-buffer, set-source, blk, stream,
nest-source, unnest-source.

Source file: <src/kernel.z80s>.

source-id

 source-id (-- 0 | -1) "source-i-d"

Identify the input source as follows:

Table 37. Values returned by source-id.

	Value
	Input source

	0

	User input device

	-1

	String via evaluate

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

Source file: <src/kernel.z80s>.

sp

 sp (-- regp) "s-p"

Return the identifier reg of the Z80 assembler register
"SP".

See also: a,
b, c,
d, e,
h, l,
m, ix, iy.

Source file: <src/lib/assembler.fs>.

sp!

 sp! (a --) "s-p-store"

Store a into the stack pointer.

Source file: <src/kernel.z80s>.

sp0

 sp0 (-- a) "s-p-zero"

A user variable. a is the address of a cell containing the
address of the bottom of the data stack.

Origin: fig-Forth’s s0, Forth-79’s s0, Forth-83’s
s0.

See also: sp@, sp!.

Source file: <src/kernel.z80s>.

sp@

 sp@ (-- a) "s-p-fetch"

Fetch the content of the stack pointer. a is the address of
the top of the stack just before sp@ was executed.

Origin: fig-Forth, Forth-79 (Reference Word Set), Forth-83
(Controlled Reference Words).

See also: sp!, sp0.

Source file: <src/kernel.z80s>.

space

 space (--)

Display one space.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: bl, emit.

Source file: <src/kernel.z80s>.

spaces

 spaces (n --)

If n is greater than zero, display n spaces.

spaces is written in Z80. Its equivalent definition in
Forth is the following:

 : spaces (n --) bl swap emits ;

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: space, bl, emits.

Source file: <src/kernel.z80s>.

specforth-editor

 specforth-editor (--)

A vocabulary containing the Specforth block editor. When
specforth-editor is loaded, it becomes the action of
editor.

Table 38. Specforth block editor commands

	Word
	Description

	b
(--)

	Used after f to
backup the cursor by the length of the most recent text.

	c
("ccc<eol>" --)

	Copy in ccc to the cursor line at the cursor position.

	clear
(n --)

	Clear block n with blanks and select for editing.

	copy
(n1 n2 --)

	Copy block n1 to block n2.

	d
(n --)

	Delete line n but hold it in pad. Line 15 becomes
free as all statements move up one line.

	delete
(n --)

	Delete n characters prior to the cursor.

	e
(n --)

	Erase line n with blanks.

	find,
(--)

	Search for a match to the string at pad, from the
cursor position until the end of block. If no match found
issue an error message and reposition the cursor at the top
of the block.

	h
(n --)

	Hold line n at pad (used by system more often than by
user).

	i
(n --)

	Insert text from pad at line n, moving the old line
n down. Line 15 is lost.

	l
(--)

	List the current block.

	m
(n --)

	Move the cursor by n characters. The position of the
cursor on its line is shown by a "_" (underline).

	n
(--)

	Find the next occurrence of the string found by an
f command.

	p
(n "ccc<eol>" --)

	Put ccc on line n.

	r
(n --)

	Replace line n with the text in pad.

	s
(n --)

	Spread at line n. Line n and following lines are are
moved down one line. Line n becomes blank. Line 15 is
lost.

	t
(n --)

	Type line n and save in pad.

	till
("ccc<eol>" --)

	Delete on the cursor line from the cursor till the end of
string ccc.

	x
("ccc<eol>" --)

	Find and delete the next occurrence of the string ccc.

See also: gforth-editor.

Source file: <src/lib/prog.editor.specforth.fs>.

split

 split (x -- b1 b2)

b1 is the low byte of x and b2 is the high byte of x.

Origin: IsForth, CHForth.

See also: join, flip.

Source file: <src/lib/math.operators.1-cell.fs>.

sqrt

 sqrt (n1 -- n2) "square-root"

Calculate integer square root n2 of radicand n1.
sqrt is a deferred word (see defer) which can execute
baden-sqrt or newton-sqrt.

Source file: <src/lib/math.operators.1-cell.fs>.

sra,

 sra, (reg --) "s-r-a-comma"

Compile the Z80 assembler instruction SRA reg.

Source file: <src/lib/assembler.fs>.

srax,

 srax, (disp regpi --) "s-r-a-x-comma"

Compile the Z80 assembler instruction SRA
(regpi+disp).

See also: rlcx,, rrcx,, rlx,, rrx,, slax,, sllx,,
srlx,, bitx,, resx,, setx,.

Source file: <src/lib/assembler.fs>.

srl,

 srl, (reg --) "s-r-l-comma"

Compile the Z80 assembler instruction SRL reg.

Source file: <src/lib/assembler.fs>.

srlx,

 srlx, (disp regpi --) "s-r-l-x-comma"

Compile the Z80 assembler instruction SRL
(regpi+disp).

See also: rlcx,, rrcx,, rlx,, rrx,, slax,, srax,,
sllx,, bitx,, resx,, setx,.

Source file: <src/lib/assembler.fs>.

st#x,

 st#x, (8b disp regpi --) "s-t-number-sign-x-comma"

Compile the Z80 assembler instruction LD
(regpi+disp),8b.

See also: stx,.

Source file: <src/lib/assembler.fs>.

sta,

 sta, (a --) "s-t-a-comma"

Compile the Z80 assembler instruction LD (a),A,
i.e. store the contents of register "A" into memory address
a.

See also: fta,, ld,, ld#,.

Source file: <src/lib/assembler.fs>.

stack-cells

 stack-cells (-- n)

n is the maximum size of the data stack, in cells.

See also: return-stack-cells, environment?.

Source file: <src/lib/environment-question.fs>.

standard-number-point?

 standard-number-point? (c -- f) "standard-number-point-question"

f is true if if character c is a valid point in a number.
The only allowed point is period.

standard-number-point? is the default action of the
deferred word number-point? (see defer), which is used in
number?.

Definition:

 : standard-number-point? (c -- f) '.' = ;

See also: classic-number-point?, extended-number-point?.

Source file: <src/kernel.z80s>.

stap,

 stap, (regp --) "s-t-a-p-comma"

Compile the Z80 assembler instruction LD (regp),A.

See also: ftap,.

Source file: <src/lib/assembler.fs>.

state

 state (-- a)

A user variable. a is the address of a cell containing the
compilation-state flag, which is true when in compilation
state, false otherwise.

Origin: fig-Forth, Forth-89 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: compiling?, [,].

Source file: <src/kernel.z80s>.

step

 step
 Compilation: (dest --)
 Run-time: (R: n -- n')

Compilation: (dest — )

Append the run-time semantics given below to the current
definition. Resolve the destination of for.

Run-time: (R: n — n')

If the loop index is zero, discard the loop parameters and
continue execution after the loop. Otherwise decrement the
loop index and continue execution at the beginning of the
loop.

step is an immediate and compile-only word.

step is usually called next in other Forth
systems.

Origin: Z88 CamelForth.

Source file: <src/lib/flow.for.fs>.

sthl,

 sthl, (a --) "s-t-h-l-comma"

Compile the Z80 assembler instruction LD (a),HL, i.e.
store the contents of register pair "HL" into memory
address a.

See also: fthl,, stp,.

Source file: <src/lib/assembler.fs>.

storer

 storer (x a "name" --)

Define a word name which, when executed, will cause that
x be stored at a.

Origin: word set found in Forth-79 (Reference Word Set)
and Forth-83 (Appendix B. Uncontrolled Reference Words).

Source file: <src/lib/data.storer.fs>.

stp,

 stp, (a regp --) "s-t-p-comma"

Compile the Z80 assembler instruction LD
(a),regp, i.e. store the contents of pair register
regp into memory address a.

For the "HL" register there is a specific word:
fthl,, which compiles shorten and faster code.

See also: ftp,.

Source file: <src/lib/assembler.fs>.

stpx,

 stpx, (disp regpi regp --) "s-t-p-x-comma"

Compile the Z80 assembler instructions required to store
register pair regp into the address pointed by regpi
plus disp.

Example: 16 ix h stpx, will compile the Z80
instructions LD (IX+16),L and LD (IX+17),H.

See also: ftpx,, stx,.

Source file: <src/lib/assembler.fs>.

str<

 str< (ca1 len1 ca2 len2 -- f) "s-t-r-less-than"

Is string ca1 len1 lexicographically smaller than string
ca2 len2?

See also: str>, str=, str<>, compare.

Source file: <src/lib/strings.MISC.fs>.

str<>

 str<> (ca1 len1 ca2 len2 -- f) "s-t-r-not-equals"

Is string ca1 len1 lexicographically not equal to string
ca2 len2?

See also: str=, str<, str>, compare.

Source file: <src/lib/strings.MISC.fs>.

str=

 str= (ca1 len1 ca2 len2 -- f) "s-t-r-equals"

f is true if string ca1 len1 is lexicographically equal to
string ca2 len2.

Definition:

 : str= (ca1 len1 ca2 len2 -- f) compare 0= ;

See also: str<>, str<, str>, compare.

Source file: <src/kernel.z80s>.

str>

 str> (ca1 len1 ca2 len2 -- f) "s-t-r-greater-than"

Is string ca1 len1 lexicographically larger than string
ca2 len2?

See also: str<, str=, str<>, compare.

Source file: <src/lib/strings.MISC.fs>.

stream

 stream (-- ca len)

String ca len is the the remaining stream source.

Definition:

 : stream (-- ca len) source >in @ /string ;

See also: >in, /string.

Source file: <src/kernel.z80s>.

stream>

 stream> (n -- a)

Convert stream number n to address a of its
corresponding element in os-strms.

See also: first-stream, last-stream, stream?.

Source file: <src/lib/os.fs>.

stream?

 stream? (-- false | n true)

If there’s a closed stream, return its number n and
true; otherwise return false.

See also: os-strms, .os-strms, first-stream,
last-stream, stream>.

Source file: <src/lib/os.fs>.

string-char?

 string-char? (ca len c -- f) "string-char-question"

Is char c in string ca len?

See also: char-in-string?, char-position?, contains,
compare, #chars.

Source file: <src/lib/strings.MISC.fs>.

string-parameter

 string-parameter (-- ca len)

Return a string compiled after the calling word.

See warning" and (warning" for a usage example.

Source file: <src/lib/compilation.fs>.

string/

 string/ (ca1 len1 len2 -- ca2 len2) "string-slash"

Return the len2 ending characters of string ca1 len1.

See also: /string.

Source file: <src/lib/strings.MISC.fs>.

string>source

 string>source (ca len --) "string-to-source"

Set the string ca len as the current source.

See also: set-source, (source-id.

Source file: <src/lib/parsing.fs>.

stringer

 stringer (-- a)

A constant. a is the base address of the stringer, which
is the circular string buffer used by all string operations.

A program can move and resize the stringer if needed.
Example:

 stringer /stringer 2constant old-stringer
 \ Keep the address and length of the old stringer, in order
 \ to reuse its space later.

need !>

here 1024 dup allot !> /stringer !> stringer empty-stringer
 \ Create a new, 1024-byte ``stringer`` in data space.

The default stringer can be restored by
default-stringer.

See also: !>, /stringer, empty-stringer, +stringer,
unused-stringer, fit-stringer, allocate-stringer,
>stringer.

Source file: <src/kernel.z80s>.

stx,

 stx, (reg disp regpi --) "s-t-x-comma"

Compile the Z80 assembler instruction LD
(regpi+disp),reg.

See also: st#x,, ftx,.

Source file: <src/lib/assembler.fs>.

sub#,

 sub#, (b --) "sub-number-sign-comma"

Compile the Z80 assembler instruction SUB b.

Source file: <src/lib/assembler.fs>.

sub,

 sub, (reg --) "sub-comma"

Compile the Z80 assembler instruction SUB reg.

See also: sbc,, add,, adc,, subp,.

Source file: <src/lib/assembler.fs>.

subp,

 subp, (regp --) "sub-p-comma"

Compile the Z80 assembler instructions required to
subtract register pair regp from register pair "HL".

Example: d subp, compiles the Z80 instructions AND
A (to reset the carry flag) and SBC DE.

See also: sbcp,, sub,, ldp,, tstp,.

Source file: <src/lib/assembler.fs>.

substitute

 substitute (ca1 len1 ca2 len2 -- ca2 len3 n)

Perform substitution on the string ca1 len1 placing
the result at string ca2 len3, where len3 is the length
of the resulting string. An error occurs if the resulting
string will not fit into ca2 len2 or if ca2 is
the same as ca1. The return value n is positive or 0
on success and indicates the number of substitutions made.
A negative value for n indicates that an error occurred,
leaving ca2 len3 undefined, and being n the exception
code.

Substitution occurs left to right from the start of
ca1 in one pass and is non-recursive. When text of
a potential substitution name, surrounded by "%" (ASCII
$25) delimiters is encountered by substitute, the
following occurs:

	
If the name is null, a single delimiter character is
passed to the output, i.e., "%%" is replaced by "%". The
current number of substitutions is not changed.

	
If the text is a valid substitution name acceptable to
replaces, the leading and trailing
delimiter characters and the enclosed substitution name
are replaced by the substitution text. The current number
of substitutions is incremented.

	
If the text is not a valid substitution name, the name
with leading and trailing delimiters is passed unchanged
to the output. The current number of substitutions is not
changed.

	
Parsing of the input string resumes after the trailing
delimiter.

If after processing any pairs of delimiters, the residue of
the input string contains a single delimiter, the residue
is passed unchanged to the output.

See also: unescape, substitution-delimiter?.

Source file: <src/lib/strings.substitute.fs>.

substitute-wordlist

 substitute-wordlist (-- wid)

Word list for substitution names and replacement texts.

See also: replaces.

Source file: <src/lib/strings.replaces.fs>.

substitution

 substitution (ca1 len1 -- ca2)

Given a string ca1 len1 create its substitution and
storage space. Return the address of the buffer for the
substitution text.

See also: replaces.

Source file: <src/lib/strings.replaces.fs>.

substitution-delimiter

 substitution-delimiter (-- c)

A character constant that returns the character used as
delimiter by substitute. By default it’s "%".

See also: substitution-delimiter?.

Source file: <src/lib/strings.substitute.fs>.

substitution-delimiter?

 substitution-delimiter? (ca -- f) "substitution-delimiter-question"

Does ca contains the character hold in the character
constant substitution-delimiter? If so return true,
else return false.

substitution-delimiter? is a factor of substitute.

substitution-delimiter? is written in Z80. Its
equivalent definition is Forth is the following:

 : substitution-delimiter? (ca -- f)
 c@ substitution-delimiter = ;

Source file: <src/lib/strings.substitute.fs>.

subx,

 subx, (disp regpi --) "sub-x-comma"

Compile the Z80 assembler instruction SUB
(regpi+disp).

See also: sbcx,, addx,.

Source file: <src/lib/assembler.fs>.

suffix?

 suffix? (ca1 len1 ca2 len2 -- f) "suffix-question"

Is string ca2 len2 the suffix of string ca1 len1?

See also: -suffix, prefix?.

Source file: <src/lib/strings.MISC.fs>.

swap

 swap (x1 x2 -- x2 x1)

Exchange the top two stack items.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: 2swap, over, tuck.

