

Solo Forth
Version 0.14.0-rc.124+20201123 for TR-DOS

Marcos Cruz

2020-11-21

Table of Contents
Description . 4

Main features . 4

Minimum requirements . 4

Motivation, history and current status . 5

About this manual . 6

Platforms . 7

Comparative of DOS support . 7

Download . 10

Project directories . 11

Disks. 12

The TRD disk image format . 12

How to run . 13

Pentagon 128. 13

Pentagon 512. 13

Pentagon 1024. 13

Scorpion ZS 256 . 13

ZX Spectrum 128/+2 with the Beta 128 interface . 13

How to use the library. 15

How to make a library index. 15

How to load a program that needs the library . 17

How to search the source files . 18

How to test and benchmark. 19

First, set the required block disks . 19

Second, load the desired code. 19

How to write Forth programs . 20

How to rebuild Solo Forth . 21

Exception codes . 22

Notation . 28

Stack notation . 28

Z80 flags notation. 31

Z80 instructions . 32

Legend . 42

Glossary . 44

!. 44

" . 47

. 48

%. 53

' . 53

1

(. 55

). 76

* . 76

+ . 78

, . 86

-. 87

. 97

/. 108

0 . 118

1 . 123

2 . 126

3 . 141

4 . 143

8 . 143

:. 145

;. 147

< . 150

= . 154

> . 154

? . 165

@ . 181

[. 185

\. 193

] . 193

_ . 195

a . 195

b . 226

c . 251

d . 301

e . 336

f . 362

g . 409

h . 425

i. 433

j. 449

k . 451

l. 476

m . 501

n . 526

o . 548

p . 566

2

q . 585

r . 587

s . 613

t . 660

u . 680

v . 702

w . 705

x . 720

y . 729

z . 731

{ . 731

| . 732

} . 744

~ . 746

3

Description
Solo Forth is a Forth system for the ZX Spectrum 128 and compatible computers, with disk drives
and +3DOS, G+DOS, or TR-DOS.

Solo Forth cannot run on the original ZX Spectrum 48, but could be used to develop programs for it.

Solo Forth can be used as a stand-alone Forth system (either on an emulator or on the real
computer), or as part of a cross-development environment on a GNU/Linux operating system (in
theory, other type of operating systems could be used as well).

Main features
• Fast DTC (Direct Threaded Code) implementation.

• A kernel as small as possible.

• Name space in banked memory, separated from code and data space.

• Easy access to banked memory.

• Big library of useful source code.

• Modular DOS support.

• Fully documented source code.

• Detailed documentation.

• Conform to the Forth standard (not fully tested yet).

Minimum requirements
• 128 KiB RAM.

• One double-sided 80-track disk drive (three recommended), for 640-KiB disks. Other disk
formats supported by TR-DOS can be used, but only for files, not as block disks.

4

http://forth-standard.org

Motivation, history and current status
The motivation behind Solo Forth is double:

1. I wanted to program the ZX Spectrum with a modern Forth system: In 2015, my detailed
disassembly of ZX Spectrum’s Abersoft Forth, a popular tape-based implementation of fig-Forth
ported to several 8-bit home computers in the 1980’s (and the Forth system I started learning
Forth with in 1984), helped me understand the inner working of the fig-Forth model, including
its by-design limitations, compared to modern Forths, and discover some bugs of the ZX
Spectrum port. At the same time I wrote the Afera library in order to make Abersoft Forth more
stable, powerful and comfortable for cross development. The objective was reached but, after a
certain point, further improvements weren’t feasible without making radical changes in the
system. The need for a new Forth system arised: a Forth designed from the start to use disk
drives and banked memory, and useful for cross-development.

2. Nobody had written such a Forth system before: In 2015 there was no disk-based Forth for
the ZX Spectrum platform, and the only Forth written for ZX Spectrum 128 (the first model with
banked memory) was Lennart Benschop’s Forth-83 (1988). But despite being more powerful
than fig-Forth, it is still tape-based and keeps the block sources in a RAM disk. Beside, the system
is built by metacompilation, what makes it difficult to adapt to disk drives.

The development of Solo Forth started on 2015-05-30, from the disassembled code of Abersoft Forth.
Some ideas and code were reused also from the Afera library and from a previous abandoned
project called DZX-Forth (a port of CP/M DX-Forth to ZX Spectrum +3e).

The GitHub repository was created on 2016-03-13 from the development backups, in order to
preserve the evolution of the code from the very beginning.

Solo Forth is very stable, and it’s being used to develop two projects in Forth: Nuclear Waste
Invaders and Black Flag.

5

http://programandala.net/en.program.abersoft_forth.html
http://programandala.net/en.program.abersoft_forth.html
http://programandala.net/en.program.afera.html
http://programandala.net/en.program.dzx-forth.html
http://github.com/programandala-net/solo-forth
http://programandala.net/en.program.nuclear_waste_invaders.html
http://programandala.net/en.program.nuclear_waste_invaders.html
http://programandala.net/en.program.black_flag.html

About this manual
This is the TR-DOS variant of the Solo Forth manual. Nevertheless, some details about the rest of
supported DOSes are included as well, when the comparison is useful.

This manual is built automatically from the sources. It contains mainly a description of the Forth
system, the basic usage information and a complete glossary with cross references.

6

Platforms
Table 1. Supported platforms

Computer Disk interface DOS

Pentagon 128 TR-DOS

Pentagon 512 TR-DOS

Pentagon 1024 TR-DOS

Scorpion ZS 256 TR-DOS

ZX Spectrum 128 Beta 128 TR-DOS

ZX Spectrum 128 Plus D G+DOS

ZX Spectrum +2 Beta 128 TR-DOS

ZX Spectrum +2 Plus D G+DOS

ZX Spectrum +2A (External disk drive) +3DOS

ZX Spectrum +2B (External disk drive) +3DOS

ZX Spectrum +3 +3DOS

ZX Spectrum +3e +3DOS

Porting the G+DOS version of Solo Forth to its close relatives GDOS, Beta DOS and Uni-DOS would
require only minor changes, beside adding some library code to support their specific features.

Supporting IDEDOS, ResiDOS, esxDOS or NextZXOS would let Solo Forth use hard drives, flash
cards, and a lot of memory.

Table 2. Platforms that could be supported in future versions

Computer Disk interface DOS

ZX Evolution TS-Conf TR-DOS

ZX Spectrum +3e divIDE/divMMC/ZXATASP/ZXCF/ZXMMC… IDEDOS

ZX Spectrum +3e divIDE/divMMC/ZXATASP/ZXCF/ZXMMC… ResiDOS

ZX Spectrum 128/+2 DISCiPLE GDOS

ZX Spectrum 128/+2 DISCiPLE/Plus D Uni-DOS

ZX Spectrum 128/+2 Plus D Beta DOS

ZX Spectrum 128/+2/+2A/+2B/+3 divIDE/divMMC/ZXATSP/ZXCF/ZXMMC… esxDOS

ZX Spectrum Next NextZXOS

ZX-UNO/ZX-UNO+/ZX-DOS esxDOS

Comparative of DOS support
Block disks are fully supported on TR-DOS , but many file-management words are not implemented

7

http://www.worldofspectrum.org/zxplus3e/technical.html
http://www.worldofspectrum.org/residos/
http://esxdos.org
http://specnext.com

yet, especially the standard Forth words.

