SMSQ Language Dependent Modules

Le Grand Pressigny, FRANCE - Tony Tebby

In order to be able to distribute versions of SMSQ which provide messages in more than one language and to
support multiple keyboard layouts, SMSQ uses a uniform "language dependent module” structure.

At the moment, SMSQ supports four types of language dependent module:
1. language preference tables,

2. message tables,

3. keyboard tables,

4. printer translate tables.

The principle underlying the language dependent module structure is that each module is identified by a code: for
the main languages supported this is the international dialling code (usually 1, 33, 44 or 49). New modules can be
added, but these do not (at present) replace existing modules. For this reason, if you live in the south of France
and wish to add messages in Occitan, it is strongly recommended that you identify the messages with a code
other than 33 (for example 3300).

Module Headers - SMSQ creates a table of language modules. This is just a table of pointers to
the individual modules. Clearly this does not impose any particular constraints on the size of a module, but it
does require that 2 module has a header in a known form (defining the type of module and its language code). In
addition, each module header includes a link pointer to another module header so that many modules may be
added to the system in one call. Finally, to provide the maximum flexibility, the module header is not attached
directly to the module, but the last long word of the modiile header is a relative pointer to the module itself.

The code to link in a list of language modules is quite simple.

moveqg #sms.lldm,d0 key to link in
lea lang _mod,al pointer to modules to link
trap #1 do SMS call
ris
lang_mod modules start here

This code can be written to a file using WPUT (LPUT can be used for greater efficiency, if you wish).

WPUT #fch, $7030, $43FA, 30006, $4E41, $4E75
Alternatively, the code can be written directly to the computer's memory (useful for testing).

POKE_W base, $7030, $43FA, $0006, $4E41, $4E75
Language Preference Tables - The language preference tables are the most important and the simplest. A
language preference table is simply a language name (usnally the international car registration letters} followed
by a table of acceptable language numbers in order of decreasing acceptability.
This allows the creation of a new language variant without the need to define all of the tables. Thus for Occitan,

the second preferred language would probably be French, and, since there is a complete set of French tables,
further preferences would not be needed.

occitan_pref
de.w 0 it is a preference table
dec.w 0 always zero
de.w 3300 Occitan language number
dc.w next-* relative pointer to next or zero
dc.l occ_pref-* pointer to preference table

rhig

SMSQ Language Dependent Modules - (cont'd)

occ_pref
de.l FOC’ Occitan is a language of France
de.w 3300 QOccitan is the most acceptable
de.w 33 French is next most acceptable
de.w 0 ... and that is all

If the preference table is to be written to a file using SBASIC, WPUT and BPUT are the most appropriate
routines to use.

WPUT #fch, 0, 0, 3300, 0, 0, 4 the header - no next, table follows
BPUT #fch, FOC' the name: left justified, space filled to 4 chars
WPUT #fch, 3300, 33,0 the preferred languages

If this seems a bit heavy, it is. The system is designed to cope with many more languages than you are ever likely
to need and to allow dialects or personal variations to be added without inhibiting access to the standard
languages. Once you have linked in this new preference table, you can check whether it is there by printing
LANGUAGES:

PRINT LANGUAGES$ (3300} should print FOC

Message Tables - SMSQJE uses four message tables itself. The messages are in four groups. It is possible to
add new message tables for these four groups for new languages. It is also possible to add new groups of
messages for the existing languages and for new languages. Software developers are requested not to treat this
too lightly and create new groups frivolously.

At present, the groups are numbered in 4s {(message group O is the set of old QL standard messages, message
group 4 is the set of SBASIC syntax and execution error messages etc.). The error or message code used to access

a message is
-(error message number + 32 x error message group number)

The messages in a group may be listed using REPORT

FOR mess = 1 to 30: REPORT #n, {mess + 32 * group)
A message table has the standard language dependent module header. The table itself has pointers to the
messages which are relative to the start of the table. As there can be no message O, the zeroth pointer is replaced

by the language number. We can add a new message table for group 12 (table of months and days of week) which
(fortunately for this example) only has two entries.