Source file: <src/kernel.z80s>.

swap-current

 swap-current (wid1 -- wid2)

Exchange the contents of the current compilation word list,
which is identified by wid2, with the word list
identified by wid1.

Origin: lpForth.

Source file: <src/lib/word_lists.fs>.

swapped

 swapped (i*x n1 n2 -- j*x)

Remove n1 and n2. Swap elements n1 and n2 of the
stack, being 0 the top of the stack. 0 1 swapped is
equivalent to swap.

Usage example:

 (1 2 3 4 5) 1 4 swapped (4 2 3 1 5)

Source file: <src/lib/data_stack.fs>.

switch

 switch (x switch --)

Execute the switch switch for the key x.

See also: switch:.

Source file: <src/lib/flow.switch-colon.fs>.

switch:

 switch: ("name" --) "switch-colon"

Create a new switch control structure name, which is a
word list the clauses of the structure will be added to.

The keys can be 1-byte, 1-cell or 2-cell numbers, but the
correspondent words must be used to create the clauses and
execute them later:

Usage example:

 switch: mynumber

\ Define clauses:

0 mynumber :clause (--) cr ." zero" ;
1 mynumber :cclause (--) cr ." one" ;
2048 mynumber :clause (--) cr ." 2 KiB" ;
100000. mynumber :2clause (--) cr ." big" ;

\ Execute the clauses:

0 mynumber switch
1 mynumber cswitch
2048 mynumber switch
100000. mynumber 2switch

New clauses can be added any time, in any order, with any
key.

Clauses created with :clause (for 1-cell keys),
:cclause (for character keys) and :2clause (for 2-cell
keys) must be executed with switch, cswitch and
2switch respectively. The smaller the key type, the less
memory used by clauses in headers space (every clause is a
definition whose name is the binary string of its key) and
the less execution time, though the difference will be
unimportant in most cases.

If a new clause is added with a previously used key, the
new clause will replace the old one.

There’s no default clause: if the a given key is not found,
no code is executed and no exception is thrown.

Source file: <src/lib/flow.switch-colon.fs>.

switch]

 switch] (a --) "switch-bracket"

Terminate a switch structure (or the latest additions to
it) by marking the end of its linked list. Discard the
switch head a from the stack.

Origin: SwiftForth.

See also: [switch, [+switch, runs, run:.

Source file: <src/lib/flow.bracket-switch.fs>.

switcher

 switcher (i*x n a -- j*x)

Search the linked list from its head a for a match to the
value n. If a match is found, discard n and execute the
associated matched xt. If no match is found, leave n on
the stack and execute the default xt.

switcher is a common factor of :switch and [switch,
two variants of the same control structure.

Origin: SwiftForth.

Source file: <src/lib/flow.bracket-switch.fs>.

synonym

 synonym ("newname" "oldname" --)

Create a definition for newname with the execution and
compilation semantics of oldname. newname may be the
same as oldname; when looking up oldname, newname
shall not be found.

Synonyms have the execution token of the old word and,
contrary to aliases created by alias, they also inherit
its attributes immediate and compile-only.

Origin: Forth-2012 (TOOLS EXT).

Source file: <src/lib/define.synonym.fs>.

system-size

 system-size (-- len)

len is the size of the system, in bytes, i.e. the size of
data/code space.

See also: +origin, system-zone, turnkey, here.

Source file: <src/lib/tool.turnkey.fs>.

system-zone

 system-zone (-- a len)

Return the start address a of the system and its length
len, to be used as parameters for saving the system to
tape or disk.

See also: +origin, system-size, turnkey.

Source file: <src/lib/tool.turnkey.fs>.

t

t

 t (u "ccc<eol>" --)

A command of gforth-editor:
Go to line u and insert ccc.

See also:
c,
a,
g,
n,
p,
l.

Source file: <src/lib/prog.editor.gforth.fs>.

t

 t (n --)

A command of specforth-editor: Type line n and save in
pad.

See also: b,
c,
d,
e,
f,
h,
i,
l,
m,
n,
p,
r,
s,
x.

Source file: <src/lib/prog.editor.specforth.fs>.

tab

 tab (--)

emit a 'tab' (character code 6), so that the next
character displayed will appear at the next 16-character
column.

See also: tabulate.

Source file: <src/lib/display.control.fs>.

tabs

 tabs (n --)

Emit n number of tab characters (character code 6).

See also: tab, 'tab'.

Source file: <src/lib/display.control.fs>.

tabulate

 tabulate (--)

Display the appropriate number of spaces to tabulate to the
next position, using the value of /tabulate.

Note tabulate does not uses the "tab" control code, whose
behaviour depends on the screen mode (in the default screen
mode, it moves the cursor 16 positions to the right).
tabulate prints spaces and is independent from the screen
mode.

See /tabulate, tab.

Source file: <src/lib/display.control.fs>.

tape-file>

 tape-file> (ca1 len1 ca2 len2 --) "tape-file-from"

Read a tape file ca1 len1 into a memory region ca2
len2.

	
When len1 is zero, it means the filename is
unspecified, ca1 is irrelevant and the first file must be
loaded.

	
When ca2 is zero the destination address will be taken
from the file header, i.e. the address the file was saved
from.

	
When len2 is zero the zone size will be taken from the
file header, i.e. the whole length of the file.

If len2 is not zero or the exact length of the
file, the ROM routine returns to BASIC with "Tape loading
error". This crashes the system, because in Solo Forth the
lower screen has no lines, and BASIC cannot display the
message.

See also: >tape-file, (tape-file>
.

Source file: <src/lib/tape.fs>.

tape-file>display

 tape-file>display (ca len --) "tape-file-to-display"

Read tape file ca len into the display memory.

See also: display>tape-file, >tape-file.

Source file: <src/lib/tape.fs>.

tape-filename

 tape-filename (-- ca)

Address of the filename in tape-header.

See also: /tape-filename, set-tape-filename,
last-tape-filename.

Source file: <src/lib/tape.fs>.

tape-filetype

 tape-filetype (-- ca)

Address of the file type (one byte) in tape-header.
Its default value is 3 (code file).

See also: last-tape-filetype.

Source file: <src/lib/tape.fs>.

tape-header

 tape-header (-- a)

Address of the tape header, which is used by the ROM
routines. Its structure is the following:

Table 39. Structure of a tape header

	Offset
	Size
	Description

	+00

	byte

	filetype (3 for code files)

	+01

	10 chars

	filename, padded with spaces

	+11

	cell

	length

	+13

	cell

	start address

	+15

	cell

	not used for code files

When the first char of the filename is 255, it is regarded
as a wildcard which will match any filename. The word
tape-file> sets the wildcard when the provided filename
is empty.

A second tape header, pointed by last-tape-header,
follows the main one. It is used by the ROM routines while
loading. It can be used by the application to know the
details of the last tape file that was loaded.

IX addresses the first header, which must contain the data.
The second header is used by the system when loading and
verifying. Only the "CODE" file type column is relevant to
Solo Forth.

Table 40. Detailed structure of both tape headers

	First header
	Second header
	BASIC program
	Num DATA
	String DATA
	CODE
	Notes

	IX+$00

	IX+$11

	0

	1

	2

	3

	File type

	IX+$01

	IX+$12

	x

	x

	x

	x

	F ($FF if filename is null)

	IX+$02

	IX+$13

	x

	x

	x

	x

	i

	IX+$03

	IX+$14

	x

	x

	x

	x

	l

	IX+$04

	IX+$15

	x

	x

	x

	x

	e

	IX+$05

	IX+$16

	x

	x

	x

	x

	n

	IX+$06

	IX+$17

	x

	x

	x

	x

	a

	IX+$07

	IX+$18

	x

	x

	x

	x

	m

	IX+$08

	IX+$19

	x

	x

	x

	x

	e

	IX+$09

	IX+$1A

	x

	x

	x

	x

	.

	IX+$0A

	IX+$1B

	x

	x

	x

	x

	Padding spaces

	IX+$0B

	IX+$1C

	lo

	lo

	lo

	lo

	Total…​

	IX+$0C

	IX+$1D

	hi

	hi

	hi

	hi

	…​length of datablock

	IX+$0D

	IX+$1E

	Auto

	-

	-

	Start

	Various

	IX+$0E

	IX+$1F

	Start

	a-z

	a-z

	addr

	($80 if no autostart).

	IX+$0F

	IX+$20

	lo

	-

	-

	-

	Length of program only…​

	IX+$10

	IX+$21

	hi

	-

	-

	-

	…​i.e. without variables

See also: tape-filename, tape-filetype, tape-start,
tape-length, any-tape-filename, ?set-tape-filename.

Source file: <src/lib/tape.fs>.

tape-length

 tape-length (-- a)

Address of the file length in tape-header.

See also: last-tape-length.

Source file: <src/lib/tape.fs>.

tape-start

 tape-start (-- a)

Address of the file start in tape-header.

See also: last-tape-start.

Source file: <src/lib/tape.fs>.

terminal

 terminal (--)

Select the terminal as output.

See also: printer, printing, page.

Source file: <src/kernel.z80s>.

terminal>source

 terminal>source (--) "terminal-to-source"

Set the terminal as the current source.

Definition:

 : terminal>source (--)
 blk off (source-id off tib #tib @ set-source ;

See also: set-source, blk, tib, #tib, (source-id,
block>source.

Source file: <src/kernel.z80s>.

text

 text ("ccc<eol>" --)

Part of specforth-editor:
Parse the text string until end of line and store it into
pad as a counted string, blank-filling the remainder of
pad to c/l characters.

See also: parse-all.

Source file: <src/lib/prog.editor.specforth.fs>.

then

 then
 Compilation: (C: orig --)
 Run-time: (--)

Resolve the forward reference orig, usually left by if or
while.

then is an immediate and compile-only alias of
>resolve.

Definition:

 ' >resolve alias then immediate compile-only
 \ Compilation: (C: orig --)
 \ Run-time: (--)

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: else, ahead.

Source file: <src/kernel.z80s>.

thens

 thens
 Compilation: (C: cs-mark orig#1 ... orig#n --)
 Run-time: (--)

Compilation: Resolve all forward references
orig#1 …​ orig#n with then until cs-mark is found.

Run-time: Continue execution.

thens is an immediate and compile-only word.

thens is a factor of endcase and other control
structures, but it’s also the end of the cond …​
thens structure. See cond for an usage example.

See also: cs-test, andif, orif.

Source file: <src/lib/flow.MISC.fs>.

there

 there (a --)

Set a as the address of the data-space pointer.
A non-standard counterpart of here.

Source file: <src/lib/compilation.fs>.

thiscase

 thiscase (x -- x x)

Part of a thiscase structure.

Usage example:

 : say0 (--) ." nul" ;
: say1 (--) ." unu" ;
: say2 (--) ." du" ;
: say-other (--) ." alia" ;

: test (x --)
 thiscase 0 = ifcase say0 exitcase
 thiscase 1 = ifcase say1 exitcase
 thiscase 2 = ifcase say2 exitcase
 othercase say-other ;

See also: ifcase, exitcase, othercase, case.

Source file: <src/lib/flow.thiscase.fs>.

throw

 throw (k*x n -- k*x | i*x n)

If n is zero, drop it and continue. Otherwise, pop the
topmost exception frame from the exception stack, along with
everything on the return stack above that frame. Then restore
the input source specification in use before the corresponding
catch and adjust the depths of all stacks so that they are
the same as the depths saved in the exception frame (i is
the same number as the i in the input arguments to the
corresponding catch), put n on top of the data stack, and
transfer control to a point just after the catch that pushed
that exception frame.

If the top of the stack is non-zero and there is no exception
frame on the exception stack, i.e. the content of catcher is
zero, error is executed with n on top of the stack.

Definition:

 : throw (k*x n -- k*x | i*x n)
 ?dup 0exit
 catcher @ ?dup 0= \ no catcher?
 if error then \ ``error`` does not return
 rp! \ restore previous return stack
 r> catcher ! (n) \ restore previous catcher
 r> swap >r (saved-SP) (R: n)
 sp! drop r> (n) \ restore stack
 unnest-source ; \ restore previous source specification

Origin: Forth-94 (EXCEPTION), Forth-2012 (EXCEPTION).

Source file: <src/kernel.z80s>.

thru

 thru (block1 block2 --)

Load consecutively the blocks from block1 through
block2.

Origin: Forth-79 (Reference Word Set), Forth-83
(Controlled Reference Words), Forth-94 (BLOCK EXT),
Forth-2012 (BLOCK EXT).

See also: load, +thru.

Source file: <src/lib/blocks.fs>.

thru-index-need

 thru-index-need ("name" --)

If word name is found in the current search order, do
nothing. Otherwise search the index word list for it. If
found, execute it, causing its associated block be loaded.
If not found, throw an exception #-277 ("needed, but not
indexed").

thru-index-need is an alternative action of the
deferred word need (see defer).

Source file: <src/lib/blocks.indexer.thru.fs>.

thru-index-needed

 thru-index-needed (ca len --)

If word ca len is found in the current search order, do
nothing. Otherwise search the index word list for it. If
found, execute it, causing its associated block be loaded.
If not found, throw an exception #-277 ("needed, but not
indexed").

thru-index-needed is an alternative action of the
deferred word needed (see defer).

Source file: <src/lib/blocks.indexer.thru.fs>.

thru-index-reneed

 thru-index-reneed ("name" --)

Search the index word list for word "name". If found,
execute it, causing its associated block be loaded. If not
found, throw an exception #-277 ("needed, but not
indexed").

thru-index-reneed is an alternative action of the
deferred word reneed (see defer).

Source file: <src/lib/blocks.indexer.thru.fs>.

thru-index-reneeded

 thru-index-reneeded (ca len--)

Search the index word list for word ca len. If found,
load the block it’s associated to. If not found, throw
an exception #-277 ("needed, but not indexed").

thru-index-reneeded is an alternative action of the
deferred word reneeded (see defer).

Source file: <src/lib/blocks.indexer.thru.fs>.

tib

 tib (-- a) "t-i-b"

A constant. a is the address of the terminal input buffer.

Origin: Forth-83 (Required Word Set), Forth-94 (CORE EXT,
obsolescent).

See also: /tib, #tib.

Source file: <src/kernel.z80s>.

ticks

 ticks (-- n)

Return the current count of clock ticks n, which is
updated by the OS.

ticks returns the low 16 bits of the OS frames
counter, which is increased by the OS interrupts routine
every 20th ms. The counter is actually a 24-bit value,
which can be fetched by dticks.

Origin: Comus.

See also: set-ticks, reset-ticks, ticks/second,
ticks>seconds, ms>ticks, os-frames, bench{.

Source file: <src/lib/time.fs>.

ticks-pause

 ticks-pause (u --)

Stop execution during at least u clock ticks.

See also: ?ticks-pause, basic-pause, seconds, ms,
ticks/second.

Source file: <src/lib/time.fs>.

ticks/second

 ticks/second (-- n) "ticks-slash-second"

Return the number n of clock ticks per second.

See also: ms/tick, dticks>seconds, dticks>cs,
dticks>ms, ticks.

Source file: <src/lib/time.fs>.

ticks>cs

 ticks>cs (n1 -- n2) "ticks-to-cs"

Convert clock ticks n1 to centiseconds n2.