The following table shows the main disk-management words implemented on each DOS:

Table 3. Main disk-related words implemented

Word +3DOS G+DOS TR-DOS Description

2-block-drives YES YES YES Use the first two drives as block drives

3-block-drives n/a n/a YES Use the first three drives as block drives

4-block-drives n/a n/a YES Use the first four drives as block drives

>file YES YES Save memory zone to a file

acat YES YES YES Display an abbreviated disk catalogue

bank-read-file YES Read from a file with a bank paged in

bank-write-file YES Write to a file with a bank paged in

bin YES YES Standard Forth

cat YES YES YES Display a detailed disk catalogue

close-file YES Standard Forth

create-file YES Standard Forth

delete-file YES YES YES Standard Forth

drive-unused YES YES Return the number of unused kibibytes in a drive

file-dir# YES Return the directory number of a file

file-exists? YES YES Return a flag: does a files exists?

file-length YES YES Return the length of a file

file-position YES Standard Forth

file-sector YES Return the first sector of a file

file-sectors YES Return the number of sectors occupied by a file

file-size YES Standard Forth

file-start YES YES Return the start address of a file

file-status YES YES Standard Forth

file-track YES Return the first track of a file

file-type YES YES Return the type of a file

file> YES YES Load file contents to memory zone

find-file YES YES Find a file

flush-drive YES Write all pending data for a drive

flush-file Standard Forth

get-block-drives YES YES YES Get the drives used as block drives

get-drive YES YES YES Get the number of the current drive

8

Word +3DOS G+DOS TR-DOS Description

include-file Standard Forth

include Standard Forth

included Standard Forth

open-file YES Standard Forth

r/o YES Standard Forth

r/w YES Standard Forth

read-byte YES Read byte from file

read-file YES Standard Forth

read-line YES Standard Forth

rename-file YES YES YES Standard Forth

reposition-file YES Standard Forth

require Standard Forth

required Standard Forth

resize-file Standard Forth

set-block-drives YES YES YES Set the drives used as block drives

set-drive YES YES YES Set the current drive

undelete-file YES Undelete a file

w/o YES Standard Forth

wacat YES YES Display an abbreviated disk catalogue with
wildcards

wcat YES YES Display a detailed disk catalogue with wildcards

write-byte YES Write a byte to a file

write-file YES Standard Forth

write-line YES Standard Forth

9

Download
Solo Forth can be downloaded from two sites:

• Solo Forth home page

• Solo Forth repository in GitHub

10

http://programandala.net/en.program.solo_forth.html
http://github.com/programandala-net/solo-forth

Project directories
Directory Subdirectory Description

backgrounds Version background images

bin ZX Spectrum binary files for disk 0

bin addons Code loaded from disk, not assembled in the library yet

bin dos DOS files

bin fonts Fonts for the supported screen modes

disks Disk images

disks gplusdos G+DOS disk images

disks plus3dos +3DOS disk images

disks trdos TR-DOS disk images

doc Manuals in DocBook, EPUB, HTML and PDF

make Files used by make to build the system

screenshots Version screenshots

src Sources

src addons Code to be loaded from disk. Not used yet.

src doc Files used to build the documentation

src inc Z80 symbols

src lib Library

src loader BASIC loader for disk 0

tmp Temporary files created by make

tools Development and user tools

vim Vim files

vim ftplugin Filetype plugin

vim syntax Syntax highlighting

11

Disks
The <disks/trdos> directory of the directory tree contains the following disk images:

disks/trdos/disk_0_boot.128.trd
disks/trdos/disk_0_boot.pentagon_1024.trd
disks/trdos/disk_0_boot.pentagon_512.trd
disks/trdos/disk_0_boot.scorpion_zs_256.trd
disks/trdos/disk_1a_library.trd
disks/trdos/disk_1b_library.trd
disks/trdos/disk_2_programs.trd
disks/trdos/disk_3_workbench.trd

• Disk 0 is the boot disk. It contains the BASIC loader, the Solo Forth binary, some addons (i.e.
compiled code that is not part of the library yet) and fonts for the supported screen modes.
<disk_0_boot.trd> is the default disk image for 128-KiB models (ZX Spectrum 128 and Pentagon
128). Other disk 0 images are included for specific models of Pentagon and Scorpion computers.
In a future version, one single disk will contain all the executables, and the right one will be
selected automatically.

• Disks 1a and 1b contain the library. Since TR-DOS disks are only 640 KiB, its library is splitted
into two disks.

• Disk 2 contains some programs: little sample games, most of them under development, two
block editors and one sound editor.

• Disk 3 contains tests and benchmarks. Most of them were used during the development and
their only documentation is the commented source.

WARNING
Disks 1a, 1b, 2 and 3 are Forth block disks: They contain the source Forth
blocks directly on the disk sectors, without any file system. Therefore their
contents cannot be accessed with ordinary DOS commands.

The TRD disk image format
The TRD disk images, one of the formats used for TR-DOS disks, are dumps of the original disks,
without any format-describing metadata. But TR-DOS needs the system track (track 0) to contain
certain data in order to recognize the disk, even for sector-level access. That’s why only 636 KiB can
be used for Forth blocks, 4 KiB (one track) less than the maximum capacity.

Anyway, TRD disk images can be browsed with a Forth block editor, with the following restriction:
blocks 0..3 will be shown as garbage (they are track 0 of the disk), while the actual first Forth block
of the disk (block 0) will be shown as block 4.

12

How to run

Pentagon 128
1. Run a ZX Spectrum emulator and select a Pentagon 128[1].

2. “Insert” the disk image file <disks/trdos/disk_0_boot.trd> as disk 'A'.

3. Choose “TR-DOS” from the computer start menu. This will enter the TR-DOS command line[2].

4. Press the 'R' key to get the RUN command and press the Enter key. Solo Forth will be loaded from
disk.

Pentagon 512
1. Run a ZX Spectrum emulator and select a Pentagon 512[1].

2. “Insert” the disk image file <disks/trdos/disk_0_boot.pentagon_512.trd> as disk 'A'.

3. Choose "128k menu"[3] from the computer start menu (the reset service menu). This will enter a
ZX Spectrum 128 style menu. Choose “TR-DOS”. This will enter the TR-DOS command line[2].

4. Press the '.' key to get the RUN command and press the Enter key. Solo Forth will be loaded from
disk.

Pentagon 1024
1. Run a ZX Spectrum emulator and select a Pentagon 1024[1].

2. “Insert” the disk image file <disks/trdos/disk_0_boot.pentagon_1024.trd> as disk 'A'.

3. Choose "128k menu"[3] from the computer start menu (the reset service menu). This will enter a
ZX Spectrum 128 style menu. Choose “TR-DOS”. This will enter the TR-DOS command line[2].

4. Press the '.' key to get the RUN command and press the Enter key. Solo Forth will be loaded from
disk.

Scorpion ZS 256
1. Run a ZX Spectrum emulator and select a Scorpion ZS 256[1].

2. “Insert” the disk image file <disks/trdos/disk_0_boot.scorpion_zs_256.trd> as disk 'A'.

3. Choose "128 TR-DOS" from the computer start menu. Solo Forth will be loaded from disk.

ZX Spectrum 128/+2 with the Beta 128 interface
1. Run a ZX Spectrum emulator and select a ZX Spectrum 128 (or ZX Spectrum +2) with the Beta

128 interface[1].

2. “Insert” the disk image file <disks/trdos/disk_0_boot.trd> as disk A of the Beta 128 interface.

3. Choose "128 BASIC" from the computer start menu.

13

4. Type randomize usr 15616 in BASIC (or just run usr15616 to save seven keystrokes). This will
enter the TR-DOS command line[2].

5. Press the 'R' key to get the RUN command and press the Enter key. Solo Forth will be loaded from
disk.

[1] Make sure the disk drives are configured as double-sided and 80-track

[2] The TR-DOS command line uses keyboard tokens, like the ZX Spectrum 48, but commands typed in 'L' cursor mode will be
recognized as well, as on the ZX Spectrum 128 editor. In order to get the 'L' cursor mode you can type a quote (Symbol Shift + 'P') or
press 'E' to get keyword REM. When the DOS command is typed in full, the quote or the REM must be removed from the start of the
line before pressing 'Enter'.

[3] In theory, choosing option “TR-DOS” from the system service menu should work. But it seems it depends on a specific version of
TR-DOS. This alternative method is longer, but it works with the TR-DOS 5.03 ROM. It will be improved in future versions of the
manual.

14

How to use the library
1. Run Solo Forth.