occitan_msl2
dc.w 3 it is a message table
de.w 12 group 12
de.w 3300 Occitan language number
de.w next-¥ relative pointer to next or zero
de.l occ_ms12-* pointer to preference table
occ_ms12 .
de.w 3300 QOccitan
de.w occ_mnth-occ_ms12 peinter to first message
de.w occ_dow-oce_ms12 pointer to second message
occ_mnth

de.w 36,'IchNi SanGo Ro ShiHa Ku Ju Juifon'

occ_dow
dc.w 21,'Ni Ge Ka SuiMo KinDo '
6

SMSQ Language Dependent Modules - (cont'd)

Note that the first message must follow the last pointer: the first pointer is, therefore, twice the number of
messages in the table, plus 2. It is possible to write this message table to a file using a simple BASIC program as
follows, but for the more complex tables with variable length messages a more complex program would be
required.

WPUT #fch, 3, 12, 3300, 0, 0, 4 the header - no next, table follows

WPUT #fch, 3300, 6, 6+2+36 the number and two pointers

PUT #fch, TchNi SanGo Ro ShiHa Ku Ju JuiJun'

PUT #fch, 'Ni Ge Ka SuiMo KinDo the two strings

BPUT #fch, O a pad byte because the string was odd length

Once you have linked in this new message table, you can use it by typing the LANG_USE command:

LANG_USE 3300 or
LANG_USE FOC

Keyboard Tables - The language dependent module that is next most likely to be added is a keyboard table. A
keyboard table has the standard language dependent module header. For historical reasons, the module pointer in
the header points to an intermediate structure. This intermediate structure has the language code followed by a
pair of relative pointers the first of which points to the "normal" keyboard table, the second points to a table of
"non-spacing characters”. These are keys which when pressed do nothing but modify the next character typed.
These keys are usually an accent key which is used to add an accent to the next letter. (Some keyboard drivers
may not support non-spacing characters.)

occitan_kbd
de.w 1 it is a keyboard table
de.w 0 no group
de.w 3300 Occitan language number
de.w next-* relative pointer to next or zero
dc.l occ_kbd-* pointer to preference table
occ_kbd
dew 3300 Occitan
de.w occ_ktab-* pointer to keyboard table
de.w oce_nsid-* pointer to non-spacing character table

If the keyboard table follows immediately after the header and the non-spacing table immediately after that, the
header may be written by a simple SBASIC program

WPUT #fch, 1, 0,3300,0,0, 4 the header - no next, table follows

WPUT #fch, 3300, 4, 2+512 the number and two pointers (2l but QL kbd)
or WPUT #fch, 1,0, 3300,0,0, 4 the header - no next, table follows

WPUT #fch, 3300, 4, 2+256 the number and two pointers (QL kbd)

The size of the keyboard table depends on the keyboard itself. The table is divided into four blocks: normal
keystrokes, control keystrokes, shifted keystrokes and shifted control keystrokes. The tables are the characters
produced for each of the possible keyboard codes. For the main keyboards, these keyboard codes are as follows.

QL keyboand - 64 cntries in each of 4 blocks

F1-F5 57 59 60 56 o6l
Top row 51 27 9 25 62 58 10 63 8 16 13 21 37 45 53
19 11 17 12 20 14 22 15 18 23 29 32 40
33 28 3% 30 36 38 26 31 34 24 39 47 48
() 41 3 43 4 44 6 46 7 42 5 ()]
(1) 49 52 54 50 55 (@)

SMSQ Language Dependent Modules - (cont'd)

Thus, for a normal QL keyboard layout, the codes for the digit keys are 27, 9, 25 etc. The 27th entry in the

keyboard table should be the character '1’, the 9th entry '2' etc. (The table starts with the zero'th entry.) The key
codes in brackets are trapped by the driver (Shift, Control and Alf) and the corresponding values in the keyboard

tables should be zero.
Atari ST TT keyboard - 128 entries in each of 4 blocks

F1-F10 59 60 61 62 63 64 65 66 67 68
Top row 1 2 3 4 5 6 7 8 9 10 11 12 13 41 14
15 16 17 18 19 20 21 22 23 24 25 26 27 83
(299 30 31 32 33 34 35 36 37 38 39 40 28 43
42) 96 44 45 46 47 48 49 50 51 52 53 (584)

(56) 57 58
Cursor pad 08 97 Numeric pad 99 100 101 102
82 72 71 103 104 105 74
75 80 77 106 107 108 78
109 110 111
112 113 114

‘Thus, for a normal ST keyboard layout, the codes for the digit keys are 2, 3, 4 etc. The 2nd entry in the keyboard
table should be the character '1', the 3rd entry "2’ etc. {The table starts with the zero'th entry.) The key codes in
brackets are trapped by the driver (Shift, Control and Alt) and the corresponding values in the keyboard tables

should be zero.