See also: dticks>cs, ticks>seconds, ticks>ms,
ticks/second.

Source file: <src/lib/time.fs>.

ticks>ms

 ticks>ms (n1 -- n2) "ticks-to-ms"

Convert clock ticks n1 to milliseconds n2.

See also: ms>ticks, dticks>ms, ticks>seconds, ticks>cs,
ticks/second, ticks.

Source file: <src/lib/time.fs>.

ticks>seconds

 ticks>seconds (n1 -- n2) "ticks-to-seconds"

Convert clock ticks n1 to seconds n2.

See also: dticks>seconds, ticks>cs, ticks>ms,
ticks/second, ticks.

Source file: <src/lib/time.fs>.

till

 till ("ccc<eol>" --)

A command of specforth-editor:
Delete on the cursor line from the cursor till the end of
string ccc.

Source file: <src/lib/prog.editor.specforth.fs>.

time&date

 time&date (-- second minute hour day month year) "time-and-date"

Return the current time and date: second, minute, hour,
day, month and year.

Origin: Forth-94 (FACILITY EXT), Forth-201 (FACILITY EXT).

See also: get-time, get-date, set-time, set-date,
.time&date.

Source file: <src/lib/time.fs>.

timer

 timer (u --)

For the time u in ticks display the elapsed time since
then, also in ticks.

Origin: Comus.

See also: dtimer, elapsed, ticks>seconds, ticks>cs,
ticks>ms.

Source file: <src/lib/time.fs>.

times

 times (u --)

Repeat the next compiled instruction u times. If u is
zero, continue executing the following instruction.

times is useful to implement complicated math
operations, like shifts, multiply, divide and square root,
from appropriate math step instructions. It is also useful
in repeating auto-indexing memory instructions.

This structure is not nestable.

Usage example:

 : blink (--) 7 0 ?do i border loop 0 border ;
: blinking (--) 100 times blink ." Done" cr ;

Origin: cmForth’s repeats.

See also: dtimes, executions, for, ?do.

Source file: <src/lib/flow.times.fs>.

tnegate

 tnegate (t1 -- t2) "t-negate"

t2 is the negation of t1.

Source file: <src/lib/math.operators.3-cell.fs>.

to

 to
 Interpretation: (i*x "name" --)
 Compilation: ("name" --)
 Run-time: (i*x --)

to is an immediate word.

Interpretation:

Parse name, which is a word created by cvalue, value
or 2value, and make i*x its value.

Compilation:

Parse name, which is a word created by cvalue, value
or 2value, and append the execution execution semantics
given below to the current definition.

Run-time:

Make i*x the value of name.

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: !>, c!>, 2!>, toval, ctoval, 2toval.

Source file: <src/lib/data.value.fs>.

toarg

 toarg (--) "to-arg"

Set the store action for the next local variable created by
arguments.

Loading toarg makes @ the default action of
arguments locals, which is hold in arg-default-action.

See also: +toarg.

Source file: <src/lib/locals.arguments.fs>.

toggle-capslock

 toggle-capslock (--)

Toggle capslock.

See also: set-capslock, unset-capslock, capslock?,
capslock, ctoggle.

Source file: <src/lib/keyboard.caps_lock.fs>.

toggle-pixel

 toggle-pixel (gx gy --)

Toggle a pixel without changing its attribute on the screen
or the current graphic coordinates. gx is 0..255; gy
is 0..191.

See also: set-pixel, reset-pixel, toggle-pixel176,
set-pixel176, reset-pixel176, plot, plot176.

Source file: <src/lib/graphics.pixels.fs>.

toggle-pixel176

 toggle-pixel176 (gx gy --) "toggle-pixel-176"

Toggle a pixel without changing its attribute on the screen
or the current graphic coordinates, and using only the top
176 pixel rows of the screen (the lower 16 pixel rows are
not used). gx is 0..255; gy is 0..175.

See also: toggle-pixel, set-pixel, reset-pixel,
set-pixel176, reset-pixel176, plot, plot176.

Source file: <src/lib/graphics.pixels.fs>.

top

 top (--)

Position the editing cursor at the top of the block, by
setting r# to zero.

top is used by specforth-editor and gforth-editor.

Source file: <src/lib/prog.editor.COMMON.fs>.

toval

 toval (--) "to-val"

Change the default behaviour of words created by val:
make them store a new value instead of returning its actual
one.

toval and val are a non-parsing alternative to the
standard to and value.

See also: ctoval, 2toval.

Source file: <src/lib/data.val.fs>.

tr-dos

 tr-dos (--) "t-r-dos"

An alias of noop that is defined only in the TR-DOS version
of Solo Forth. Its goal is to check the DOS a program is
running on, using defined or [defined].

tr-dos is an immediate word.

See also: dos, g+dos, +3dos.

Source file: <src/kernel.z80s>.

trail

 trail (-- nt)

Leave the nt of the topmost word in the first word list
of the search order.

See also: set-order, context.

Source file: <src/lib/word_lists.fs>.

transfer-block

 transfer-block (u -- ior)

The block-level disk read-write linkage. Transfer block u
to or from the current drive set by set-drive or
set-block-drives. The read or write mode must be previously
set by write-mode or read-mode.

Definition:

 : transfer-block (u --)
 >drive-block sectors/block * dup
 block-sector#>dos buffer-data
 transfer-sector throw
 1+ block-sector#>dos [buffer-data b/sector +] literal
 transfer-sector throw ;

See also: transfer-sector, block-sector#>dos, >drive-block,
set-drive.

Source file: <src/kernel.plus3dos.z80s>.

transfer-bytes

 transfer-bytes (n ca len fid -- ior)

Transfer len bytes to/from file fid to/from memory, using n as
page $C000..$FFFF. The read or write mode must be previously set by
write-mode or read-mode.

Source file: <src/kernel.plus3dos.z80s>.

transfer-sector

 transfer-sector (x a -- ior)

The sector-level disk read-write linkage. Transfer one sector
from memory address a to disk sector x of the current
drive, or the other way around. The read or write mode must
be previously set by write-mode or read-mode.

See also: transfer-block, set-drive.

Source file: <src/kernel.plus3dos.z80s>.

transient

 transient (u1 u2 --)

Start transient code, reserving u1 bytes of headers space
for it, which will be allocated at the top of the far
memory, and u2 bytes of data space for it, which will be
allocated at the top of the main memory. Therefore the
memory used by the transient code must be known in advance.

The inner operation is: Save the current values of dp,
np current-latest, last-wordlist, limit and
farlimit; then reserve data and headers space as said and
update limit and farlimit accordingly.

transient must be used before compiling the transient
code.

Usage example:

 2025 1700 transient

need assembler

end-transient

\ ...use assembler here...

forget-transient

The values of limit and farlimit must be preserved
between transient and end-transient, because
forget-transient restores them to their previous state,
before transient.

Source file: <src/lib/modules.transient.fs>.

translate-char

 translate-char (c1 -- c1 | c2)

Translate character c1 using the current keyboard decoding
table, pointed by key-translation-table.

Source file: <src/kernel.z80s>.

trim

 trim (ca1 len1 -- ca2 len2)

Remove leading and trailing spaces from a string ca len1,
returning the result string ca2 len2.

See also: -leading, -trailing.

Source file: <src/lib/strings.MISC.fs>.

true

 true (-- true)

Return a true flag, a single-cell value with all its bits
set (equivalent to -1).

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: false.

Source file: <src/kernel.z80s>.

tstp,

 tstp, (regp --) "t-s-t-p-comma"

Compile the Z80 assembler instructions required to test
the register pair regp for zero. Register "A" is
modified.

Example: b tstp, compiles the Z80 instructions LD
A,B and OR C.

See also: ldp,, subp,, cp#,, cp,, or,, ld,.

Source file: <src/lib/assembler.fs>.

ttester

 ttester (--)

Do nothing. ttester is used just for doing need
ttester, loading t{, ->, }t and other words, which
are used by hayes-test and forth2012-test-suite..

Usage example:

T{ 1 2 3 swap -> 1 3 2 }T ok
T{ 1 2 3 swap -> 1 2 2 }T
Incorrect result:
T{ 1 2 3 swap -> 1 2 2 }T ok
T{ 1 2 3 swap -> 1 2 }T
Wrong number of results:
T{ 1 2 3 swap -> 1 2 }T ok

See also: hayes-tester.

Source file: <src/lib/meta.tester.ttester.fs>.

tuck

 tuck (x1 x2 -- x2 x1 x2)

Copy the first (top) stack item below the second stack item.

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: dup, over, nip, nup.

Source file: <src/kernel.z80s>.

turnkey

 turnkey (xt -- a len)

Prepare the system in order to save a copy of its current
state. Return its start address a and length len, to
be used as parameters for saving the system to disk. The
saved copy will execute xt after the ordinary boot
process.

Usage example:

 ' my-game turnkey s" my-game" >tape-file

This word is experimental. See the source code for
details.

Since name fields are kept in a memory bank, the
best way to save a modified Forth system is creating a
snapshot with a ZX Spectrum emulator, or with the
equivalent feature provided by certain interfaces or modern
ZX Spectrum clones. turnkey and its related words are
meant to save a Forth program that does not need to search
the dictionary or use data already stored in paged memory.

See also: boot, extend, system-zone, cold.

Source file: <src/lib/tool.turnkey.fs>.

type

 type (ca len --)

If len is greater than zero, display the character string
ca len.

: type (ca len — )
 bounds ?do i c@ emit loop ;

See also: type-udg.

Source file: <src/kernel.z80s>.

type-ascii

 type-ascii (ca len --)

If len is greater than zero, display the string ca len,
using emit-ascii to make sure the characters are graphic
ASCII characters.

See also: type, fartype-ascii.

Source file: <src/lib/display.type.fs>.

type-center-field

 type-center-field (ca1 len1 len2 --)

If len1 is greater than zero, display the character
string ca1 len1 at the center of a field of len2
characters.

See also: type-center-field-fit,
type-center-field-crop, drop-type, type-left-field,
type-right-field, gigatype-title.

Source file: <src/lib/display.type.fs>.

type-center-field-crop

 type-center-field-crop (ca1 len1 len2 --)

If len1 is greater than zero, display the character
string ca1 len1 at the center of a field of len2
characters, which is shorter than the string.

See also: type-center-field-fit, type-center-field.

Source file: <src/lib/display.type.fs>.

type-center-field-fit

 type-center-field-fit (ca1 len1 len2 --)

If len1 is greater than zero, display the character
string ca1 len1 at the center of a field of len2
characters, which is longer than the string.

See also: type-center-field-crop, type-center-field.

Source file: <src/lib/display.type.fs>.

type-left-field

 type-left-field (ca1 len1 len2 --)

If len1 is greater than zero, display the character
string ca1 len1 at the left of a field of len2
characters.

See also: padding-spaces, type-right-field,
type-center-field.

Source file: <src/lib/display.type.fs>.

type-right-field

 type-right-field (ca1 len1 len2 --)

If len1 is greater than zero, display the character
string ca1 len1 at the right of a field of len2
characters.

See also: type-right-field-fit, type-right-field-crop,
drop-type, type-left-field, type-center-field.

Source file: <src/lib/display.type.fs>.

type-right-field-crop

 type-right-field-crop (ca1 len1 len2 --)

Type string ca1 len1 at the right of a field of len2
characters, which is shorter than the string.

See also: type-right-field, type-right-field-fit.

Source file: <src/lib/display.type.fs>.

type-right-field-fit

 type-right-field-fit (ca1 len1 len2 --)

Type string ca1 len1 at the right of a field of len2
characters, which is longer than the string.

See also: type-right-field, type-right-field-crop.

Source file: <src/lib/display.type.fs>.

type-udg

 type-udg (ca len --) "type-u-d-g"

If len is greater than zero, display the UDG character
string ca len. All characters of the string are printed
with emit-udg.

See also: type.

Source file: <src/lib/graphics.udg.fs>.

t{

 t{ (--)

Part of ttester: Start a test.

See also: ->, }t.

Source file: <src/lib/meta.tester.ttester.fs>.

u

u%

 u% (u1 u2 -- u3) "u-per-cent"

u1 is percentage u3 of u2.

See also: %, um*, um/mod.

Source file: <src/lib/math.operators.1-cell.fs>.

u.

 u. (u --) "u-dot"

Display u in free field format.

Definition:

 : u. (u --) s>d ud. ;

Origin: Forth-79 (Required Word Set), Forth-83 (Required Word
Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: u.r, ud., ..

Source file: <src/kernel.z80s>.

u.r

 u.r (u n --) "u-dot-r"

Display u right aligned in a field n characters wide.
If the number of characters required to display u is
greater than n, all digits are displayed with no leading
spaces in a field as wide as necessary.

Origin: Forth-79 (Reference Word Set)[8], Forth-83
(Controlled Reference Word Set)[9], Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: ud.r, .r, u..

Source file: <src/lib/display.numbers.fs>.

u.s

 u.s (--)

Display, using u., the values currently on the data
stack.

See also: .s, depth, .depth.

Source file: <src/lib/tool.list.stack.fs>.

u<

 u< (u1 u2 -- f) "u-less-than"

f is true if and only if u1 is less than u2.

Origin: Forth-79 (Required Word Set), Forth-83 (Required Word
Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: <, u>, 0< ,umin.

Source file: <src/kernel.z80s>.

u<=

 u<= (u1 u2 -- f) "u-less-or-equal"

f is true if and only if u1 is less than or equal
to u2.

See also: u>=, <=, 0<=.

Source file: <src/lib/math.operators.1-cell.fs>.

u>

 u> (u1 u2 -- f) "u-greater-than"

f is true if and only if u1 is greater than u2.

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: >, u<, 0>, umax.

Source file: <src/kernel.z80s>.

u>=

 u>= (u1 u2 -- f) "u-greater-or-equal"

f is true if and only if u1 is greater than or
equal to u2.

See also: u<=, >=, 0>=.

Source file: <src/lib/math.operators.1-cell.fs>.

u>str

 u>str (u -- ca len) "u-to-s-t-r"

Convert u to string ca len.

See also: n>str, ud>str, d>str, char>string.

Source file: <src/lib/strings.MISC.fs>.

u>ud

 u>ud (u -- ud)

Extend a single unsigned number u to form a double
unsigned number ud. u>ud is just an alias of 0.

See also: s>d.

Source file: <src/lib/math.operators.1-cell.fs>.

uallot

 uallot (n --) "u-allot"

If n is greater than zero, reserve n bytes of user data
space. If n is less than zero, release n bytes of user
data space. If n is zero, leave the user data-space
pointer unchanged. An exception is thrown if the user-data
pointer is out of bounds after the operation.

See also: udp, ucreate, ?user, user, 2user.

Source file: <src/lib/data.user.fs>.

ucreate

 ucreate ("name" --) "u-create"

Parse name. Create a header _name which points to the
first available offset within the user area. When name
is later executed, its absolute user area storage address
is placed on the stack. No user space is allocated.

See also: uallot, user, 2user, ?user.

Source file: <src/lib/data.user.fs>.

ud*

 ud* (ud1 ud2 -- ud3) "u-d-star" "u-d-star"

Multiply ud1 by ud2 giving the product ud3.