2. “Insert” the file <disks/trdos/disk_1a_library.trd> as disk B of the Beta 128 interface, and the file
<disks/trdos/disk_1b_library.trd> as disk C. Type 1 set-drive throw to make drive 1[4] the current
one.

3. Type 1 load to load block 1 from the library disk. By convention, block 0 cannot be loaded (it is
used for comments), and block 1 is used as a loader. In Solo Forth, block 1 contains 2 load, in
order to load the need tool from block 2. Type need set-block-drives to load the word set-block-
drives from the library. Then type 2 1 2 set-block-drives to configure the second and the third
drives as block drives.

4. Type need name, were “name” is the name of the word or tool you want to load from the library.

How to make a library index
The need word and its related words search the index line (line 0) of all blocks of the disk for the
first occurence of the required word, within a configurable range of blocks (using the variables
first-locatable and last-locatable). Of course, nested need are resolved the same way: searching
the library from the beginning. This can be slow. This is not a problem, because the goal of Solo
Forth is cross development, and therefore only the last step of the development loop, i.e., the
compilation of the sources from the disk images created in the host system, compilation that
includes all the slow searching of library blocks, is done in the real (actually, emulated) machine.
But the system includes a tool to create an index of the library, which is used to locate their
contents instantaneously, what makes things more comfortable when the Forth system is used
interactively.

How to use the library index:

1. Load the indexer with need make-thru-index.

2. Make the index and activate it with make-thru-index.

3. The default behaviour (no index) can be restored with use-no-index. The index can be
reactivated with use-thru-index.

The indexer creates an index (actually, a Forth word list whose definitions use no code or data
space) and changes the default behaviour of need and related words to use it. Then need name will
automatically start loading the first block where the “name” is defined

Table 4. Time and name-space memory required to make the library index

Computer DOS Block drives Library blocks Seconds Bytes

ZX Spectrum 128 G+DOS 1 791 (8..799) 357 19515

ZX Spectrum +3 +3DOS 1 710 (8..718) 323 18636

Pentagon 128 TR-DOS 2 1263 (8..1271) 255 18437

Scorpion ZS 256 TR-DOS 2 1263 (8..1271) 291 18437

15

NOTE
The name space is in far memory, a virtual 64-KiB space formed by 4 configurable
memory banks (see far-banks). No code or data space is used by the indexer.

An alternative indexer is under development. It’s activated with use-fly-index and does not make
and index in advance: Instead, it indexes the blocks on the fly, when they are searched the first
time. This indexer was included in Solo Forth 0.12.0 but it’s not finished yet.

[4] The TR-DOS BASIC interface uses letters 'A'..'D' to identify the disk drives, in commands and filenames. But, under the hood, TR-
DOS uses numbers 0..3 to identify the disk drives, and filenames don’t include the drive letter. This is the way Solo Forth works too.
Usage of 'A'..'D' instead of 0..3 may be implemented in a future version of Solo Forth, either by default or as an option.

16

How to load a program that needs the
library
The programs included in disk 2, and the tests and benchmarks included in disk 3, need words from
the library, which is in disks 1a and 1b. Therefore, three disk drives must be configured as block
drives, using 3-block-drives.

Let’s see an example, how to load the game called Tetris for Terminals, which is in disk 2.

1. Run Solo Forth.

2. Insert the first library disk image (disk 1a) into the first drive.

3. Insert the second library disk image (disk 1b) into the second drive.

4. Insert the programs disk image (disk 2) into the third drive.

5. Execute command 1 load in order to load the need utility from the first library disk.

6. Execute the command need 3-block-drives, which loads 3-block-drives from the library disk
and then executes it, setting the first three drives as block drives in their normal order.

7. Execute the command need tt, which locates the first block of the game (in disk 2) and loads it,
loading its requirements from the library as needed.

8. Follow the instructions.

When 3-block-drives is executed, the blocks of the first three disk drives are seen as one single set,
i.e. 200 list will list block 200 from the first disk, but 850 list will list the block from the second
disk:

Table 5. Range of blocks per drive on every DOS, in normal order

DOS 1st drive 2nd drive 3rd drive 4th drive

+3DOS 0-718 719-1437 n/a n/a

G+DOS 0-799 800-1599 n/a n/a

TR-DOS 0-635 636-1271 1272-1908 1909-2544

2-block-drives, 3-block-drives and 4-block-drives are layers above set-block-drives, which can
configure any number of block drives in any order. Examples:

 1 0 2 set-block-drives \ identical to ``2-block-drives``
 0 1 2 set-block-drives \ use two drives in reverse order
 2 1 0 3 set-block-drives \ identical to ``3-block-drives``
 2 3 1 3 set-block-drives \ use three drives in special order
3 2 1 0 4 set-block-drives \ identical to ``4-block-drives``
2 0 1 3 4 set-block-drives \ use four drives in special order

17

How to search the source files
A shell script is included in order to make searching the Forth sources for a regular expression a bit
easier: <tools/seek>.

The script uses ack by default; if ack is not installed, grep is used instead. All parameters are passed
to them.

Usage examples:

./tools/seek use-thru-index

./tools/seek use-thru-index -l

./tools/seek color

./tools/seek ";\s:\s"

./tools/seek "\-bank"

./tools/seek "code\s+\S+\s+\("

18

How to test and benchmark
Disk 3 (called “workbench”) contains many little specific tests and benchmarks used during the
development of Solo Forth, probably not interesting for the application programmer. But it also
contains an adapted version of the Hayes test and some known benchmarks.

First, set the required block disks
1. Run Solo Forth or enter cold to start from scratch.

2. “Insert” the files <disks/trdos/disk_1a_library.trd> and <disks/trdos/disk_1b_library.trd> into
drives 'A' and 'B' respectively of your emulated machine.

3. “Insert” the file <disks/trdos/disk_3_workbench.trd> into disk drive 'C' of your emulated
machine.

4. Enter command 1 load to load the need tool.

5. Enter command need 3-block-drives to set the first three disk drives as block drives, in their
normal order, making need search all of them: first drive 'A'/0 (the first part of the library), then
drive 'B'/1 (the second part of the library), and finally drive 'C'/2 (the benchmarks and tests) Note
need 3-block-drives not only loads the word 3-block-drives, but also executes it. This is
equivalent to the command need set-block-drives 2 1 0 3 set-block-drives.

Second, load the desired code
Depending on the code you want to run, enter the corresponding command:

1. need hayes-test

2. need byte-magazine-benchmark

3. need interface-age-benchmark

4. need vector-loop-benchmark

5. need all-benchmarks to run all the three benchmarks above

19

How to write Forth programs
Briefly, the steps of cross development are the following:

1. Edit the sources of the Forth program on the host operating system, using the simple FSB format
described in the documentation of fsb and fsb2.

2. Convert the sources into Forth block disk images using fsb2.

3. Run Solo Forth on a ZX Spectrum emulator and compile the Forth program from the disk image.
Further testing and debugging can be done in the Forth system.

In order to use Solo Forth to write programs for ZX Spectrum, programmers already acquainted
with Forth and GNU/Linux systems can extract all the required information from the <Makefile> of
Solo Forth.

The only difference between building Solo Forth and building a Forth program is the content of disk
0 (the boot disk), if needed, and the library modules included in the library disk, which usually also
contains the source of the program at the end. If the program doesn’t need to use the disk at run-
time, you can simply copy the default disk 0, and boot it to load your program from block 1 of your
customized disk 1, with a simple 1 load. When the loading finishes, you can save a system snapshot,
in SZX format, using the corresponding option of your ZX Spectrum emulator.

Some games are provided as examples, in disk 2. In order to try, improve and fix the Forth system
during its development, two more complex game projects are being developed at the same time:

• Black Flag (Black Flag in GitHub).

• Nuclear Waste Invaders (Nuclear Waste Invaders in GitHub).

They are not finished yet, but they can be useful as examples of program development with Solo
Forth. See how the useful load-program is used in block 1 of their sources.