QXL AT keyboard - 128 entries in each of 4 blocks - The PC models AT and later incorporate an
"intelligent” keyboard controller which has three main functions:

1. converting the easy to handle, explicit, AT 102 key keyboard codes into garbled sequences of PC XT
keyboard codes (up to 10 keycodes for each keysiroke!);

2. losing keystrokes,
3. getting shift keys "stuck down".

The keyboard tables are, therefore, based on the PC XT key codes.

Esc-F10 1 59 60 61 62 63 64 65 66 67 68
Top row 41 2 3 4 s 6 7 8 9 10 11 12 13 43 14
1516 17 18 19 20 21 22 23 24 25 26 27
5830 31 32 33 34 35 36 37 38 39 40 28
(42) 86 44 45 46 47 48 49 50 51 52 53 (54)
29 (56) 57 (56) 29
Odd pad 55 70 (69
Cursor pad 114 103 105 Numeric pad (69) 133 55 74
115 111 113 , 71 72 73
75 76 77 78
104 79 80 81
107 112 109 82 83 124
Numeric pad (69) 133 55 106
Without Num Lock 103 104 105
107 108 109 110
111 112

114

SMSQ Language Dependent Modules - (cont'd)

Thus, for a normal PC keyboard layout, the codes for the digit keys are 2, 3, 4 etc. The 2nd entry in the keyboard
table should be the character '1', the 3rd entry 2' etc. (The table starts with the zero'th entry.) The key codes in
brackets are trapped by the driver (Shift, Control and Alt) and the corresponding values in the keyboard tables
should be zero.

Sample Keyboard Table - 1t is easiest to see the format of the keyboard table if the PC AT 102 key keyboard
layout is taken as an example. The first block of 128 characters is for unshifted characters.

occ_ktab ; unshifted keys for UK kbd (in groups of 16)
dc.b 0,$1b,'1,2,'3,'4,'5'6','7,'8','9','0",-','=",$¢2,$09
deb g wle\Tt)y, Ui 0, p,85b,$5d,50a.0,'a",'s’
deb 'd.f,g VWK T, 827, 890,0,%,'2)%, ¢, V'
deb D.n.m’,,.,[,0,%.0, ", $e0,%e8,%ec, 510,514,518
dcb $ea,$ee,$2,516,5a,0,.5(9,'7,8,'9,-,4,'5,6",'+,'1'
ded '2,3.0.,.,0,0,Y1,0,0,0,0,0,0,0,0,0
dcb 0,0,0,0,0,0,0,$d5,8d0,$d4,0,5¢0,0,c8,0,5dd
deb $d8,%dc,$eb,$¢a,0,7,0,0,0,0,0,0,$02,0,0,0

This block is followed immediately by the block of 128 shifted characters, then the 128 characters which are
produced when the control key is held down and finally the 128 characters which are produced when both shift
and control keys are held down. As there are only 256 different values that can be stored in a byte and there are
512 total keyboard table entries, there will naturally be a large number of zeros in the tables as well as a certain
number of duplicate codes.

Non-Spacing Characters - The non-spacing character table is a little bit odd. It is a 256 byte table which is
(nearly) filled with zeros. For any character which can be used as a non-spacing character, the corresponding
entry in the table is non-zero. Thus, if the ' is used as a non-spacing character to produce accented characters, the
39th entry in the table is non-zero (' is ASCII code 39). The non-zero value is the offset from the end of the table
to the list of modified characters for this non-spacing character.