See also: d*, um*, m*, *.

Source file: <src/lib/math.operators.2-cell.fs>.

ud.

 ud. (ud --) "u-d-dot"

Display an usigned double number ud.

See also: ud.r, d., u..

Source file: <src/lib/display.numbers.fs>.

ud.r

 ud.r (ud n --) "u-d-dot-r"

Display ud right aligned in a field n characters wide.
If the number of characters required to display ud is
greater than n, all digits are displayed with no leading
spaces in a field as wide as necessary.

See also: u.r, d., ud..

Source file: <src/lib/display.numbers.fs>.

ud/mod

 ud/mod (ud1 u2 -- u3 ud4) "u-d-slash-mod"

An unsigned mixed magnitude math operation which leaves a
double quotient ud4 and remainder u3, from a double
dividend ud1 and single divisor u2.

Definition:

 : ud/mod (ud1 u1 -- urem udquot)
 >r 0 r@ um/mod -rot r> um/mod rot ;

Origin: fig-Forth’s m/mod, Gforth, Z88 CamelForth.

Source file: <src/kernel.z80s>.

ud>str

 ud>str (ud -- ca len) "u-d-to-s-t-r"

Convert ud to string ca len.

See also: u>str, d>str, char>string.

Source file: <src/lib/strings.MISC.fs>.

udg!

 udg! (b0..b7 c --) "u-d-g-store"

Store the 8-byte bitmap b0..b7 into UDG c (0..255) of
the UDG font pointed by os-udg. b0 is the first (top)
scan. b7 is the last (bottom) scan.

See also: udg:, udg>.

Source file: <src/lib/graphics.udg.fs>.

udg-at-xy-display

 udg-at-xy-display (col row c --) "u-d-g-at-x-y-display"

Display UDG c (0..255) at cursor coordinates col row.
udg-at-xy-display is much faster than a combination of
at-xy and emit-udg, because no ROM routine is used, the
cursor coordinates are not updated and the screen
attributtes are not changed (only the character bitmap is
displayed).

See also: at-xy-display-udg.

Source file: <src/lib/graphics.udg.fs>.

udg-blank

 udg-blank (-- ca) "u-d-g-blank"

A cvariable. ca is the address of a byte
containing the character used by udg-group, udg-block,
,udg-block and others as a grid blank. By default it’s
'.'.

See also: udg-dot, udg-scan>binary.

Source file: <src/lib/graphics.udg.fs>.

udg-block

 udg-block (width height c "name..." --) "u-d-g-block"

Parse a UDG block, and store it from UDG character c
(0..255). width and height are in characters. The
maximum width is 7 (imposed by the size of Forth source
blocks). height has no maximum, as the UDG block can
ocuppy more than one Forth block (provided the Forth block
has no index line, i.e. load-program is used to load the
source).

The scans can be formed by binary digits, by the characters
hold in udg-blank and udg-dot, or any combination of
both notations.

Usage example:

 0 cconstant mass-udg
2 cconstant mass-height
5 cconstant mass-width

mass-width mass-height mass-udg udg-block

..XXXX....XXXX....XXXX....XXXX....XXXX..
.XXXXXX..XXXXXX..XXXXXX..XXXXXX..X.XXXX.
XXXXXXXXXXXXXXXXXXXXXXXXX.XXXXXXX.XXXXXX
XXXXXXXXXXXXXXXXX.XXXXXXX.XXXXXXXXXXXXXX
XXXXXXXXX.XXXXXXX.XXXXXXXXXXXXXXXXXXXXXX
XX..XXXXXX.XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
.XXXXXX..XXXXXX..XXXXXX..XXXXXX..XXXXXX.
..XXXX....XXXX....XXXX....XXXX....XXXX..
..XXXX....XXXX....XXXX....XXXX....XXXX..
.XXXXXX..XXXXXX..XXXXXX..XXXXXX..X.XXXX.
XXXXXXXXXXXXXXXXXXXXXXXXX.XXXXXXX.XXXXXX
XXXXXXXXXXXXXXXXX.XXXXXXX.XXXXXXXXXXXXXX
XXXXXXXXX.XXXXXXX.XXXXXXXXXXXXXXXXXXXXXX
XX..XXXXXX.XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
.XXXXXX..XXXXXX..XXXXXX..XXXXXX..XXXXXX.
..XXXX....XXXX....XXXX....XXXX....XXXX..

: .mass (--)
 mass-height 0 ?do
 mass-width 0 ?do
 i j mass-width * + mass-udg + emit-udg
 loop cr
 loop ;

cr .mass

See also: ,udg-block, csprite, udg-group.

Source file: <src/lib/graphics.udg.fs>.

udg-dot

 udg-dot (-- ca) "u-d-g-dot"

A cvariable. ca is the address of a byte
containing the character used by udg-group, udg-block
,udg-block and others as a grid blank. By default it’s
'X'.

See also: udg-blank, udg-scan>binary.

Source file: <src/lib/graphics.udg.fs>.

udg-group

 udg-group (width height c --) "u-d-g-group"

Parse a group of UDG definitions organized in width
columns and height rows, and store them starting from UDG
character c (0..255). The maximum width is 7 (imposed
by the size of Forth source blocks). height has no
maximum, as the UDG block can ocuppy more than one Forth
block (provided the Forth block has no index line, i.e.
load-program is used to load the source).

The UDG scans can be formed by binary digits, by the
characters hold in udg-blank and udg-dot, or any
combination of both notations. The UDG scans must be
separated with at least one space.

Usage example:

 5 1 140 udg-group

..XXXX.. ..XXXX.. ..XXXX.. ..XXXX.. ..XXXX..
.XXXXXX. .XXXXXX. .XXXXXX. .XXXXXX. .X.XXXX.
XXXXXXXX XXXXXXXX XXXXXXXX X.XXXXXX X.XXXXXX
XXXXXXXX XXXXXXXX X.XXXXXX X.XXXXXX XXXXXXXX
XXXXXXXX X.XXXXXX X.XXXXXX XXXXXXXX XXXXXXXX
XX..XXXX XX.XXXXX XXXXXXXX XXXXXXXX XXXXXXXX
.XXXXXX. .XXXXXX. .XXXXXX. .XXXXXX. .XXXXXX.
..XXXX.. ..XXXX.. ..XXXX.. ..XXXX.. ..XXXX..

See also: udg-block.

Source file: <src/lib/graphics.udg.fs>.

udg-ocr

 udg-ocr (n --) "u-d-g-o-c-r"

Set ocr to work with the first n chars of the current
UDG set, pointed by os-udg.

See also: ocr-font, ocr-first, ocr-chars,
ascii-ocr, set-udg.

Source file: <src/lib/graphics.ocr.fs>.

udg-scan>binary

 udg-scan>binary (ca len --) "u-d-g-scan-to-binary"

Convert the characters udg-blank and udg-dot found in
UDG scan string ca len to '0' and '1' respectively.

See also: udg-scan>number?. udg-group, udg-block,
,udg-block.

Source file: <src/lib/graphics.udg.fs>.

udg-scan>number

 udg-scan>number (ca len -- n) "u-d-g-scan-to-number"

If UDG scan string ca len, after being processed by
udg-scan>binary, is a valid binary number, return the
result n. Otherwise throw exception #-290 (invalid UDG
scan).

See also: udg-scan>number?, udg-dot, udg-blank.

Source file: <src/lib/graphics.udg.fs>.

udg-scan>number?

 udg-scan>number? (ca len -- n true | false) "u-d-g-scan-to-number-question"

Is UDG scan string ca len a valid binary number?
If so, return n and true; else return false.
The string is processed by udg-scan>binary first.

See also: udg-scan>number, udg-dot, udg-blank.

Source file: <src/lib/graphics.udg.fs>.

udg-width

 udg-width (-- b) "u-d-g-width"

b is the width of a UDG (User Defined Graphic), in
pixels.

See also: /udg, udg!.

Source file: <src/lib/graphics.udg.fs>.

udg:

 udg: (b0..b7 c "name" --) "u-d-g-colon"

Create a cconstant name for UDG char c (0..255) and
store the 8-byte bitmap b0..b7 into that UDG char. b0
is the first (top) scan. b7 is the last (bottom) scan.

See also: udg!, udg>.

Source file: <src/lib/graphics.udg.fs>.

udg>

 udg> (c -- a) "u-d-g-to"

Convert UDG number n (0..255) to the address a of its
bitmap, pointed by os-udg.

See also: udg!, udg:, /udg*, get-udg.

Source file: <src/lib/graphics.udg.fs>.

udp

 udp (-- a) "u-d-p"

A user variable. a is the address of a cell containing an
offset from the start of the current user area to the free
space in it.

Source file: <src/kernel.z80s>.

um*

 um* (u1 u2 -- ud) "u-m-star"

Multiply u1 by u2, giving the unsigned double-cell product
ud. All values and arithmetic are unsigned.

Origin: Forth-94 (CORE), Forth-2012 (CORE).

See also: m*, *, d*.

Source file: <src/kernel.z80s>.

um/mod

 um/mod (ud u1 -- u2 u3) "u-m-slash-mod"

Divide ud by u1, giving the quotient u3 and the
remainder u2. All values and arithmetic are unsigned.

Origin: Forth-94 (CORE), Forth-2012 (CORE).

See also: /mod, du/mod, mod, */mod.

Source file: <src/kernel.z80s>.

umax

 umax (u1 u2 -- u1 | u2) "u-max"

u3 is the greater of u1 and u2.

See also: umin, max, dmax, u>.

Source file: <src/kernel.z80s>.

umin

 umin (u1 u2 -- u1 | u2) "u-min"

u3 is the lesser of u1 and u2.

See also: umax, min, dmin, u<.

Source file: <src/kernel.z80s>.

unbright-mask

 unbright-mask (-- b)

A cconstant. b is the inverted bitmask of the bit used to
indicate the bright status in an attribute byte.

See also: bright-mask, brighty, set-bright, attr!.
unflash-mask, unpaper-mask, unink-mask.

Source file: <src/lib/display.attributes.fs>.

uncolored-circle-pixel

 uncolored-circle-pixel (-- a)

a is the address of a subroutine that circle can use to
draw its pixels. This routine sets a pixel without
changing its color attributes on the screen (like
set-pixel). Therefore it’s faster than its alternative
colored-circle-pixel (0.6 its execution speed).

set-circle-pixel sets the routine used by circle. See
the requirements of such routine in the documentation of
circle-pixel.

Source file: <src/lib/graphics.circle.fs>.

undefined?

 undefined? (ca len -- f) "undefined-question"

Find name ca len. If the definition is
not found after searching the active search
order, return true, else return false.

Definition:

 : undefined? (ca len -- f) find-name 0= ;

See also: defined?, defined, find-name.

Source file: <src/kernel.z80s>.

under+

 under+ (n1|u1 x n2|u2 -- n3|u3 x) "under-plus"

Add n2|u2 to n1|u1, giving the sum n3|u3.

under+ is written in Z80. Its definition in Forth is
the following:

 : under+ (n1|u1 x n2|u2 -- n3|u3 x) rot + swap ;

Origin: Comus.

See also: +under ,+.

Source file: <src/lib/math.operators.1-cell.fs>.

undo

 undo (`name`--)

Parse name, which is the name of a word created by
doer, and make it do nothing.

See also: make, ;and.

Source file: <src/lib/flow.doer.fs>.

unescape

 unescape (ca1 len1 ca2 -- ca2 len2)

Replace each "%" character in the input string ca1 len1
by two "%" characters. The output is represented by ca2
len2. The buffer at ca2 shall be big enough to hold
the unescaped string.

If you pass a string through unescape and then
substitute, you get the original string.

Origin: Forth-2012 (STRING EXT).

See also: replaces.

Source file: <src/lib/strings.MISC.fs>.

unflash-mask

 unflash-mask (-- b)

A cconstant. b is the inverted bitmask of the bit used to
indicate the flash status in an attribute byte.

See also: flash-mask, flashy, set-flash, attr!,
unbright-mask, unpaper-mask, unink-mask.

Source file: <src/lib/display.attributes.fs>.

unink-mask

 unink-mask (-- b)

A cconstant. b is the inverted bitmask of the bits used to
indicate the ink in an attribute byte.

See also: ink-mask, set-ink, attr!,
unpaper-mask, unbright-mask, unflash-mask.

Source file: <src/lib/display.attributes.fs>.

unlink-internal

 unlink-internal (nt xtp --)

Unlink all words defined between the latest pair internal
and end-internal, linking the first word after
end-internal to the word before internal, thus making
all the internal words skipped by the dictionary searches.

Usage example:

 internal

: hello (--) ." hello" ;

end-internal

: salute (--) hello ;

unlink-internal

salute \ ok!
hello \ error!

At least one word must be defined between end-internal
and unlink-internal.

The alternative word hide-internal can be used instead of
unlink-internal in order to keep the internal words
searchable.

Source file: <src/lib/modules.internal.fs>.

unlocated

 unlocated (block --)

A deferred word (see defer) called in the loop of
located, when the word searched for is not located in
block. Its default action is drop, which is changed by
use-fly-index in order to index the blocks on the fly.

Source file: <src/lib/002.need.fs>.

unloop

 unloop (--) (R: loop-sys --)

Discard the loop control parameters loop-sys for the
current nesting level. An unloop is required for each
nesting level before the definition may be exited with exit.

Origin: Forth-94 (CORE), Forth-2012 (CORE).

See also: leave, do, ?do, +loop.

Source file: <src/kernel.z80s>.

unmarker

 unmarker (a --)

Restore the system to the state before the correspondig
marker was created. The data that describes the state of
the system was stored at a by marker,. The restoration
process is the following:

First set the data-space pointer to a (there), then
restore the data stored at a: the name-space pointer
(np!), the latest definition pointers (last and
lastxt), the word lists pointer (last-wordlist), the
current compilation word list (set-current), the search
order (@order) and the word lists (@wordlists).

unmarker is a factor of marker.

Source file: <src/lib/tool.marker.fs>.

unneeding

 unneeding ("name" -- f)

Parse name. If there’s no unresolved need, needed,
reneed or reneeded, return false. Otherwise, if name
is the needed word specified by the last execution of
need or needed, return false, else return true.

See also: needing.

Source file: <src/lib/002.need.fs>.

unnest

 unnest (R: nest-sys --)

Discard the calling definition specified by nest-sys.
Before exiting the current definition, a program shall remove
any parameters the calling definition had placed on the return
stack.

unnest is an alias of rdrop.

Origin: DX-Forth.

See also: rp, exit, next.

Source file: <src/kernel.z80s>.

unnest-source

 unnest-source (R: source-sys --)

Restore the source specification described by source-sys,
which was left by nest-source.

unnest-source is a compile-only word.

Definition:

 : unnest-source (R: source-sys --)
 r>
 r> #tib !
 r> blk !
 r> >in !
 r> (source-id !
 2r> input-buffer 2!
 >r ; compile-only

See also: #tib, blk, >in, (source-id, input-buffer.

Source file: <src/kernel.z80s>.

unpaper-mask

 unpaper-mask (-- b)

A cconstant. b is the inverted bitmask of the bits used to
indicate the paper in an attribute byte.