20

http://programandala.net/en.program.fsb.html
http://programandala.net/en.program.fsb2.html
http://programandala.net/en.program.fsb2.html
http://programandala.net/en.program.black_flag.html
http://github.com/programandala-net/black-flag
http://programandala.net/en.program.nuclear_waste_invaders.html
http://github.com/programandala-net/nuclear-waste-invaders

How to rebuild Solo Forth
If you modify the sources, you have to build new disk images for your DOS of choice. Also the
manual depends on the documentation included in the sources.

First, see the requirements listed in the header of the <Makefile> file and install the required
programs. Then enter the project directory and use one of the following commands to build the
disk images or the manual for your DOS of choice:

Table 6. Commands to rebuild the disk images

DOS Computer

+3DOS All make plus3dos

G+DOS All make gplusdos

TR-DOS All make trdos

TR-DOS 128-KiB models make trdos128

TR-DOS Pentagon 512/1024 make pentagon

TR-DOS Scorpion ZS 256 make scorpion

All All make

Table 7. Commands to rebuild the manual

Format +3DOS G+DOS TR-DOS All

DocBook make plus3dosdbk make gplusdosdbk make trdosdbk make dbk

EPUB make plus3dosepub make gplusdosepub make trdosepub make epub

HTML make plus3doshtml make gplusdoshtml make trdoshtml make html

ODT make plus3dosodt make gplusdosodt make trdosodt make odt

PDF make plus3dospdf make gplusdospdf make trdospdf make pdf

All make plus3dosdoc make gplusdosdoc make trdosdoc make doc

NOTE

Only the EPUB, HTML and PDF built directly from the Asciidoctor source are
included in the release files. Other formats like ODT and DocBook, or the EPUB and
HTML variants obtained from DocBook, are optional and can be built from the
sources.

The disk images will be created in the <disks> directory. The manual will be created in the <doc>
directory.

21

Exception codes
Exception codes (also called throw codes of throw values) are used as prescribed by the Forth-2012
standard: codes -255..-1 are used only as assigned by the standard, and codes -4095..-256 are
reserved for Solo Forth. Therefore, programs shall not define values for use with throw in the range
-4095..-1.

Table 8. Exception code ranges

Range Reserved for

1..32767 Programs

-255..-1 Standard Forth

-999..-256 Solo Forth

-1127..-1000 Solo Forth: TR-DOS

-1154..-1128 Solo Forth: ZX Spectrum OS (BASIC)

-4095..-1155 Solo Forth

-32768..-4096 Programs

The original ZX Spectrum OS error codes are included (in range -1154..-1128) because a few of them
may be returned by some DOS words in special cases.

The way errors are displayed is configurable. By default only the exception code is displayed by an
uncatched throw, because the default action of .throw, which is a deferred word, is .throw#. In order
to display also the error description, the alternative action .throw-message must be loaded from the
library with need .throw-message.

Table 9. Exception code assignments

Exception
code

Meaning

#-01 ABORT

#-02 ABORT"

#-03 stack overflow

#-04 stack underflow

#-05 return stack overflow

#-06 return stack underflow

#-07 do-loops nested too deeply during execution

#-08 dictionary overflow

#-09 invalid memory address

#-10 division by zero

#-11 result out of range

22

Exception
code

Meaning

#-12 argument type mismatch

#-13 undefined word

#-14 interpreting a compile-only word

#-15 invalid FORGET

#-16 attempt to use zero-length string as a name

#-17 pictured numeric output string overflow

#-18 parsed string overflow

#-19 definition name too long

#-20 write to a read-only location

#-21 unsupported operation

#-22 control structure mismatch

#-23 address alignment exception

#-24 invalid numeric argument

#-25 return stack imbalance

#-26 loop parameters unavailable

#-27 invalid recursion

#-28 user interrupt

#-29 compiler nesting

#-30 obsolescent feature

#-31 >BODY used on non-CREATEd definition

#-32 invalid name argument

#-33 block read exception

#-34 block write exception

#-35 invalid block number

#-36 invalid file position

#-37 file I/O exception

#-38 non-existent file

#-39 unexpected end of file

#-40 invalid BASE for floating point conversion

#-41 loss of precision

#-42 floating-point divide by zero

#-43 floating-point result out of range

#-44 floating-point stack overflow

23

Exception
code

Meaning

#-45 floating-point stack underflow

#-46 floating-point invalid argument

#-47 compilation word list deleted

#-48 invalid POSTPONE

#-49 search-order overflow

#-50 search-order underflow

#-51 compilation word list changed

#-52 control-flow stack overflow

#-53 exception stack overflow

#-54 floating-point underflow

#-55 floating-point unidentified fault

#-56 QUIT

#-57 exception in sending or receiving a character

#-58 [IF], [ELSE], or [THEN] exception

#-59 ALLOCATE

#-60 FREE

#-61 RESIZE

#-62 CLOSE-FILE

#-63 CREATE-FILE

#-64 DELETE-FILE

#-65 FILE-POSITION

#-66 FILE-SIZE

#-67 FILE-STATUS

#-68 FLUSH-FILE

#-69 OPEN-FILE

#-70 READ-FILE

#-71 READ-LINE

#-72 RENAME-FILE

#-73 REPOSITION-FILE

#-74 RESIZE-FILE

#-75 WRITE-FILE

#-76 WRITE-LINE

#-77 malformed xchar

24

Exception
code

Meaning

#-78 SUBSTITUTE

#-79 REPLACES

#-256 not a word nor a number

#-257 warning: is not unique

#-258 stack imbalance

#-259 trying to load from block 0

#-260 wrong digit

#-261 deferred word is uninitialized

#-262 assertion failed

#-263 execution only

#-264 definition not finished

#-265 loading only

#-266 off current editing block

#-267 warning: not present, though needed

#-268 needed, but not located

#-269 relative jump too long

#-270 text not found

#-271 immediate word not allowed in this structure

#-272 array index out of range

#-273 invalid assembler condition

#-274 command line history overflow

#-275 wrong number

#-276 dictionary reached the zone of memory banks

#-277 needed, but not indexed

#-278 empty block found: quit indexing

#-279 user area overflow

#-280 user area underflow

#-281 escaped strings search-order overflow

#-282 escaped strings search-order underflow

#-283 assembly label number out of range

#-284 assembly label number already used

#-285 too many unresolved assembly label references

#-286 not located

25

Exception
code

Meaning

#-287 wrong number of drives

#-288 too many files open

#-289 input source exhausted

#-290 invalid UDG scan

#-291 out of OS memory

#-292 file access method not supported

#-293 string too long

#-1000 TR-DOS: No errors

#-1001 TR-DOS: No files

#-1002 TR-DOS: File exists

#-1003 TR-DOS: No space

#-1004 TR-DOS: Directory full

#-1005 TR-DOS: Record number overflow

#-1006 TR-DOS: No disk

#-1007 TR-DOS: Disk errors

#-1008 TR-DOS: Syntax errors

#-1009 TR-DOS: Undefined error

#-1010 TR-DOS: Stream already opened

#-1011 TR-DOS: Not disk file

#-1012 TR-DOS: Stream not open

#-1128 OS: OK

#-1129 OS: NEXT without FOR

#-1130 OS: Variable not found

#-1131 OS: Subscript wrong

#-1132 OS: Out of memory

#-1133 OS: Out of screen

#-1134 OS: Number too big

#-1135 OS: RETURN without GO SUB

#-1136 OS: End of file

#-1137 OS: STOP statement

#-1138 OS: Invalid argument

#-1139 OS: Integer out of range

#-1140 OS: Nonsense in BASIC

26

Exception
code

Meaning

#-1141 OS: BREAK - CONT repeats

#-1142 OS: Out of DATA

#-1143 OS: Invalid file name

#-1144 OS: No room for line

#-1145 OS: STOP in INPUT

#-1146 OS: FOR without NEXT

#-1147 OS: Invalid I/O device

#-1148 OS: Invalid colour

#-1149 OS: BREAK into program

#-1150 OS: RAMTOP no good

#-1151 OS: Statement lost

#-1151 OS: Invalid stream

#-1152 OS: FN without DEF

#-1153 OS: Parameter error

#-1154 OS: Tape loading error

27

Notation

Stack notation
Stack parameters input to and output from a definition are described using the notation:

(stack-id: before -- after)

where stack-id: specifies which stack is being described, before represents the stack-parameter data
types before execution of the definition and after represents them after execution. The symbols
used in before and after are shown in table Stack notation symbols for numbers.