The table is immediately followed by a variable size table of modifiable and modified characters. This table has
entries which are one longer than the number of modifiable characters (each entry is terminated by a zero). The
first entry lists the modifiable characters. This is followed by an entries giving the corresponding modified
characters for each of the non-spacing characters.

occ_nsid
de.b 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
de.b 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
dc.b 0,0,4,0,0,0,0,8,0,0,0,0,0,0,0,0 apostrophe for acute accent
dc.b 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
de.b 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
de.b 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
dc.b 6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
dc.b 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
"deb 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16 open quote for grave accent
de.b 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
de.b 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
dc.b 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
dc.b 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
dc.b 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
dc.b 0,0,0,0,4,0,0,0,0,0,0,0,6,0,0,0
dc.b 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

dc.b a'ei, o\ u,E, 0 modifiable characters (including space)
dc.b $8C,$83,$93,596,$99,$A3,527,0 acute accented characters (including ")
de.b $8D,$90,594,597,$9A,'E'$9F,0 grave accented characters (including £)

SMSQ Language Dependent Modules - (cont'd)

This table can be written to a file using BPUT commands in an SBASIC program.

nsid = FPOS (#fch) : REMark - remember where it starts
BPUT #fch, FILLS(CHR$(0),256) : REMark - fill table with zeros

BPUT #fch\nsid+39, 8 : REMark - fill in apostrophe

BPUT #fch\nsid+159, 16 : REMark - fill in open quote

BPUT #ich\nsid+236 : REMark - back to end of table

BPUT #fch, "aeiouE ",0 : REMark - unmodified characters at end
BPUT #fch, "46i64E™,0 : REMark - then acute accents

BPUT #fch, "agionE™",0 : REMark - and grave accents

Once you have linked in this new keyboard tabie, you can use it by typing the KBD_TABLE command:

KBD_TABLE 3300 or
KBD_TABLE FOC

Printer Translate Tables - The printer translate tables are directly compatible with the old, not very useful, QL
printer translate tables used by the TRA command.

These "language dependent” tables came into existence because someone at Sinclair had the rather strange notion
that, in: some way, the character 4 (for example) should be printed differently depending on the country. I think
that an 3 is an & wherever you are.

SMSQ has a standard printer translate that works on any PC compatible printer set to the USA character set (the
use of a non-USA character sets tends to make it impossibie to print certain characters).

For peculiar printers, however, you can set up your own tables.

A printer translate table has the standard language dependent module header. For historical reasons, the module
pointer in the header points to an intermediate structure. This intermediate structure has the language code
foltowed by a pair of painters relative to the language code. The first of these points o the "byte to byte” translate
table, the second points to a table of "byte to three byte" translates”.

The byte to byte table has, naturally, 256 single byte entries. The first entry is zero {null stays as null) all other
entries are either the translated character or zero. If the entry is zero, the character is translated using the three
byte table.

The three byte table is preceded by a zero byte (historic) and starts with the number of three byte sequences (in a
byte). This is followed by groups of 4 bytes, the first of which is the QL character, the next three are the
characters to be sent to the printer.

The following is a copy of the IBM printer translate table which may be used as a basis for other printers.

occitan_tra
de.w 2 it is a printer translate table
dcw 0
de.w 3300 : Occitan language number
de.w next-* relative painter to next or zero
dc.l occ_tra-* pointer to preference table
occ_ftra
de.w 3300 Qccitan
de.w occ_byte-oce_tra pointer to byte to byte table
de.w oce_3byte-occ_tra pointer to three byte table

10

SMSQ Language Dependent Modules - (cont'd)

occ_byte
de.b
dc.b
de.b
dc.b
dc.b
de.b
dc.b
de.b

dc.b
de.b
dc.b
dc.b
dc.b
dc.b
dc.b
dc.b
de.b
dc.b
dc.b
dc.b
dec.b
de.b
dc.b
de.b

de.b
dc.b
dc.b
dc.b
dc.b
de.b
dc.b
de.b

de.b

occ_3byte
dc.b
dc.l
dc.l
dc.l
del
dc.l
dc.
dc.l
del
de.l
dc.d
de.l
de.l
dc.]
dc.d
de.l

$00,501,%02,$03,$04,305,%06,507
$08,$09,50A,%0B,$0C,$0D,$0E,$0F
$10,$11,$12,$13,$14,515,$16,817
$18,$19,31A,51B,51C $1D,S1E,51F
$20,$21,$22,$23,$24,525,526,%27
$28,529,$2A,52B,52C,$2D.$2E,$2F
$30,531,$32,$33,$34,$35,$36,837
$38,$39,$3A,$3B,53C,$3D,53E,$3F