See also: paper-mask, papery, set-paper, attr!,
unink-mask, unbright-mask, unflash-mask.

Source file: <src/lib/display.attributes.fs>.

unpick

 unpick (x#u...x#1 x#0 x u -- x...x#1 x#0)

Remove x and u. Replace x#u with x. 0 unpick
is equivalent to nip (but much slower).

See also: pick.

Origin: LaForth’s put.

Source file: <src/lib/data_stack.fs>.

unresolved

 unresolved (n -- a)

Convert element n of the cell array pointed by
unresolved> to its address a. unresolved> is used
to store unresolved addresses during the compilation of
code words, as a simpler alternative to the Z80
assembler labels created by l:.

Usage examples (extracted from ocr):

---- 0 d stp, >amark 0 unresolved ! \ modify the code to
get the screen address later \ (…​) 0 d ldp#, \ restore
the screen address >amark 0 unresolved @ !

here jr, >rmark 2 unresolved ! \ (…​) 2 unresolved @
>rresolve ----

Source file: <src/lib/assembler.fs>.

unresolved0>

 unresolved0> (-- a) "unresolved-zero-greater-than"

Address a is the default value of unresolved>: an
8-cell array.

Source file: <src/lib/assembler.fs>.

unresolved>

 unresolved> (-- a) "unresolved-greater-than"

A variable. Address a contains the address of a cell
array accessed by unresolved. Its default value is
unresolved0>, which is an 8-cell array.

The cell array pointed by unresolved> is used to store
unresolved addresses during the compilation of code
words. This method is a simpler alternative to the Z80
assembler labels created by l:.

See unresolved for a usage example.

Source file: <src/lib/assembler.fs>.

unset-capslock

 unset-capslock (--)

Unset capslock.

See also: set-capslock, capslock?, toggle-capslock,
capslock, creset.

Source file: <src/lib/keyboard.caps_lock.fs>.

until

 until
 Compilation: (C: dest --)
 Run-time: (f --)

Compilation: Compile a conditional 0branch to the backward
reference dest, usually left by begin.

Run-time: If f is zero, continue execution at the location
specified by dest.

until is an immediate and compile-only word.

Definition:

 : until \ Compilation: (C: dest --)
 \ Run-time: (f --)
 compile 0branch <resolve ; immediate compile-only

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: while, again, repeat, <resolve, compile,
0until, -until, +until.

Source file: <src/kernel.z80s>.

unused

 unused (-- u)

u is the amount of space remaining in the region addressed
by here, in bytes. This region includes the
transient spaces addressed by pad and hold.

Definition:

 : unused (-- u) limit @ here - ;

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: limit, here, farunused, os-unused, fyi,
greeting.

Source file: <src/kernel.z80s>.

unused-stringer

 unused-stringer (-- n)

Return the number n of free characters in the stringer.

unused-stringer is written in Z80. Its equivalent
definition if Forth is the following:

 : unused-stringer (-- n) +stringer @ ;

See also: +stringer.

Source file: <src/kernel.z80s>.

up

 up (-- a) "u-p"

A variable. a is the address of a cell containing the user
area pointer.

Origin: fig-Forth.

See also: /user, user.

Source file: <src/kernel.z80s>.

up0

 up0 (-- a) "u-p-zero"

A constant. a is the default address of the user area.

Source file: <src/kernel.z80s>.

update

 update (--)

Mark the current block buffer as modified. The block will
subsequently be transferred automatically to disk should
its buffer be required for storage of a different block, or
upon execution of flush or save-buffers.

Origin: Forth-83 (Required Word Set), Forth-94 (BLOCK),
Forth-2012 (BLOCK).

Source file: <src/lib/blocks.fs>.

updated?

 updated? (-- f) "updated-question"

f is true if the current disk buffer is marked as
modified.

Definition:

 : updated? (-- f) buffer-id 0< ;

See also: update, empty-buffers, buffer-id.

Source file: <src/kernel.z80s>.

upper

 upper (c -- c')

Convert c to uppercase c'.

See also: uppers, lower, upper_.

Source file: <src/lib/strings.MISC.fs>.

upper_

 upper_ (-- a) "upper-underscore"

Return address a of a routine that converts the ASCII
character in the A register to uppercase.

See also: upper, lower_.

Source file: <src/lib/strings.MISC.fs>.

uppers

 uppers (ca len --)

Convert string ca len to uppercase.

See also: uppers1, lowers, upper.

Source file: <src/lib/strings.MISC.fs>.

uppers1

 uppers1 (ca len --) "uppers-one"

Change the first char of string ca len to uppercase.

See also: uppers, upper.

Source file: <src/lib/strings.MISC.fs>.

use-default-located

 use-default-located (--)

Set the default actions of located and unlocated:
Search the blocks.

use-default-located is a common factor of
use-no-index and use-thru-index.

Source file: <src/lib/002.need.fs>.

use-default-need

 use-default-need (--)

Set the default actions of need, needed, reneed, and
reneeded: Use locate to search the blocks.

use-default-need is a common factor of use-no-index
and use-fly-index.

Source file: <src/lib/002.need.fs>.

use-fly-index

 use-fly-index (--)

Set the alternative action of need, needed, reneed,
reneeded, located and unlocated in order to use the
blocks index and index the searched blocks on the fly.

The default action of all said words can be restored by
use-no-index.

See also: use-thru-index.

Source file: <src/lib/blocks.indexer.fly.fs>.

use-no-index

 use-no-index (--)

Set the default action of need, needed, reneed,
reneeded and unlocated: Use locate to search the
blocks.

The alternative actions are set by use-thru-index and
use-fly-index.

See also: use-default-need, use-default-located.

Source file: <src/lib/002.need.fs>.

use-thru-index

 use-thru-index (--)

Change the action of need, needed, reneed,
reneeded, located and unlocated in order to use the
blocks index created by make-thru-index.

The default action of all said words can be restored by
use-no-index.

See also: use-fly-index.

Source file: <src/lib/blocks.indexer.thru.fs>.

user

 user (n "name" --)

Parse name. Create a user variable name in the first
available offset within the user area.
When name is
later executed, its absolute user area storage address is
placed on the stack.

See also: 2user, ucreate, uallot, ?user.

Source file: <src/lib/data.user.fs>.

ut*

 ut* (ud u -- t) "u-t-star"

t is the signed product of ud times u.

Source file: <src/lib/math.operators.3-cell.fs>.

ut/

 ut/ (ut n -- d) "u-t-slash"

Divide a triple unsigned number ut by a single number n
giving the double number result d.

Source file: <src/lib/math.operators.3-cell.fs>.

8 In Forth-79, if the number of characters required to display u is greater than n, no leading spaces are given.

9 In Forth-83, if the number of characters required to display u is greater than n, an error condition exists, which depends on the system.

v

val

 val (x "name" --)

Create a definition for name that will place x on the
stack (unless toval is used first) and then will execute
init-val.

val is an alternative to the standard value.

See also: cval, 2val, variable, constant.

Source file: <src/lib/data.val.fs>.

value

 value (x "name" --)

Create a definition name with initial value x. When
name is later executed, x will be placed on the stack.
to can be used to assign a new value to name.

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: cvalue, 2value, constant, variable, val.

Source file: <src/lib/data.value.fs>.

var

 var (m v size "name" -- m v')

Define a variable with size bytes.

Source file: <src/lib/objects.mini-oof.fs>.

variable

 variable ("name" --)

Parse name. create a definition for name, which is
referred to as a "variable". allot one cell of data
space, the data field of name, to hold the contents of the
variable. When name is later executed, the address of its
data field is placed on the stack.

The program is responsible for initializing the contents of
the variable.

Definition:

 : variable ("name" --) create cell allot ;

Origin: Forth-79 (Required Word Set), Forth-83 (Required Word
Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: cvariable, 2variable, constant.

Source file: <src/kernel.z80s>.

version

 version (-- ca)

ca is the address of a 9-byte data table containing the Solo
Forth version, as follows:

	

+0

	
major (one byte)

	

+1

	
minor (one byte)

	

+2

	
patch (one byte)

	

+3

	
pre-release identifier (one byte):
'd' for "dev", 'p' for "pre", 'r' for "rc", zero if none

	

+4

	
pre-release (one cell)

	

+6

	
build (double-cell number)

See also: .version.

Source file: <src/kernel.z80s>.

vertical-curtain

 vertical-curtain (b --)

Wash the screen with the given color attribute b from the
left and right columns to the middle.

See also: horizontal-curtain.

Source file: <src/lib/graphics.cls.fs>.

view

 view ("name" --)

List the block where name is defined, i.e. the first
block where name is in the index line (surrounded by
spaces). If name cannot be found, throw an exception
#-286 ("not located").

See also: locate, list.

Source file: <src/lib/tool.list.blocks.fs>.

vocabulary

 vocabulary ("name" --)

Create a vocabulary name. A vocabulary is a named word
list. Subsequent execution of name replaces the first
entry in the search order with the word list associated to
name. When name becomes the compilation word list new
definitions will be appended to name's word list.

Origin: Forth-83 (Required Word Set).

See also: wordlist, definitions, wordlist-of,
set-current.

Source file: <src/lib/word_lists.fs>.

w

w/o

 w/o (-- fam) "w-o"

Return the "write only" file access method fam.

See also: r/o, r/w, s/r, bin,
create-file, open-file.

Origin: Forth-94 (FILE), Forth-2012 (FILE).

Source file: <src/lib/dos.plus3dos.fs>.

wacat

 wacat (ca len --) "w-a-cat"

Show an abbreviated wild-card disk catalogue using the
wild-card filename ca len.

See also: acat, wcat, (cat, .acat, more-cat,
set-drive.

Source file: <src/lib/dos.plus3dos.fs>.

warm

 warm (--)

Do a "warm" restart of the Forth system: Make the terminal
the current output device, restore the previous display mode
(in case warm is automatically executed after reentering
from BASIC), clear the screen and abort.

Definition:

 : warm (--) display restore-mode page abort ;

See also: cold, restore-mode, page.

Source file: <src/kernel.z80s>.

warn

 warn (ca len -- ca len)

Check if ca len already exists in the compilation word list.
If so, and if the content of warnings is not zero, do a
configurable action, usually issue a warning message.

warn is a deferred word (see defer) which is called by
header, and whose default action is noop. Alternative
actions are provided by message-warn, error-code-warn and
error-warn.

Source file: <src/kernel.z80s>.

warning"

 warning"
 Compilation: ("ccc<quote>" --)
 Execution: (f --)
"warning-quote"

Compilation:

Parse and compile ccc delimited by a double quote.

Execution:

If f is not zero, display the compiled message ccc;
else do nothing.

Source file: <src/lib/exception.fs>.

warnings

 warnings (-- a)

A user variable. a is the address of a cell containing a
flag. If it’s zero, no warning is shown when a compiled
word is not unique in the compilation word list. Its
default value is true.

Source file: <src/lib/compilation.fs>.

wat-xy

 wat-xy (col row --) "w-at-x-y"

Store col row as the current-window cursor coordinates
and set the cursor coordinates accordingly. The upper
left corner of the window is column zero, row zero.

See also: at-wxy, at-xy.

Source file: <src/lib/display.window.fs>.

wave-display

 wave-display (--)

Modify the screen bitmap with a water effect. At the end
the original image is restored.

See also: invert-display, fade-display.

Source file: <src/lib/graphics.display.fs>.

wblank

 wblank (--) "w-blank"

Fill the current-window by displaying as many blanks
(character bl) as needed, starting from the top left
corner of the window. Finally, reset the cursor position
of the window at the upper left corner (column 0, row 0).

wblank is a slower but lighter alternative to wcls.

See also: wstamp, whome, wspace.

Source file: <src/lib/display.window.fs>.

wcat

 wcat (ca len --) "w-cat"

Show a wild-card disk catalogue using the wild-card
filename ca len.

See also: cat, wacat, .cat, (cat, more-cat,
set-drive.

Source file: <src/lib/dos.plus3dos.fs>.

wcls

 wcls (--) "w-c-l-s-"

Clear the current-window with the current attribute and
reset its cursor position at the upper left corner (column
0, row 0).

See also: attr-wcls, wblank, attr@, whome,
clear-rectangle, cls.

Source file: <src/lib/display.window.fs>.

wcolor

 wcolor (b --) "w-color"

Color the current-window with color attribute b.

See also: attr-wcls, color-rectangle.

Source file: <src/lib/display.window.fs>.

wcolumns

 wcolumns (-- ca) "w-columns"

ca is the address of a byte containing the width
in characters of the current-window.

See also: wx, wy, wx0, wy0, wrows.

Source file: <src/lib/display.window.fs>.

wcr

 wcr (--) "w-c-r"

Cause subsequent output to the current-window appear at
the beginning of the next line.

When the end of the window is reached, the
cursor is set to the top left corner with whome. In a
future version of the code, the window will be scrolled.

See also: ?wcr, wcr.

Source file: <src/lib/display.window.fs>.

wdump

 wdump (a len --) "w-dump"

Show the contents of len cells from a.

Source file: <src/lib/tool.dump.fs>.

wemit

 wemit (c --) "w-emit"

Display character c in the current-window.

See also: wtype, wspace, emit.

Source file: <src/lib/display.window.fs>.

wfreecolumns

 wfreecolumns (-- n) "w-free-columns"

n is the number of free columns in the current line of
the current-window.

See also: wcolumns.

Source file: <src/lib/display.window.fs>.

where

 where (--)

Display information about the last error: block number, line
number and a picture of where it occurred. If the error was
in the command line, nothing is displayed.

Origin: Forth-79 (Reference Word Set).

See also: error-pos, error.

Source file: <src/lib/tool.debug.where.fs>.

while

 while
 Compilation: (C: dest -- orig dest)
 Run-time: (f --)

Compilation: Put the location of a new unresolved forward
reference orig onto the control-flow stack, under the
existing dest. Usually orig and dest are resolved by
repeat.

Run-time: If f is zero, continue execution at the location
specified by the resolution of orig.

while is an immediate and compile-only word.

Definition:

 : while \ Compilation: (C: dest -- orig dest)
 \ Run-time: (f --)
 postpone if cs-swap ; immediate compile-only

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: if, until, cs-swap, postpone, 0while, -while,
+while.

Source file: <src/kernel.z80s>.

white

 white (-- b)

A cconstant that returns 7, the value that represents the
white color.

See also: black, blue, red, magenta, green,
cyan, yellow, contrast, papery, inversely.

Source file: <src/lib/display.attributes.fs>.

white-noise

 white-noise (--)

White noise for ZX Spectrum 48. u is the duration in
number of sample bytes.

Source file: <src/lib/sound.48.fs>.

whome

 whome (--) "w-home"

Set the current-window cursor coordinates to its top left
corner: column zero, row zero.

See also: wat-xy.

Source file: <src/lib/display.window.fs>.

width

 width (-- a)

A user variable. a is the address of a cell containing the
maximum number of letters saved in the compilation of a
definition name. It must be 1 thru 31, with a default value of
31. The name character count and its natural characters are
saved, up to the value in width. The value may be changed
at any time within the above limits.

Origin: fig-Forth.