The control-flow-stack stack-id is "C:", the data-stack stack-id is "S:", and the return-stack stack-id is
"R:". When there is no confusion, the data-stack stack-id is omitted. In Solo Forth, the data stack is
used as control-flow stack.

When there are several items of the same type, a numerical suffix is added: (n1 n2 — n3);
sometimes with brackets: (n[1] n[2] — n[3]); sometimes with hashes: (n#1 n#2 — n#3). Eventually,
the format will be unified.

When there are alternate after representations, they are described by after[1] | after[2], e.g. (n — ca
len true | false).

When there are alternate items, they are described by item[1]|item[2], e.g. (n[1]|u[1]
n[2]|u[2] — n[3]|u[3]) .

The top of the stack is to the right. Only those stack items required for or provided by execution of
the definition are shown.

Table 10. Stack notation symbols for numbers

Symbol Data type Size Range

a address 1 cell 0 .. 65535

aa aligned address[5] 1 cell 0 .. 65535

ca character-aligned address[5] 1 cell 0 .. 65535

fa float-aligned address[5] 1 cell 0 .. 65535

f well-formed flag (false: 0; true: -1) 1 cell -1 .. 0

0f zero flag (false: 0; true: non-zero) 1 cell -32768 .. 65535

true true flag (-1) 1 cell -1

false false flag (0) 1 cell 0

b 8-bit byte 1 cell -128 .. 255

c 8-bit character 1 cell 0 .. 255

char 8-bit character 1 cell 0 .. 255

28

Symbol Data type Size Range

u 16-bit unsigned number 1 cell 0 .. 65535

len 16-bit unsigned number (memory zone
length)

1 cell 0 .. 65335

n 16-bit signed number 1 cell -32768 .. 32767

+n 16-bit non-negative number 1 cell 0 .. 32767

x 16-bit unspecified number 1 cell -32768 .. 65535

d 32-bit signed double number 2 cells -2147483648 ..
2147483647

+d 32-bit non-negative double number 2 cells 0 .. 2147483647

ud 32-bit unsigned double number 2 cells 0 .. 4294697295

xd 32-bit unspecified number 2 cells -2147483648 ..
2147483647

t 48-bit signed triple number 3 cells -140737488355328 ..
140737488355327

+t 48-bit non-negative triple number 3 cells 0 .. 140737488355327

ut 48-bit unsigned triple number 3 cells 0 .. 281474976710655

q 64-bit signed quadruple number 4 cells −9223372036854775808
.. 9223372036854775807

+q 64-bit non-negative quadruple number 4 cells 0 ..
9223372036854775807

uq 64-bit unsigned quadruple number 4 cells 0 ..
18446744073709551615

col 8-bit cursor column 1 cell 0 .. 31; 0 .. 41; 0 .. 63

row 8-bit cursor row 1 cell 0 .. 23

gx 8-bit (absolute) or 16-bit (relative)
graphic x coordinate

1 cell 0 .. 255; -32768 .. 32767

gy 8-bit (absolute) or 16-bit (relative)
graphic y coordinate

1 cell 0 .. 191; -32768 .. 32767;
0 .. 175

xt execution token (=cfa) 1 cell

cfa code field address (=xt) 1 cell

lfa link field address 1 cell

nt name token (=nfa) 1 cell

nfa name field address (=nt) 1 cell

dfa data field address 1 cell

xtp execution token pointer 1 cell

wid word-list identifier 1 cell

29

Symbol Data type Size Range

ior Input/Output result code 1 cell -32768 .. 0

dosior Input/Output result code in DOS format 1 cell -322768 .. 65535

orig address of an unresolved forward
branch

1 cell 0 .. 65535

dest address of a backward branch target 1 cell 0 .. 65535

cs-id control structure identifier 1 cell

do-sys loop control parameters (=orig) 1 cell 0 .. 65535

loop-sys loop control parameters 2 cells

nest-sys definition call 1 cell

source-sys source identifier n cells

i*x any data type 0 or more cells

j*x any data type 0 or more cells

k*x any data type 0 or more cells

u*x u elements of type x (eg. u*wid) 0 or more cells

r a floating point real number 5 bytes[6] 1E-38 .. 1E38

rf a floating point real number flag 5 bytes[6] 0 .. 1

op Z80 8-bit opcode, generally a jump 1 cell 0 .. 255

reg Z80 8-bit register identifier 1 cell 0 .. 7

regp Z80 16-bit register pair identifier 1 cell 0; 2; 4

regph Z80 16-bit HL register pair identifier 1 cell 4

regpi Z80 16-bit IX/IY register pair identifier 1 cell 4

Table 11. Stack notation symbols for parsed text

Symbol Description

<char> the delimiting character marking the end of the string being parsed

<chars> zero or more consecutive occurrences of the character char

<space> a delimiting space character

<spaces> zero or more consecutive occurrences of the character space

<quote> a delimiting double quote

<paren> a delimiting right parenthesis

<eol> an implied delimiter marking the end of a line

ccc a parsed sequence of arbitrary characters, excluding the delimiter character

name a token delimited by space, equivalent to <spaces>ccc<space> or <spaces>ccc<eol>

30

Z80 flags notation
Table 12. Z80 flags notation

Symbol Description bit

Fc Carry flag 0

Fh Half Carry flag 4

Fn Add/Subtract flag 1

Fp Parity/Overflow flag 2

Fs Sign flag 7

Fz Zero flag 6

[5] As Solo Forth runs on the Z80 processor, all addresses are aligned, but the specific symbols for aligned addresses are used in the
source, for clarity.

[6] In the floating point stack of the ZX Spectrum operating system.

31

Z80 instructions
Table 13. Z80 instructions and their equivalent Forth commands

Z80
instruction

Forth
command

Size Object code Clock SZHPNC Effect

ADC A,(HL) m a adc, 1 8E 7 ***V0* A=A+[HL]+CY

ADC A,(IX+n) n ix adcx, 3 DD 8E xx 19 ***V0* A=A+[IX+n]+CY

ADC A,(IY+n) n iy adcx, 3 FD 8E xx 19 ***V0* A=A+[IY+n]+CY

ADC A,n n adc#, 2 CE xx 7 ***V0* A=A+n+CY

ADC A,r r adc, 1 88+r 4 ***V0* A=A+r+CY

ADC HL,BC b adcp, 2 ED 4A 15 ***V0* HL=HL+BC+CY

ADC HL,DE d adcp, 2 ED 5A 15 ***V0* HL=HL+DE+CY

ADC HL,HL h adcp, 2 ED 6A 15 ***V0* HL=HL+HL+CY

ADC HL,SP sp adcp, 2 ED 7A 15 ***V0* HL=HL+SP+CY

ADD A,(HL) m a add, 1 86 7 ***V0* A=A+[HL]

ADD A,(IX+n) n ix addx, 3 DD 86 xx 19 ***V0* A=A+[IX+n]

ADD A,(IY+n) n iy addx, 3 FD 86 xx 19 ***V0* A=A+[IY+n]