$40,541,$42,943,$44,545,346,547
$48,549,94A,54B,54C.$4D,$4E , $4F
$50,551,$52,$53,$54,$55,$56,857
$58,559,$5A,55B,$5C,$5D,$5E,55F
$9C,$61,5$62,$63,564,565,866,567
$68,$69,36A,56B,56C,$6D,$6E,$6F
$70,$71,$72,%$73,$74,$75.$76,877
$78,$79,$7A,$7B,$7C,57D,37E,$00
$84,500,586,$82,$94,$00,500,381
$87,$A4,$91,500,$A0,$85,583,589
$8A,588,58B,5A1,58D,58C,5A2,595
$93,5A3,%97,$96,5E1,89B,39D,360
$8E,500,58F,$90,5$99,$00,500,$9A
$80,8A5,$92,500,$E0,$EB,$E9,$00
$E6,5E3,5ED,$AD,$A8,$3F,$EC,500
$AE, $AF,$F8,5F6,500,500,500,500

$C0,%C1,8C2,%C3,$C4,5C3,3C6,5C7
$C8,$C9,5CA,$CB,$CC,$CD,$CE,SCF
$D0,5D1,5D2,$D3,5D4,5DS,5D6,8D7
$D8,5D9,$DA,$DB,$DC,5DD,$DE, $DF
$B0,$B1,$B2,5B3,5B4,$B35,5B6,3B7
$B8,$B9,$BA $BB,$BC,$BD,$BE.SBF
$F0,5F1,$F2,$F3,$F4,5F5,5F6,8F7

$F8,5F0,5FA $FB, $FC,$FD,$FE, $FF
0 ;pad

15 ; 15 replaces
SASAFOBTE ; O bs tilde
SAFSCO82E ;\bs.
$7F63084F ;¢bsO
$8161087E ; a bs tilde
$856F087E ;0 bs tilde
$866F082F ;obs/
$8B6F6500 ;o€
$A141087E ; A bs tilde
$AG4F082F ;Obs/
$AB4F4500 ;OE
$B76F0878 ;obsx
$BC3C082D ;< bs -
$BD3E082D ;>bs -
$BESE0821 ;Abs!
$BF760821 ;vbs!

11

H "=

- SMSQ Language Dependent Modules - (cont'd)

Once you have linked in this new printer translate table, you can use it by typing the TRA command:

TRA 1, 3300 or
TRA 1, FOC

A Complete Language Dependent Extension - This SBASIC program creates a complete language dependent
extension with preference, keyboard and message tables. SBASIC procedures are used to set the relative pointers:
you can try to decipher them if you wish.

The keyboard table is the standard UK PC (QXL) keyboard with one difference: the F6 to F12 keys are used as
non-spacing characters. To avoid conflicts with existing key codes, the ALT cursor key codes are borrowed (the
ALT key is handled within the driver and so the only ALT key codes which appear in the table are those for
HOME (=ALT SHIFT UP) and END (=ALT SHIFT DOWN)).

The message tables are very slightly modified versions of the English tables: All four standard groups are
included to make it easier for you to create your own message tables.

SEE YOU AT OAK RIDGE!

MECHANICAL AFFINITY MECHANICAL AFFINITY

513 EAST MAIN ST. 5231 WILTON WOOD CT
PERU, IN 46970 USA INDIANAPOLIS, IN 46254 USA
317473-8031 Tues - Sat 317-291-6002

5to 9 P.M.

We accept checks, cash,
money orders, or will t
send C.0.D.All returned X
goods need prior okay. <
e o

We will be at the IQLR and Miracle QL show June 10 at Oak Ridge
and invite all of our customers to join us there for the festivities and the
chance to socialize. PLUS!!! you will have the chance to purchase some of
the best software in the world for your QL. We will have QLs, Gold
Cards, Super Gold Cards, QXLs, Trump Cards, Hermes, Qubide AT/IDE
Interfaces, parts, chips, membranes, tons of the latest software for the QL,
7.88s to use as a portable for your QL.Take our word that the trip will be
worth the while. An excellent vacation with European and UK dealers as
well as us. Also UPDATE Magazine, IQLR and QBOX will be there.
Hope to see you soon. In the meantime if you need anything, call!

Frank Davis and Paul Holmgren

12