Source file: <src/kernel.z80s>.

window

 window (col row columns rows -- a)

Create a window definition with top left corner at col
row, with a width columns and a height rows (both in
characters). The internal cursor position of the window in
set to its top left corner. a is the address of the
window data structure, which is /window bytes long and
has the following structure:

Table 41. Data structure created by window:

	Byte offset
	Description

	+0

	x cursor coordinate

	+1

	y cursor coordinate

	+2

	window left x coordinate on screen

	+3

	window top y coordinate on screen

	+4

	width in columns

	+5

	heigth in rows

Windows do not use standard output words like emit and
type. Instead, they use specific words named with the "w"
prefix: wemit, wtype, wcls, etc.

At the moment there’s no word to display numbers in a
window. Therefore numbers must be converted to strings
first and displayed with wemit.

At the moment windows are not aware of display
modes that dont’t use 32 characters per line (e.g.
mode-64ao, mode-42pw). If windows are used when such
mode is active, the layout of the output will be wrong.

See also: current-window, wx, wy, wx0, wy0,
wcolumns, wrows.

Source file: <src/lib/display.window.fs>.

wipe-rectangle

 wipe-rectangle (column row width height --)

Clear a screen rectangle at the given character coordinates
and of the given size in characters. Only the bitmap is
cleared. The color attributes remain unchanged.

See also: clear-rectangle, color-rectangle, wcls.

Source file: <src/lib/graphics.rectangle.fs>.

within

 within (n1|u1 n2|u2 n3|u3 -- f)

Perform a comparison of a test value n1|u1 with a lower
limit n2|u2 and an upper limit n3|u3, returning true
if either (n2|u2 < n3|u3 and (n2|u2 ⇐ n1|u1 and
n1|u1 < n3|u3)) or (n2|u2 > n3|u3 and (n2|u2 ⇐
n1|u1 or n1|u1 < n3|u3)) is true, returning false
otherwise.

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: between, polarity.

Source file: <src/lib/math.operators.1-cell.fs>.

within-of

 within-of
 Compilation: (C: -- of-sys)
 Run-time: (x1 x2 x3 -- | x1)

A variant of of.

Compilation:

Put of-sys onto the control flow stack. Append the
run-time semantics given below to the current definition.
The semantics are incomplete until resolved by a consumer
of of-sys, such as endof.

Run-time:

If x1 is not in range x2 x3, as calculated by within,
discard x2 x3 and continue execution at the location
specified by the consumer of of-sys, e.g., following the
next endof. Otherwise, consume also x1 and continue
execution in line.

within-of is an immediate and compile-only word.

Usage example:

 : test (x --)
 case
 1 of ." one" endof
 2 5 within-of ." within two and five; not five" endof
 5 of ." five" endof
 endcase ;

See also: case, between-of, (within-of.

Source file: <src/lib/flow.case.fs>.

wltype

 wltype (ca len --) "w-l-type"

Display string ca len in the current-window, left
justified.

See also: wtype, wemit, ltype.

Source file: <src/lib/display.window.fs>.

word

 word (c "<chars>ccc<char>" -- ca)

Skip leading c character delimiters from the input
stream. Parse the next text characters from the input
stream, until a delimiter c is found, storing the packed
character string beginning at ca (which is the current
address returned by here), as a counted string (the
character count in the first byte), and with one blank at
the end (not included in the count).

This word is obsolescent. Its function is superseeded by
parse and parse-name.

The requirement to follow the string with a space is
obsolescent and was included in Forth-94 as a concession to
existing programs that use convert (superseded by
>number). A program shall not depend on the existence of
the space. The requirement to follow the string with a
space was removed from Forth-2012.

Origin: Forth-79 (Required Word Set), Forth-83 (Required
Word Set), Forth-94 (CORE), Forth-2012 (CORE).

Source file: <src/lib/parsing.fs>.

word-length-mask

 word-length-mask (-- b)

A cconstant. b is the bitmask of the word length.

See also: smudge-mask, immediate-mask, compile-only-mask.

Source file: <src/kernel.z80s>.

wordlist

 wordlist (-- wid)

Create a new word list and return its identifier wid, which
is the address of the following data structure (/wordlist
bytes long):

Table 42. Data structure created by wordlist.

	Cell
	Description

	0

	nt of the latest definition in the word list

	1

	wid of the previous word list, or zero

	2

	nt of the word-list name, or zero

Definition:

 : wordlist (-- wid) here wordlist, ;

See also: wordlist,, set-order, vocabulary,
last-wordlist, wordlist>last, wordlist>link,
wordlist>name, /wordlist, wordlists, dump-wordlists.

Source file: <src/kernel.z80s>.

wordlist,

 wordlist, (--) "wordlist-comma"

Compile in data space the contents of a new word list.

Definition:

 : wordlist, (--)
 here 0 , last-wordlist @ , last-wordlist ! 0 , ;

See also: wordlist, last-wordlist, wordlist>last,
wordlist>link, wordlist>name, /wordlist.

Source file: <src/kernel.z80s>.

wordlist-name!

 wordlist-name! (nt wid --) "wordlist-name-store"

Store nt as the name associated to the word list
identified by wid. nt is stored into the name field of
the word-list metadata.

See also: wordlist, wordlist-name@, wordlist>name.

Source file: <src/lib/word_lists.fs>.

wordlist-name@

 wordlist-name@ (wid -- nt|0) "wordlist-name-fetch"

Fetch from the word-list identifier wid its associated
name nt, or zero if the word list has no associated name.

See also: wordlist, wordlist-name!, wordlist>name.

Source file: <src/lib/word_lists.fs>.

wordlist-of

 wordlist-of ("name" -- wid)

Return the word-list identifier wid associated to
vocabulary name.

Origin: eForth’s widof.

See also: wordlist, vocabulary.

Source file: <src/lib/word_lists.fs>.

wordlist-words

 wordlist-words (wid --)

List the definition names in word list wid.

See also: words, wordlists.

Source file: <src/lib/tool.list.words.fs>.

wordlist>last

 wordlist>last (wid -- a) "wordlist-to-last"

Return the field address a of wordlist identifier
wid, which holds the name token of the latest word
defined in wid.

As a is the first field of a word-list structure,
wordlist>last is provided only for legibility. It is
an immediate alias of noop.

See also: wordlist>name, wordlist>link, /wordlist, last,
latest.

Source file: <src/lib/word_lists.fs>.

wordlist>link

 wordlist>link (wid -- a) "wordlist-to-link"

Return the link field address a of the wordlist identifier
wid, which holds the word-list identifier of the previous
word list defined in the system.

See also: wordlist>name, wordlist>last, /wordlist.

Source file: <src/lib/word_lists.fs>.

wordlist>name

 wordlist>name (wid -- a) "wordlist-to-name"

Return the address a which holds the nt of the
wordlist identifier wid (or zero if the word list has
no associated name).

See also: wordlist>link, wordlist>last, /wordlist.

Source file: <src/lib/word_lists.fs>.

wordlist>vocabulary

 wordlist>vocabulary (wid "name" --) "wordlist-to-vocabulary"

Create a vocabulary name for the word list identified by
wid.

See also: wordlist, vocabulary, latest>wordlist,
wordlists.

Source file: <src/lib/word_lists.fs>.

wordlists

 wordlists (--)

List all wordlists defined in the system, either by name
(if they have an associated name) or by number (its word
list identifier, if they have no associated name). The word
lists are listed in reverse chronological order: The first
word list listed is the most recently defined.

See also: .wordlist, words, wordlist-words, wordlist,
last-wordlist.

Source file: <src/lib/tool.list.word_lists.fs>.

wordlists,

 wordlists, (--) "wordlists-comma"

Store all of the current word lists in the data space,
updating dp.

wordlists, is a factor of marker,.

See also: @wordlists, order,, wordlist.

Source file: <src/lib/tool.marker.fs>.

words

 words (--)

List the definition names in the first word list of
the search order.

Origin: Forth-83 (Uncontrolled Reference Words), Forth-94
(TOOLS), Forth-2012 (TOOLS).

See also: wordlist-words, wordlists.

Source file: <src/lib/tool.list.words.fs>.

words#

 words# (-- n) "words-number-sign"

Return number n of words defined in the first word list
of the search order.

Source file: <src/lib/tool.list.words.fs>.

words-like

 words-like ("name" --)

List the definition names, from the first word list of
the search order, that contain substring "name".

Source file: <src/lib/tool.list.words.fs>.

write-block

 write-block (n --)

Write the buffer to disk block n.

Definition:

 : write-block (n --) write-mode transfer-block ;

See also: write-mode, transfer-block, read-block,
block.

Source file: <src/kernel.z80s>.

write-byte

 write-byte (c fid -- ior)

Write byte c to file fid, returning I/O result code
ior.

See also: read-byte, reposition-file, file-position.

Source file: <src/lib/dos.plus3dos.fs>.

write-file

 write-file (ca len fid -- ior)

Write len characters from address ca to the file
identified by fid starting at its current position.
Return I/O result code ior.

See also: bank-write-file, write-byte, create-file,
open-file.

Source file: <src/lib/dos.plus3dos.fs>.

write-line

 write-line (ca len fid -- ior)

Write len characters from ca followed by the
line terminator returned by newline to the file
identified by fid starting at its current position.
ior is the I/O result code.

At the conclusion of the operation, file-position
returns the next file position after the last character
written to the file, and file-size returns a value
greater than or equal to the value returned by
file-position.

Origin: Forth-94 (FILE), Forth-2012 (FILE).

See also: write-file, write-byte, read-line,
create-file, open-file.

Source file: <src/lib/dos.plus3dos.fs>.

write-mode

 write-mode (--)

Set the write mode for transfer-sector and transfer-block.

See also: read-mode.

Source file: <src/kernel.plus3dos.z80s>.

wrows

 wrows (-- ca) "w-rows"

ca is the address of a byte containing the heigth in rows
of the current-window.

See also: wx, wy, wx0, wy0, wcolumns.

Source file: <src/lib/display.window.fs>.

wspace

 wspace (--) "w-space"

Display one space in the current-window.

See also: space.

Source file: <src/lib/display.window.fs>.

wstamp

 wstamp (c --) "w-stamp"

Fill the current-window by displaying as many characters
c as needed, starting from the top left corner.
The cursor position of the window is not changed.

See also: wblank, wcls, wemit.

Source file: <src/lib/display.window.fs>.

wtype

 wtype (ca len --) "w-type"

Display string ca len in the current-window.

See also: wltype, wemit, ltype.

Source file: <src/lib/display.window.fs>.

wtype+

 wtype+ (ca len --) "w-type-plus"

Display string ca len in the current-window and update
the window coordinates accordingly.

Source file: <src/lib/display.window.fs>.

wtyped

 wtyped (-- a) "w-typed"

A variable. a is the address o a cell containing a flag
indicating if a space-delimited substring was found and
displayed in the current-window. Otherwise, the string
must be broken in order to fit the current line of the
window.

wtyped is used by wtype+ and wltype.

Source file: <src/lib/display.window.fs>.

wx

 wx (-- ca) "w-x"

ca is the address of a byte containing the x cursor
coordinate of the current-window.

See also: wy, wx0, wy0, wcolumns, wrows.

Source file: <src/lib/display.window.fs>.

wx+!

 wx+! (n --) "w-x-plus-store"

Add n character positions to the column cursor coordinate
of the current window. wx+! is a factor of wtype+.

Source file: <src/lib/display.window.fs>.

wx0

 wx0 (-- ca) "w-x-zero"

ca is the address of a byte containing the left x
coordinate on screen of the current-window.

See also: wx, wy, wy0, wcolumns, wrows.

Source file: <src/lib/display.window.fs>.

wy

 wy (-- ca) "w-y"

ca is the address of a byte containing the y cursor
coordinate of the current-window.

See also: wx, wx0, wy0, wcolumns, wrows.

Source file: <src/lib/display.window.fs>.

wy0

 wy0 (-- ca) "w-y-zero"

ca is the address of a byte containing the top y
coordinate on screen of the current-window.

See also: wx, wy, wx0, wcolumns, wrows.

Source file: <src/lib/display.window.fs>.

x

x

 x ("ccc<eol>" --)

A command of specforth-editor: Find and delete the next
occurrence of the string ccc.

See also: b,
c,
d,
e,
f,
h,
i,
l,
m,
n,
p,
r,
s,
t, text,
find,
delete.

Source file: <src/lib/prog.editor.specforth.fs>.

x1

 x1 (-- a) "x-one"

A 2variable used by adraw176 and aline176.

See also: y1, incx, incy.

Source file: <src/lib/graphics.lines.fs>.

x>

 x> (-- x) (X: x --) "x-from"

Move x from the current xstack to the data stack.

See also: x>, x@.

Source file: <src/lib/data.xstack.fs>.

x>gx

 x>gx (col -- gx) "x-to-g-x"

Convert cursor coordinate col (0..31) to graphic
coordinate gx (0..255).

x>gx is an alias of 8*.

See also: xy>gxy, xy>gxy176.

Source file: <src/lib/display.cursor.fs>.

x>gx

 x>gx (col -- gx) "x-to-g-x"

Convert cursor column col to graphic x coordinate gx.

See also: y>gy, gx>x.

Source file: <src/lib/graphics.pixels.fs>.

x@

 x@ (-- x) (X: x -- x) "x-fetch"

Copy x from the current xstack to the data stack.

See also: x>, >x.

Source file: <src/lib/data.xstack.fs>.

xclear

 xclear (--) "x-clear"

Clear the current xstack.

See also: xdrop, 2xdrop, xp0, xp.

Source file: <src/lib/data.xstack.fs>.

xdepth

 xdepth (-- n) "x-depth"

n is the number of single-cells values contained in the
current xstack.

See also: .xs, xlen.

Source file: <src/lib/data.xstack.fs>.

xdrop

 xdrop (X: x --) "x-drop"

Remove x from the xstack.

See also: >x, x>.

Source file: <src/lib/data.xstack.fs>.

xdup

 xdup (X: x -- x x) "x-dup"

Duplicate x in the current xstack.

See also: 2xdup.

Source file: <src/lib/data.xstack.fs>.

xfree

 xfree (--) "x-free"

Free the space used by the current xstack, which was
created by allocate-xstack.

Source file: <src/lib/data.xstack.fs>.

xkey

 xkey (-- c) "x-key"

Show a cursor, wait for the next terminal key struck; if it’s
the caps lock key, toggle caps and keep waiting; else leave
the character code c of the key struck.

See also: key, -keys.

Source file: <src/kernel.z80s>.

xlen

 xlen (-- n) "x-len"

n is the length of the current xstack, in bytes.

See also: xdepth.

Source file: <src/lib/data.xstack.fs>.

xliteral

 xliteral (x --) "x-literal"

If x is a byte, execute cliteral, else execute literal.

xliteral is used in interpret-table to compile the
single-cell literals. It is useful as an alternative to
literal, in order to optimize the code when x is unknown.

xliteral is an immediate and compile-only word.

Definition:

 : xliteral (x --)
 dup byte? if postpone cliteral exit
 then postpone literal ; immediate compile-only

See also: 2literal,]xl, byte?.

Source file: <src/kernel.z80s>.

xor

 xor (x1 x2 -- x3) "x-or"

x3 is the bit-by-bit exclusive-or of x1 with x2.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: or, and, negate, 0=, dxor.