ADD A,n n add#, 2 C6 xx 7 ***V0* A=A+n

ADD A,r r add, 1 80+r 4 ***V0* A=A+r

ADD HL,BC b addp, 1 09 11 --*-0* HL=HL+BC

ADD HL,DE d addp, 1 19 11 --*-0* HL=HL+DE

ADD HL,HL h addp, 1 29 11 --*-0* HL=HL+HL

ADD HL,SP sp addp, 1 39 11 --*-0* HL=HL+SP

ADD IX,BC b addix, 2 DD 09 15 --*-0* IX=IX+BC

ADD IX,DE d addix, 2 DD 19 15 --*-0* IX=IX+DE

ADD IX,IX n/a 2 DD 29 15 --*-0* IX=IX+IX

ADD IX,SP sp addix, 2 DD 39 15 --*-0* IX=IX+SP

ADD IY,BC b addiy, 2 FD 09 15 --*-0* IY=IY+BC

ADD IY,DE d addiy, 2 FD 19 15 --*-0* IY=IY+DE

ADD IY,IY n/a 2 FD 29 15 --*-0* IY=IY+IY

ADD IY,SP sp addiy, 2 FD 39 15 --*-0* IY=IY+SP

AND (HL) m and, 1 A6 7 ***P00 A=A&[HL]

AND (IX+n) n ix andx, 3 DD A6 xx 19 ***P00 A=A&[IX+n]

AND (IY+n) n iy andx, 3 FD A6 xx 19 ***P00 A=A&[IY+n]

AND n n and#, 2 E6 xx 7 ***P00 A=A&n

32

Z80
instruction

Forth
command

Size Object code Clock SZHPNC Effect

AND r r and, 1 A0+r 4 ***P00 A=A&r

BIT b,(HL) m b bit, 2 CB 46+8*b 12 **1*0- [HL]&{2^b}

BIT b,(IX+n) n ix b bitx, 4 DD CB xx 46+8*b 20 **1*0- [IX+n]&{2^b}

BIT b,(IY+n) n iy b bitx, 4 FD CB xx 46+8*b 20 **1*0- [IY+n]&{2^b}

BIT b,r r b bit, 2 CB 40+8*b+r 8 **1*0- r&{2^b}

CALL C,nn nn c? ?call, 3 DC xx xx 17/10 ------ If CY then [SP-
=2]=PC,PC=nn

CALL M,nn nn m? ?call, 3 FC xx xx 17/10 ------ If S then [SP-=2]=PC,PC=nn

CALL NC,nn nn nc? ?call, 3 D4 xx xx 17/10 ------ If !CY then [SP-
=2]=PC,PC=nn

CALL nn nn call, 3 CD xx xx 17 ------ SP-=2,[SP+1,SP]=PC,PC=nn

CALL NZ,nn nn nz? ?call, 3 C4 xx xx 17/10 ------ If !Z then [SP-
=2]=PC,PC=nn

CALL P,nn nn p? ?call, 3 F4 xx xx 17/10 ------ If !S then [SP-
=2]=PC,PC=nn

CALL PE,nn nn pe? ?call, 3 EC xx xx 17/10 ------ If P then [SP-=2]=PC,PC=nn

CALL PO,nn nn po? ?call, 3 E4 xx xx 17/10 ------ If !P then [SP-
=2]=PC,PC=nn

CALL Z,nn nn z? ?call, 3 CC xx xx 17/10 ------ If Z then [SP-=2]=PC,PC=nn

CCF ccf, 1 3F 4 --*-0* CY=~CY

CP (HL) m cp, 1 BE 7 ***V1* A-[HL]

CP (IX+n) n ix cpx, 3 DD BE xx 19 ***V1* A-[IX+n]

CP (IY+n) n iy cpx, 3 FD BE xx 19 ***V1* A-[IY+n]

CP n n cp#, 2 FE xx 7 ***V1* A-n

CP r r cp, 1 B8+r 4 ***V1* A-r

CPD n/a 2 ED A9 16 ****1- A-[HL],HL=HL-1,BC=BC-1

CPDR n/a 2 ED B9 21/16 ****1- CPD until A=[HL] or BC=0

CPI n/a 2 ED A1 16 ****1- A-[HL],HL=HL+1,BC=BC-1

CPIR cpir, 2 ED B1 21/16 ****1- CPI until A=[HL] or BC=0

CPL cpl, 1 2F 4 --1-1- A=~A

DAA daa, 1 27 4 ***P-* A=adjust result to BCD-
format

DEC (HL) m dec, 1 35 11 ***V1- [HL]=[HL]-1

DEC (IX+n) n ix decx, 3 DD 35 xx 23 ***V1- [IX+n]=[IX+n]-1

DEC (IY+n) n iy decx, 3 FD 35 xx 23 ***V1- [IY+n]=[IY+n]-1

DEC A a dec, 1 3D 4 ***V1- A=A-1

33

Z80
instruction

Forth
command

Size Object code Clock SZHPNC Effect

DEC B b dec, 1 05 4 ***V1- B=B-1

DEC BC b decp, 1 0B 6 ------ BC=BC-1

DEC C c dec, 1 0D 4 ***V1- C=C-1

DEC D d dec, 1 15 4 ***V1- D=D-1

DEC DE d decp, 1 1B 6 ------ DE=DE-1

DEC E e dec, 1 1D 4 ***V1- E=E-1

DEC H h dec, 1 25 4 ***V1- H=H-1

DEC HL h decp, 1 2B 6 ------ HL=HL-1

DEC IX ix decp, 2 DD 2B 10 ------ IX=IX-1

DEC IY iy decp, 2 FD 2B 10 ------ IY=IY-1

DEC L l dec, 2 2D 4 ***V1- L=L-1

DEC SP sp decp, 1 3B 6 ------ SP=SP-1

DI di, 1 F3 4 ------ disable interrupts

DJNZ n nn djnz, 2 10 xx 13/8 ------ B=B-1, if B != 0 then
PC+=n

EI ei, 1 FB 4 ------ enable interrupts

EX (SP),HL exsp, 1 E3 19 ------ [SP]<→HL

EX (SP),IX n/a 2 DD E3 23 ------ [SP]<→IX

EX (SP),IY n/a 2 FD E3 23 ------ [SP]<→IY

EX AF,AF' exaf, 1 08 4 ****** AF<→AF'

EX DE,HL exde, 1 EB 4 ------ DE<→HL

EXX exx, 1 D9 4 ------ BC<→BC',DE<→DE',HL<→HL'

HALT halt, 1 76 4 ------ repeat NOP until interrupt

IM 0 n/a 2 ED 46 8 ------ set interrupt 0

IM 1 im1, 2 ED 56 8 ------ set interrupt 1

IM 2 im2, 2 ED 5E 8 ------ set interrupt 2

IN A,(C) a inbc, 2 ED 78 12 ***P0- A=[C]

IN A,(n) n in, 2 DB xx 11 ------ A=[n]

IN B,(C) b inbc, 2 ED 40 12 ***P0- B=[C]

IN C,(C) c inbc, 2 ED 48 12 ***P0- C=[C]

IN D,(C) d inbc, 2 ED 50 12 ***P0- D=[C]

IN E,(C) e inbc, 2 ED 58 12 ***P0- E=[C]

IN H,(C) h inbc, 2 ED 60 12 ***P0- H=[C]

34

Z80
instruction

Forth
command

Size Object code Clock SZHPNC Effect

IN L,(C) l inbc, 2 ED 68 12 ***P0- L=[C]

INC (HL) h incp, 1 34 11 ***V0- [HL]=[HL]+1

INC (IX+n) n ix incx, 3 DD 34 xx 23 ***V0- [IY+n]=[IX+n]+1

INC (IY+n) n iy incx, 3 FD 34 xx 23 ***V0- [IY+n]=[IY+n]+1

INC A a inc, 1 3C 4 ***V0- A=A+1

INC B b inc, 1 04 4 ***V0- B=B+1

INC BC b incp, 1 03 6 ------ BC=BC+1

INC C c inc, 1 0C 4 ***V0- C=C+1

INC D d inc, 1 14 4 ***V0- D=D+1

INC DE d incp, 1 13 6 ------ DE=DE+1

INC E e inc, 1 1C 4 ***V0- E=E+1

INC H h inc, 1 24 4 ***V0- H=H+1

INC HL h incp, 1 23 6 ------ HL=HL+1

INC IX ix incp, 2 DD 23 10 ------ IX=IX+1

INC IY iy incp, 2 FD 23 10 ------ IY=IY+1

INC L l inc, 1 2C 4 ***V0- L=L+1

INC SP sp incp, 1 33 6 ------ SP=SP+1

IND n/a 2 ED AA 16 ***?1- [HL]=[C],HL=HL-1,B=B-1

INDR n/a 2 ED BA 21/16 01*?1- IND until B=0

INI n/a 2 ED A2 16 ***?1- [HL]=[C],HL=HL+1,B=B-1

INIR n/a 2 ED B2 21/16 01*?1- INI until B=0

JP (HL) jphl, 1 E9 4 ------ PC=HL

JP (IX) jpix, 2 DD E9 8 ------ PC=IX

JP (IY) n/a 2 FD E9 8 ------ PC=IY

JP C,nn nn c? ?jp, 3 DA xx xx 10/10 ------ If CY then PC=nn

JP M,nn nn m? ?jp, 3 FA xx xx 10/10 ------ If S then PC=nn

JP NC,nn nn nc? ?jp, 3 D2 xx xx 10/10 ------ If !CY then PC=nn

JP nn nn jp, 3 C3 xx xx 10 ------ PC=nn

JP NZ,nn nn nz? ?jp, 3 C2 xx xx 10/10 ------ If !Z then PC=nn

JP P,nn nn p? ?jp, 3 F2 xx xx 10/10 ------ If !S then PC=nn

JP PE,nn nn pe? ?jp, 3 EA xx xx 10/10 ------ If P then PC=nn

JP PO,nn nn po? ?jp, 3 E2 xx xx 10/10 ------ If !P then PC=nn

JP Z,nn nn z? ?jp, 3 CA xx xx 10/10 ------ If Z then PC=nn

35

Z80
instruction

Forth
command

Size Object code Clock SZHPNC Effect

JR C,n nn c? ?jr, 2 38 xx 12/7 ------ If CY then PC=PC+n

JR NC,n nn nc? ?jr, 2 30 xx 12/7 ------ If !CY then PC=PC+n

JR NZ,n nn z? ?jr, 2 20 xx 12/7 ------ If !Z then PC=PC+n

JR Z,n nn z? ?jr, 2 28 xx 12/7 ------ If Z then PC=PC+n

JR n nn jr, 2 18 xx 12 ------ PC=PC+n

LD (BC),A b stap, 1 02 7 ------ [BC]=A

LD (DE),A d stap, 1 12 7 ------ [DE]=A

LD (HL),n n m ld#, 2 36 xx 10 ------ [HL]=n

LD (HL),r r m ld, 1 70+r 7 ------ [HL]=r

LD (IX+n1),n2 n2 n1 ix st#x, 4 DD 36 xx xx 19 ------ [IX+n]=n

LD (IX+n),r r n ix stx, 3 DD 70+r xx 19 ------ [IX+n]=r

LD (IY+n1),n2 n2 n1 iy st#x, 4 FD 36 xx xx 19 ------ [IY+n]=n

LD (IY+n),r r n iy stx, 3 FD 70+r xx 19 ------ [IY+n]=r

LD (nn),A nn sta, 3 32 xx xx 13 ------ [nn]=A

LD (nn),BC nn b stp, 4 ED 43 xx xx 20 ------ [nn]=C, (nn+1)=B

LD (nn),DE nn d stp, 4 ED 53 xx xx 20 ------ [nn]=E, (nn+1)=D

LD (nn),HL nn h sthl, 3 22 xx xx 16 ------ [nn]=L, (nn+1)=H

LD (nn),HL nn h stp, 3 ED 63 xx xx 20 ------ [nn]=L, (nn+1)=H

LD (nn),IX nn ix stp, 4 DD 22 xx xx 20 ------ [nn,nn+1]=IX

LD (nn),IY nn iy stp, 4 FD 22 xx xx 20 ------ [nn,nn+1]=IY

LD (nn),SP nn sp stp, 4 ED 73 xx xx 20 ------ [nn,nn+1]=SP

LD A,(BC) b ftap, 1 0A 7 ------ A=[BC]

LD A,(DE) d ftap, 1 1A 7 ------ A=[DE]

LD A,(HL) m a ld, 1 7E 7 ------ A=[HL]

LD A,(IX+n) n ix a ftx, 3 DD 7E xx 19 ------ A=[IX+n]

LD A,(IY+n) n iy a ftx, 3 FD 7E xx 19 ------ A=[IY+n]

LD A,(nn) nn fta, 3 3A xx xx 13 ------ A=[nn]

LD A,I ldai, 2 ED 57 9 **0*0- A=I

LD A,n n a ld#, 2 3E xx 7 ------ A=n

LD A,R ldar, 2 ED 5F 9 **0*0- A=R

LD A,r r a ld, 1 78+r 4 ------ A=r

LD B,(HL) m b ld, 1 46 7 ------ B=[HL]

LD B,(IX+n) n ix b ftx, 3 DD 46 xx 19 ------ B=[IX+n]

36

Z80
instruction

Forth
command

Size Object code Clock SZHPNC Effect

LD B,(IY+n) n iy b ftx, 3 FD 46 xx 19 ------ B=[IY+n]

LD B,n n b ld#, 2 06 xx 7 ------ B=n

LD B,r r b ld, 1 40+r 4 ------ B=r

LD BC,(nn) nn b ftp, 4 ED 4B xx xx 20 ------ C=[nn],B=[nn+1]

LD BC,nn nn b ldp#, 3 01 xx xx 10 ------ BC=nn

LD C,(HL) m c ld, 1 4E 7 ------ C=[HL]

LD C,(IX+n) n ix c ftx, 3 DD 4E xx 19 ------ C=[IX+n]

LD C,(IY+n) n iy c ftx, 3 FD 4E xx 19 ------ C=[IY+n]

LD C,n n c ld#, 2 0E xx 7 ------ C=n

LD C,r r c ld, 1 48+r 4 ------ C=r

LD D,(HL) m d ld, 1 56 7 ------ D=[HL]

LD D,(IX+n) n ix d ftx, 3 DD 56 xx 19 ------ D=[IX+n]

LD D,(IY+n) n iy d ftx, 3 FD 56 xx 19 ------ D=[IY+n]

LD D,n n d ld#, 2 16 xx 7 ------ D=n

LD D,r r d ld, 1 50+r 4 ------ D=r

LD DE,(nn) nn d ftp, 4 ED 5B xx xx 20 ------ E=[nn],D=[nn+1]

LD DE,nn nn d ldp#, 3 11 xx xx 10 ------ DE=nn

LD E,(HL) m e ld, 1 5E 7 ------ E=[HL]

LD E,(IX+n) n ix e ftx, 3 DD 5E xx 19 ------ E=[IX+n]

LD E,(IY+n) n iy e ftx, 3 FD 5E xx 19 ------ E=[IY+n]

LD E,n n e ld#, 2 1E xx 7 ------ E=n

LD E,r r e ld, 1 58+r 4 ------ E=r

LD H,(HL) m h ld, 1 66 7 ------ H=[HL]

LD H,(IX+n) n ix h ftx, 3 DD 66 xx 19 ------ H=[IX+n]

LD H,(IY+n) n iy h ftx, 3 FD 66 xx 19 ------ H=[IY+n]

LD H,n n h ld#, 2 26 xx 7 ------ H=n

LD H,r r h ld, 1 60+r 4 ------ H=r

LD HL,(nn) nn fthl, 3 2A xx xx 16 ------ L=[nn],H=[nn+1]

LD HL,(nn) nn h ftp, 4 ED 6B xx xx 20 ------ L=[nn],H=[nn+1]

LD HL,nn nn h ldp#, 3 21 xx xx 10 ------ HL=nn

LD I,A ldia, 2 ED 47 9 ------ I=A

LD IX,(nn) nn ix ftp, 4 DD 2A xx xx 20 ------ IX=[nn,nn+1]