Source file: <src/kernel.z80s>.

xor#,

 xor#, (b --) "x-or-number-sign-comma"

Compile the Z80 assembler instruction XOR b.

See also: or#,, and#,, add#,, sub#,.

Source file: <src/lib/assembler.fs>.

xor,

 xor, (reg --) "x-or-comma"

Compile the Z80 assembler instruction XOR reg.

See also: and,, or,.

Source file: <src/lib/assembler.fs>.

xorx,

 xorx, (disp regpi --) "x-or-x-comma"

Compile the Z80 assembler instruction XOR
(regpi+disp).

See also: xorx,, orx,, cpx,.

Source file: <src/lib/assembler.fs>.

xover

 xover (X: x1 x2 -- x1 x2 x1) "x-over"

Place a copy of x1 on top of the xstack.

Source file: <src/lib/data.xstack.fs>.

xp

 xp (-- a) "x-p"

A variable. Address a holds the address of the current
xstack pointer.

Source file: <src/lib/data.xstack.fs>.

xp0

 xp0 (-- a) "x-p-zero"

Initial address of the current xstack pointer.

Source file: <src/lib/data.xstack.fs>.

xpick

 xpick (u -- x#u) (X: x#u...x#0 -- x#u...x#0) "x-pick"

Remove u. Copy x#u from the current xstack to the
data stack.

Source file: <src/lib/data.xstack.fs>.

xsize

 xsize (-- n) "x-size"

Size of the current xstack in bytes.

Source file: <src/lib/data.xstack.fs>.

xstack

 xstack (a --) "x-stack"

Make the extra stack a the current one. a is the
address returned by allot-xstack or allocate-xstack
when the extra stack was created.

Extra stacks grow towards high memory. a is the address
of a table that contains the metadata of the xstack, which
is the following:

+0 = initial value of the stack pointer (1 cell below the
 stack space)
+2 = stack pointer
+4 = maximum size in bytes

xp0, xp and xsize are used to access the contents of
the table.

See also: estack.

Source file: <src/lib/data.xstack.fs>.

xt-replaces

 xt-replaces (xt ca len --) "x-t-replaces"

Set xt (whose execution returns the address and length of
a string) as the text to substitute for the substitution
named by ca len. If the substitution does not exist it
is created.

The name of a substitution should not contain the "%"
delimiter character.

See also: replaces, substitute, unescape,
substitute-wordlist.

Source file: <src/lib/strings.xt-replaces.fs>.

xt-substitution

 xt-substitution (ca len -- a) "x-t-substitution"

Given a string ca len create its substitution and
storage space. Return the address that will hold the
execution token of the substitution.

See also: xt-replaces.

Source file: <src/lib/strings.xt-replaces.fs>.

xy

 xy (-- col row) "x-y"

Return the current column and row of the text cursor.

xy is a deferred word (see defer) whose default action
is mode-32-xy.

See also: at-xy.

Source file: <src/kernel.z80s>.

xy>attr

 xy>attr (col row -- b) "x-y-to-attribute-a"

Return the color attribute b of the given cursor
coordinates col row.

See also: xy>attra, xy>attra_, xy>gxy.

Source file: <src/lib/display.cursor.fs>.

xy>attra

 xy>attra (col row -- a) "x-y-to-attribute-a"

Return the color attribute address a of the given cursor
coordinates col row.

See also: xy>attr, xy>attra_, xy>gxy.

Source file: <src/lib/display.cursor.fs>.

xy>attra_

 xy>attra_ (-- a) "x-y-to-attribute-a-underscore"

Return the address a of a Z80 routine that calculates the
attribute address of a cursor position. This routine is a
modified version of the ROM routine at 0x2583.

Input:

	
D = column (0..31) - E = row (0..23)

Output:

	
HL = address of the attribute in the screen

See also: xy>attra, xy>attr, xy>gxy.

Source file: <src/lib/display.cursor.fs>.

xy>gxy

 xy>gxy (col row -- gx gy) "x-y-to-g-x-y"

Convert cursor coordinates col row to graphic coordinates
gx gy. col is 0..31, row is 0..23, gx is 0..255
and gy is 0..191.

See also: xy>attra, xy>attr, xy>gxy176, plot,
set-pixel.

Source file: <src/lib/display.cursor.fs>.

xy>gxy176

 xy>gxy176 (col row -- gx gy) "x-y-to-g-x-y-176"

Convert cursor coordinates col row to graphic coordinates
gx gy (as used by Sinclair BASIC, i.e. the lower 16 pixel
rows are not used). col is 0..31, row is 0..23, gx
is 0..255 and gy is 0..175.

xy>gxy176 is provided to make it easier to adapt
Sinclair BASIC programs.

See also: xy>gxy, plot176, set-pixel176.

Source file: <src/lib/display.cursor.fs>.

xy>r

 xy>r (--) (R: -- col row) "x-y-to-r"

Save the current cursor coordinates to the return stack.

See also: r>xy, save-mode.

Source file: <src/lib/display.cursor.fs>.

xy>scra

 xy>scra (col row -- a) "x-y-to-s-c-r-a"

Convert cursor coordinates col row to their correspondent
screen address a.

See also: xy>scra_ , gxy>scra.

Source file: <src/lib/display.cursor.fs>.

xy>scra_

 xy>scra_ (-- a) "x-y-to-s-c-r-a-underscore"

Return address a of a Z80 routine that calculates the
screen address correspondent to given cursor coordinates.

Input registers:

	
B = y coordinate (0..23)

	
C = x coordinate (0..31)

Output registers:

	
DE = screen address

See also: xy>scra, gxy>scra_.

Source file: <src/lib/display.cursor.fs>.

y

y

 y (--)

A command of gforth-editor:
Yank deleted string.

See also:
d,
dl,
l,
delete, insert.

Source file: <src/lib/prog.editor.gforth.fs>.

y/n

 y/n (-- c) "y-slash-n"

Wait for a valid key press for a "yes/no" question and
return its code c, which is "y" or "n".

See also: y/n?.

Source file: <src/lib/keyboard.yes-question.fs>.

y/n?

 y/n? (c -- f) "y-slash-n-question"

Is character c, converted to lowercase, a valid answer
for a "y/n" question? I.e., is c the current value of
"y" or "n"?

See also: yes?, no?, y/n.

Source file: <src/lib/keyboard.yes-question.fs>.

y1

 y1 (-- a) "y-one"

A 2variable used by adraw176 and aline176.

See also: x1, incx, incy.

Source file: <src/lib/graphics.lines.fs>.

y>gy

 y>gy (row -- gy) "y-to-g-y"

Convert cursor coordinate row (0..23) to graphic
coordinate gy (0..191).

See also: xy>gxy, x>gx.

Source file: <src/lib/display.cursor.fs>.

y>gy

 y>gy (row -- gy) "y-to-g-y"

Convert cursor coordinate row to graphic coordinate gy.

See also: x>gx, gy>y.

Source file: <src/lib/graphics.pixels.fs>.

yellow

 yellow (-- b)

A cconstant that returns 6, the value that represents the
yellow color.

See also: black, blue, red, magenta, green,
cyan, white, contrast, papery, inversely.

Source file: <src/lib/display.attributes.fs>.

yes?

 yes? (-- f) "yes-question"

Wait for a valid key press for a y/n question and
return true if it’s the current value of "y", else
return false.

See also: no?, y/n?.

Source file: <src/lib/keyboard.yes-question.fs>.

z

z?

 z? (-- op) "z-question"

Return the opcode op of the Z80 assembler instruction
jp z, to be used as condition and consumed by ?ret,,
?jp,, ?call,, ?jr,, aif, rif, awhile, rwhile,
auntil or runtil.

See also: nz?, c?, nc?, po?, pe?, p?, m?.

Source file: <src/lib/assembler.fs>.

{

{

 { (--)

Part of hayes-tester: Start a Hayes test.

See also: ->, }.

Source file: <src/lib/meta.tester.hayes.fs>.

{do

 {do "curly-bracket-do"
 Compilation: (C: -- dest)
 Run-time: (--)

Start a {do control structure.

See also: do}, |do|, do>.

Source file: <src/lib/flow.dijkstra.fs>.

{if

 {if "curly-bracket-if"
 Compilation: (-- cs-mark)

Start a {if control structure.

See also: if}, if>, |if|.

Source file: <src/lib/flow.dijkstra.fs>.

|

|*

 |* (--) "bar-star"

Compile the multiply ROM calculator command.

See also: |/, |**.

Source file: <src/lib/math.calculator.fs>.

|**

 |** (--) "bar-star-star"

Compile the to-power ROM calculator command.

See also: |sqrt, |*.

Source file: <src/lib/math.calculator.fs>.

|+

 |+ (--) "bar-plus"

Compile the addition ROM calculator command.

See also: |-.

Source file: <src/lib/math.calculator.fs>.

|-

 |- (--) "bar-minus"

Compile the subtract ROM calculator command.

See also: |+.

Source file: <src/lib/math.calculator.fs>.

|/

 |/ (--) "bar-slash"

Compile the division ROM calculator command.

See also: |mod, |*.

Source file: <src/lib/math.calculator.fs>.

|0

 |0 (--) "bar-zero"

Compile the ROM calculator command that stacks 0.

See also: |half, |1, |10, |pi2/.

Source file: <src/lib/math.calculator.fs>.

|0<

 |0< (--) "bar-zero-less"

Compile the less-0 ROM calculator command.

See also: |0=, |0>, |=, |<>, |>, |<, |<=,
|>=.

Source file: <src/lib/math.calculator.fs>.

|0=

 |0= (--) "bar-zero-equals"

Compile the not ROM calculator command.

See also: |0<, |0>, |=, |<>, |>, |<, |<=,
|>=.

Source file: <src/lib/math.calculator.fs>.

|0>

 |0> (--) "bar-zero-greater"

Compile the greater-0 ROM calculator command.

See also: |0=, |0<, |=, |<>, |>, |<, |<=,
|>=.

Source file: <src/lib/math.calculator.fs>.

|0branch

 |0branch (--) "bar-zero-branch"

Compile ROM calculator commands |0= and |?branch to
do a jump when the floating-point TOS is zero.

See also: |branch, |?branch.

Source file: <src/lib/math.calculator.fs>.

|1

 |1 (--) "bar-one"

Compile the ROM calculator command that stacks 1.

See also: |0, |half, |10, |pi2/.

Source file: <src/lib/math.calculator.fs>.

|10

 |10 (--) "bar-ten"

Compile the ROM calculator command that stacks 10.

See also: |0, |half, |1, |pi2/.

Source file: <src/lib/math.calculator.fs>.

|2dup

 |2dup (--) "bar-two-dup"

Compile the ROM calculator commands to do 2dup, using
|>mem and |mem> (calculator memory positions 1 and 2
are used).

See also: |drop, |dup, |swap, |over.

Source file: <src/lib/math.calculator.fs>.

|<

 |< (--) "bar-less"

Compile the no-less ROM calculator command.

This calculator command doesn’t work fine when
used from Forth. See its source file for details.

See also: |0=, |0<, |0>, |=, |<>, |>, |<=,
|>=.

Source file: <src/lib/math.calculator.fs>.

|<=

 |<= (--) "bar-less-equals"

Compile the no-l-eql ROM calculator command.

This calculator command doesn’t work fine when
used from Forth. See its source file for details.

See also: |0=, |0<, |0>, |=, |<>, |>, |<,
|>=.

Source file: <src/lib/math.calculator.fs>.

|<>

 |<> (--) "bar-not-equals"

Compile the nos-neql ROM calculator command.

This calculator command doesn’t work fine when
used from Forth. See its source file for details.

See also: |0=, |0<, |0>, |=, |>, |<, |<=,
|>=.

Source file: <src/lib/math.calculator.fs>.

|<mark

 |<mark (-- dest) "bar-from-mark"

Leave the address dest of the current data-space pointer
as the destination of a ROM calculator backward branch
which will later be resolved by |<resolve.

Typically used before either |branch, |?branch or
|0branch.

Source file: <src/lib/math.calculator.fs>.

|<resolve

 |<resolve (dest --) "bar-from-resolve"

Resolve a ROM calculator backward branch by compiling the
displacement from the current position to address dest,
which was left by |<mark.

Source file: <src/lib/math.calculator.fs>.

|=

 |= (--) "bar-equals"

Compile the nos-eql ROM calculator command.

This calculator command doesn’t work fine when
used from Forth. See its source file for details.

See also: |0=, |0<, |0>, |<>, |>, |<, |<=,
|>=.

Source file: <src/lib/math.calculator.fs>.

|>

 |> (--) "bar-greater"

Compile the no-grtr ROM calculator command.

This calculator command doesn’t work fine when
used from Forth. See its source file for details.

See also: |0=, |0<, |0>, |=, |<>, |<, |<=,
|>=.

Source file: <src/lib/math.calculator.fs>.

|>=

 |>= (--) "bar-greater-equals"

Compile the no-gr-eql ROM calculator command.

This calculator command doesn’t work fine when
used from Forth. See its source file for details.

See also: |0=, |0<, |0>, |=, |<>, |>, |<,
|<=.

Source file: <src/lib/math.calculator.fs>.

|>mark

 |>mark (-- a) "bar-greater-mark"

Compile space for the displacement of a ROM calculator
forward branch which will later be resolved by |>resolve.

Typically used before either |branch, |?branch or
|0branch.

Source file: <src/lib/math.calculator.fs>.

|>mem

 |>mem (n --) "bar-to-mem"

Compile the st-mem ROM calculator command for memory
number n (0..5).

st-mem copies the floating-point TOS to the
the calculator memory number n, but does not remove it
from the floating-point stack.

Source file: <src/lib/math.calculator.fs>.

|>resolve

 |>resolve (orig --) "bar-to-resolve"

Resolve a ROM calculator forward branch by storing the
displacement from orig to the current position into
orig, which was left by |>mark.

Source file: <src/lib/math.calculator.fs>.

|?branch

 |?branch (--) "bar-question-branch"

Compile the jump-true ROM calculator command.

See also: |0branch, |branch.

Source file: <src/lib/math.calculator.fs>.

|abs

 |abs (--) "bar-abs"

Compile the abs ROM calculator command.

See also: |sgn, |int, |truncate.

Source file: <src/lib/math.calculator.fs>.

|acos

 |acos (--) "bar-a-cos"

Compile the acos ROM calculator command.

See also: |asin, |atan, |cos, |sin, |tan,
|pi2/.

Source file: <src/lib/math.calculator.fs>.

|asin

 |asin (--) "bar-a-sin"

Compile the asin ROM calculator command.

See also: |acos, |atan, |cos, |sin, |tan,
|pi2/.

Source file: <src/lib/math.calculator.fs>.

|atan

 |atan (--) "bar-a-tan"

Compile the atan ROM calculator command.

See also: |acos, |asin, |cos, |sin, |tan,
|pi2/.

Source file: <src/lib/math.calculator.fs>.

|branch

 |branch (--) "bar-branch"

Compile the jump ROM calculator command.

See also: |0branch, |?branch.

Source file: <src/lib/math.calculator.fs>.

|cos

 |cos (--) "bar-cos"

Compile the cos ROM calculator command.

See also: |acos, |asin, |atan, |sin, |tan,
|pi2/.

Source file: <src/lib/math.calculator.fs>.

|do|

 |do| "bar-do-bar"
 Compilation: (C: orig dest -- dest)

Part of the {do control structure.

Source file: <src/lib/flow.dijkstra.fs>.

|drop

 |drop (--) "bar-drop"

Compile the delete ROM calculator command.

See also: |dup, |swap, |over, |2dup.

Source file: <src/lib/math.calculator.fs>.

|dup

 |dup (--) "bar-dup"

Compile the duplicate ROM calculator command.

See also: |drop, |swap, |over, |2dup.

Source file: <src/lib/math.calculator.fs>.

|else

 |else (orig1 -- orig2) "bar-else"

Compile a ROM calculator unconditional |branch and
return the address orig2 of its destination address, to
be resolved by |then; then resolve the forward reference
orig1, left by |if.

See also: |>mark, |>resolve.

Source file: <src/lib/math.calculator.fs>.

|exp

 |exp (--) "bar-exp"

Compile the exp ROM calculator command.

See also: |ln.

Source file: <src/lib/math.calculator.fs>.

|from-here

 |from-here (a -- n) "bar-from-here"

Calculate the displacement n from the current data-space
pointer to address a. Used by |>resolve and
|<resolve.

Source file: <src/lib/math.calculator.fs>.

|half

 |half (--) "bar-half"

Compile the ROM calculator command that stacks 1/2.

See also: |0, |1, |10, |pi2/.

Source file: <src/lib/math.calculator.fs>.

|if

 |if (-- orig) "bar-if"

Compile a ROM calculator conditional |0branch and
return the address orig of its destination address, to be
resolved by |else or |then.

See also: |>mark.

Source file: <src/lib/math.calculator.fs>.

|if|

 |if| "bar-if-bar"
 Compilation: (count -- count)
 (C: orig...orig1 -- orig...orig2)

Part of the {if control structure.

Source file: <src/lib/flow.dijkstra.fs>.

|int

 |int (--) "bar-int"

Compile the int ROM calculator command.

See also: |abs, |truncate.

Source file: <src/lib/math.calculator.fs>.

|ln

 |ln (--) "bar-l-n"

Compile the ln ROM calculator command.

See also: |exp.

Source file: <src/lib/math.calculator.fs>.

|mem>

 |mem> (n --) "bar-mem-to"

Compile the get-mem ROM calculator command for memory
number n (0..5).

Source file: <src/lib/math.calculator.fs>.

|mod

 |mod (--) "bar-mod"

Compile the n-mod-m ROM calculator command.

See also: |/.

Source file: <src/lib/math.calculator.fs>.

|negate

 |negate (--) "bar-negate"

Compile the negate ROM calculator command.

See also: |abs, |sgn.

Source file: <src/lib/math.calculator.fs>.

|over

 |over (--) "bar-over"

Compile the ROM calculator commands to do over, using
|>mem and |mem> (calculator memory positions 1 and 2
are used).

See also: |drop, |dup, |swap, |2dup.

Source file: <src/lib/math.calculator.fs>.

|pi2/

 |pi2/ (--) "bar-pi-two-slash"

Compile the ROM calculator command that stacks pi/2.

See also: |0, |half, |1, |10, |acos, |asin,
|atan, |sin, |cos, |tan.

Source file: <src/lib/math.calculator.fs>.

|re-stack

 |re-stack (r -- r') "bar-re-stack"

Compile the re-stack ROM calculator command.

Source file: <src/lib/math.calculator.fs>.

|sgn

 |sgn (--) "bar-s-g-n"

Compile the sgn ROM calculator command.

See also: |abs, |negate.

Source file: <src/lib/math.calculator.fs>.

|sin

 |sin (--) "bar-sin"

Compile the sin ROM calculator command.

See also: |acos, |asin, |atan, |cos, |tan,
|pi2/.

Source file: <src/lib/math.calculator.fs>.

|sqrt

 |sqrt (--) "bar-s-q-r-t"

Compile the sqr ROM calculator command.

See also: |**.

Source file: <src/lib/math.calculator.fs>.

|swap

 |swap (--) "bar-swap"

Compile the exchange ROM calculator command.

See also: |drop, |dup, |over, |2dup.

Source file: <src/lib/math.calculator.fs>.

|tan

 |tan (--) "bar-tan"

Compile the tan ROM calculator command.

See also: |acos, |asin, |atan, |cos, |sin,
|pi2/.

Source file: <src/lib/math.calculator.fs>.

|then

 |then (orig --) "bar-then"

Resolve the forward reference orig, left by |else or
|if, the calculator conditional control-flow structure.

See also: |>resolve.

Source file: <src/lib/math.calculator.fs>.

|truncate

 |truncate (--) "bar-truncate"

Compile the truncate ROM calculator command.

See also: |abs, |int.

Source file: <src/lib/math.calculator.fs>.

}

}

 } (a1 n -- a2) "right-curly-bracket"

If in range, return address a2 of the n item of the
1-cell array a1. Otherwise throw an exception #-272
("array index out of range").

See also: 1array, array>items.

Source file: <src/lib/data.array.noble.fs>.

}

 } (i*x --)

Part of hayes-tester: End a Hayes test by comparing stack
(expected) contents with saved (actual) contents.

See also: {, ->.

Source file: <src/lib/meta.tester.hayes.fs>.

}bench

 }bench (-- d) "curly-bracket-bench"

Return the current value of the clock ticks.

See also: bench{, dticks, bench., }bench..

Source file: <src/lib/time.fs>.

}bench.

 }bench. (--) "curly-bracket-bench-dot"

Stop timing and display the result.

See also: bench{, }bench, bench..

Source file: <src/lib/time.fs>.

}private

 }private (--) "curly-bracket-private"

End private definitions. See privatize for a usage
example.

Source file: <src/lib/modules.privatize.fs>.

}t

 }t (i*x --)

Part of ttester: End a test by comparing stack
(expected) contents with saved (actual) contents.

See also: t{, ->.

Source file: <src/lib/meta.tester.ttester.fs>.

}}

 }} (a1 n1 n2 -- a2) "double-right-curly-bracket"

Return address a2 of the n1,n2 item of the 2-dimension
array a1. Data stored row-wise.

See also: 2array.

Source file: <src/lib/data.array.noble.fs>.

~

~~

 ~~ (--) "tilde-tilde"

Compile the name token, block and line of the current
definition, and (~~.

~~ is an immediate and compile-only word.

Origin: Gforth.

See also: (~~, ~~?, ~~y, ~~quit-key, ~~resume-key,
~~info, ~~control ~~before-info, ~~after-info.

Source file: <src/lib/tool.debug.tilde-tilde.fs>.

~~?

 ~~? (-- a) "tilde-tilde-question"

A variable. a is the address of a cell containing a flag.
When the flag is true, the debugging code compiled by ~~
is executed, else ignored. Its default value is true.

Source file: <src/lib/tool.debug.tilde-tilde.fs>.

~~after-info

 ~~after-info (--) "tilde-tilde-after-info"

Executed at the end of the debugging code compiled by ~~.
~~after-info is a deferred word (see defer). Its
default action is ~~restore-xy, which restores the cursor
coordinates.

See also: ~~before-info, ~~restore-xy.

Source file: <src/lib/tool.debug.tilde-tilde.fs>.

~~before-info

 ~~before-info (--) "tilde-tilde-before-info"

Executed at the start of the debugging code compiled by
~~. ~~before-info is a deferred word (see defer).
Its default action is ~~save-xy, which saves the cursor
coordinates.

See also: ~~after-info, ~~save-xy.

Source file: <src/lib/tool.debug.tilde-tilde.fs>.

~~control

 ~~control (--) "tilde-tilde-control"

Keyboard control used by the debug points compiled by ~~:
If the contents of ~~quit-key and ~~resume-key are zero
do nothing, else wait for a key press in an endless loop:
If the pressed key equals the contents of ~~quit-key,
then execute quit; if the pressed key equals the contents
of ~~resume-key, then exit.

See also: ~~control?, ~~press?.

Source file: <src/lib/tool.debug.tilde-tilde.fs>.

~~control?

 ~~control? (-- f) "tilde-tilde-control-question"

Is there any key to be checked by ~~control?

~~control? is part of the ~~ tool.

Source file: <src/lib/tool.debug.tilde-tilde.fs>.

~~info

 ~~info (--) "tilde-tilde-info"

Show the debugging info compiled by ~~ and the current
contents of the data stack. ~~info is a deferred word
(see defer) whose default action is (~~info.

Source file: <src/lib/tool.debug.tilde-tilde.fs>.

~~press?

 ~~press? (c ca -- f) "tilde-tilde-press-question"

Is the character stored at ca not zero and equal to c?
~~press? is a factor of ~~control used to check key
presses, in the code compiled by ~~.

Source file: <src/lib/tool.debug.tilde-tilde.fs>.

~~quit-key

 ~~quit-key (-- ca) "tilde-tilde-quit-key"

A cvariable. ca is the address of a character
containing the key code used to quit at the debugging
points compiled by ~~. If its value is not zero,
~~control will wait for a key press in order to quit the
debugging. Its default value is the code of 'q'.

See also: ~~resume-key.

Source file: <src/lib/tool.debug.tilde-tilde.fs>.

~~restore-xy

 ~~restore-xy (--) "tilde-tilde-restore-x-y"

Restore the cursor coordinates. ~~restore-xy is the
default action of ~~after-info.

~~restore-xy is part of the ~~ tool.

See also: ~~save-xy, ~~before-info, ~~xy-backup.

Source file: <src/lib/tool.debug.tilde-tilde.fs>.

~~resume-key

 ~~resume-key (-- ca) "tilde-tilde-resume-key"

A cvariable. ca is the address of a character
containing the key code used to resume execution at the
debugging points compiled by ~~. If ~~resume-key
contains zero, ~~control will not wait for a key. If
~~resume-key contains $FF, ~~control will wait for
any key. Otherwise ~~control will wait for the key
stored at ~~resume-key, whose default value is bl,
the code of the space character.

See also: ~~quit-key.

Source file: <src/lib/tool.debug.tilde-tilde.fs>.

~~save-xy

 ~~save-xy (--) "tilde-tilde-save-x-y"

Save the cursor coordinates. ~~save-xy is the default
action of ~~before-info.

~~save-xy is part of the ~~ tool.

See also: ~~restore-xy, ~~after-info, ~~xy-backup.

Source file: <src/lib/tool.debug.tilde-tilde.fs>.

~~xy-backup

 ~~xy-backup (-- a) "tilde-tilde-x-y-backup"

A 2variable. a is the address of a double cell
that holds cursor coordinates saved and restored by the
default actions of ~~before-info and ~~after-info.

~~xy-backup is part of the ~~ tool.

Source file: <src/lib/tool.debug.tilde-tilde.fs>.

~~y

 ~~y (-- ca) "tilde-tilde-y"

A cvariable. ca is the address of a character
containing the row the debugging information compiled by
~~ will be printed at. Its default value is zero.

Source file: <src/lib/tool.debug.tilde-tilde.fs>.

EPUB/nav.xhtml

Table of Contents

		Description

		Main features

		Minimum requirements

		Motivation, history and current status

		About this manual

		Platforms

		Comparative of DOS support

		Download

		Project directories

		Disks

		The DSK disk image format

		How to run

		How to use the library

		How to make a library index

		How to load a program that needs the library

		How to search the source files

		How to test and benchmark

		First, set the required block disks

		Second, load the desired code

		How to write Forth programs

		How to rebuild Solo Forth

		Exception codes

		Notation

		Stack notation

		Z80 flags notation

		Z80 instructions

		Legend

		Glossary

		!

		"

		#

		%

		'

		(

)

		*

		+

		,

		-

		.

		/

		0

		1

		2

		3

		4

		8

		:

		;

		<

		=

		>

		?

		@

		[

		\

]

		_

		a

		b

		c

		d

		e

		f

		g

		h

		i

		j

		k

		l

		m

		n

		o

		p

		q

		r

		s

		t

		u

		v

		w

		x

		y

		z

		{

		|

		}

		~

		Cover

		Start of Content

EPUB/jacket/cover.jpg
Solo Forth

Version 0.14.0-rc.124+20201123 for +3DOS

Marcos Cruz
(programandala.net)

EPUB/.xhtml

!

!

 ! (x a --) "store"

Store x at a.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83
(Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: @, +!, 2!, c!.

Source file: <src/kernel.z80s>.

!>

 !>
 Interpretation: (x "name" --)
 Compilation: ("name" --)
 Run-time: (x --)
"store-to"

A simpler and faster alternative to standard to and
value.

!> is an immediate word.

Interpretation:

Parse name, which is the name of a word created by
constant or const, and make x its value.

Compilation:

Parse name, which is a word created by constant or
const, and append the run-time semantics given below to
the current definition.

Run-time:

Make x the current value of constant name.

Origin: IsForth.

See also: c!>, 2!>.

Source file: <src/lib/data.store-to.fs>.

!a

 !a (x --) "store-a"

Store x at the address register.

See also: a, @a.

Source file: <src/lib/memory.address_register.fs>.

!a+

 !a+ (x --) "store-a-plus"

Store x at the address register and increment the address
register by one cell.

See also: a, @a+.

Source file: <src/lib/memory.address_register.fs>.

!bank

 !bank (x a n --) "store-bank"

Store cell x into address a ($C000..$FFFF) of bank
n.

!bank is written in Z80. Its equivalent definition in
Forth is the following:

 : !bank (x a n --) bank ! default-bank ;

See also: @bank, c!bank.

Source file: <src/lib/memory.far.fs>.

!bit

 !bit (f b ca --) "store-bit"

Store flag f in an element of a bit-array, represented by
address ca and bitmask b.

See also: @bit, bit-array.

Source file: <src/lib/data.array.bit.fs>.

!csp

 !csp (--) "store-c-s-p"

Save the current data stack position, sp@, into csp, to be
checked later by ?csp. !csp is used by :, :noname
and asm for error checking.

Definition:

 : !csp (--) sp@ csp ! ;

Origin: fig-Forth.

Source file: <src/kernel.z80s>.

!exchange

 !exchange (x1 a -- x2) "store-exchange"

Store x1 into a and return its previous contents x2.

See also: c!exchange, exchange.

Source file: <src/lib/memory.MISC.fs>.

!p

 !p (b a --) "store-p"

Output byte b to port a.

See also: @p, !, c!.

Source file: <src/lib/memory.ports.fs>.

!sound

 !sound (b1 b2 --) "store-sound"

Set sound register b2 (0…​13) to value b1.

See also: @sound, sound, play, sound-register-port,
sound-write-port.

Source file: <src/lib/sound.128.fs>.

!volume

 !volume (b1 b2 --) "store-volume"

Store b1 at volume register of channel b2 (0..2,
equivalent to notation 'A'..'C').

Registers 8..10 (Channels A..C Volume)

		

Bits 0-4

		
Channel volume level.

		

Bit 5

		
1=Use envelope defined by register 13 and ignore the volume setting.

		

Bits 6-7

		
Not used.

~ Disassembly of the ZX Spectrum 128k ROM0

See also: @volume, !sound.

Source file: <src/lib/sound.128.fs>.