LD IX,nn nn ix ldp#, 4 DD 21 xx xx 14 ------ IX=nn

37

Z80
instruction

Forth
command

Size Object code Clock SZHPNC Effect

LD IY,(nn) nn iy ftp, 4 FD 2A xx xx 20 ------ IY=[nn,nn+1]

LD IY,nn nn iy ldp#, 4 FD 21 xx xx 14 ------ IY=nn

LD L,(HL) m l ld, 1 6E 7 ------ L=[HL]

LD L,(IX+n) n ix l ftx, 3 DD 6E xx 19 ------ L=[IX+n]

LD L,(IY+n) n iy l ftx, 3 FD 6E xx 19 ------ L=[IY+n]

LD L,n n l ld#, 2 2E xx 7 ------ L=n

LD L,r r l ld, 1 68+r 4 ------ L=r

LD R,A ldra, 2 ED 4F 9 ------ R=A

LD SP,(nn) nn sp ftp, 4 ED 7B xx xx 20 ------ SP=[nn,nn+1]

LD SP,HL ldsp, 1 F9 6 ------ SP=HL

LD SP,IX n/a 2 DD F9 10 ------ SP=IX

LD SP,IY n/a 2 FD F9 10 ------ SP=IY

LD SP,nn nn sp ldp#, 3 31 xx xx 10 ------ SP=nn

LDD ldd, 2 ED A8 16 --0*0- [DE]=[HL],HL-=1,DE-=1,BC-
=1

LDDR lddr, 2 ED B8 21/16 --000- LDD until BC=0

LDI ldi, 2 ED A0 16 --0*0- [DE]=[HL],HL+=1,DE+=1,BC=-
1

LDIR ldir, 2 ED B0 21/16 --000- LDI until BC=0

NEG neg, 2 ED 44 8 ***V1* A=-A

NOP nop, 1 00 4 ------

OR (HL) m or, 1 B6 7 ***P00 A=Av[HL]

OR (IX+n) n ix orx, 3 DD B6 xx 19 ***P00 A=Av[IX+n]

OR (IY+n) n iy orx, 3 FD B6 xx 19 ***P00 A=Av[IY+n]

OR n n or#, 2 F6 xx 7 ***P00 A=AvN

OR r r or, 1 B0+r 4 ***P00 A=Avr

OTDR n/a 2 ED BB 21/16 01*?1- OUTD until B=0

OTIR n/a 2 ED B3 21/16 01*?1- OUTI until B=0

OUT (C),A a outbc, 2 ED 79 12 ------ [C]=A

OUT (C),B b outbc, 2 ED 41 12 ------ [C]=B

OUT (C),C c outbc, 2 ED 49 12 ------ [C]=C

OUT (C),D d outbc, 2 ED 51 12 ------ [C]=D

OUT (C),E e outbc, 2 ED 59 12 ------ [C]=E

OUT (C),H h outbc, 2 ED 61 12 ------ [C]=H

38

Z80
instruction

Forth
command

Size Object code Clock SZHPNC Effect

OUT (C),L l outbc, 2 ED 69 12 ------ [C]=L

OUT (n),A n out, 2 D3 xx 11 ------ [n]=A

OUTD n/a 2 ED AB 16 ***?1- [C]=[HL],HL=HL-1,B=B-1

OUTI n/a 2 ED A3 16 ***?1- [C]=[HL],HL=HL+1,B=B-1

POP AF a pop, 1 F1 10 ****** F=[SP],SP+,A=[SP],SP+

POP BC b pop, 1 C1 10 ------ C=[SP],SP+,B=[SP],SP+

POP DE d pop, 1 D1 10 ------ E=[SP],SP+,D=[SP],SP+

POP HL h pop, 1 E1 10 ------ L=[SP],SP+,H=[SP],SP+

POP IX ix pop, 2 DD E1 14 ------ IX=[SP,SP+1],SP+,SP+

POP IY iy pop, 2 FD E1 14 ------ IY=[SP,SP+1],SP+,SP+

PUSH AF a push, 1 F5 11 ------ -SP,[SP]=A,-SP,[SP]=F

PUSH BC b push, 1 C5 11 ------ -SP,[SP]=B,-SP,[SP]=C

PUSH DE d push, 1 D5 11 ------ -SP,[SP]=D,-SP,[SP]=E

PUSH HL h push, 1 E5 11 ------ -SP,[SP]=H,-SP,[SP]=L

PUSH IX ix push, 2 DD E5 15 ------ -SP,-SP,[SP,SP+1]=IX

PUSH IY iy push, 2 FD E5 15 ------ -SP,-SP,[SP,SP+1]=IY

RES b,(HL) m b res, 2 CB 86+8*b 15 ------ [HL]=[HL]&{~2^b}

RES b,(IX+n) n ix b resx, 4 DD CB xx 86+8*b 23 ------ [IX+n]=[IX+n]&{~2^b}

RES b,(IY+n) n iy b resx, 4 FD CB xx 86+8*b 23 ------ [IY+n]=[IY+n]&{~2^b}

RES b,r r b res, 2 CB 80+8*b+r 8 ------ r=r&{~2^b}

RET ret, 1 C9 10 ------ PC=[SP,SP+1],SP+,SP+

RET C c? ?ret, 1 D8 11/5 ------ If CY then
PC=[SP,SP+1],SP+=2

RET M m? ?ret, 1 F8 11/5 ------ If S then
PC=[SP,SP+1],SP+=2

RET NC nc? ?ret, 1 D0 11/5 ------ If !CY then
PC=[SP,SP+1],SP+=2

RET NZ nz? ?ret, 1 C0 11/5 ------ If !Z then
PC=[SP,SP+1],SP+=2

RET P p? ?ret, 1 F0 11/5 ------ If !S then
PC=[SP,SP+1],SP+=2

RET PE pe? ?ret, 1 E8 11/5 ------ If P then
PC=[SP,SP+1],SP+=2

RET PO po? ?ret, 1 E0 11/5 ------ If !P then
PC=[SP,SP+1],SP+=2

RET Z z? ?ret, 1 C8 11/5 ------ If Z then
PC=[SP,SP+1],SP+=2

39

Z80
instruction

Forth
command

Size Object code Clock SZHPNC Effect

RETI n/a 2 ED 4D 14 ------ PC=[SP,SP+1],SP+,SP+

RETN n/a 2 ED 45 14 ------ PC=[SP,SP+1],SP+,SP+

RL (HL) m rl, 2 CB 16 15 **0P0* [HL]={CY,[HL]}<<CY

RL (IX+n) n ix rlx, 4 DD CB xx 16 23 **0P0* [IX+n]={CY,[IX+n]}<<CY

RL (IY+n) n iy rlx, 4 FD CB xx 16 23 **0P0* [IY+n]={CY,[IY+n]}<<CY

RL r r rl, 2 CB 10+r 8 **0P0* r={CY,r}<<CY

RLA rla, 1 17 4 --0-0* A={CY,A}<<CY

RLC (HL) m rlc, 2 CB 06 15 **0P0* [HL]={[HL]}<<

RLC (IX+n) n ix rlcx, 4 DD CB xx 06 23 **0P0* [IX+n]={[IX+n]}<<

RLC (IY+n) n iy rlcx, 4 FD CB xx 06 23 **0P0* [IY+n]={[IY+n]}<<

RLC r r rlc, 2 CB 00+r 8 **0P0* r={r}<<

RLCA rlca, 1 07 4 --0-0* A=*<<

RLD rld, 2 ED 6F 18 **0P0- {A,[HL]}={A,[HL]}←4

RR (HL) m rr, 2 CB 1E 15 **0P0* [HL]=CY>>{CY,[HL]}

RR (IX+n) n ix rrx, 4 DD CB xx 1E 23 **0P0* [IX+n]=CY>>{CY,[IX+n]}

RR (IY+n) n iy rrx, 4 FD CB xx 1E 23 **0P0* [IT+n]=CY>>{CY,[IY+n]}

RR r r rr, 2 CB 18+r 8 **0P0* r=CY>>{CY,r}

RRA rra, 1 1F 4 --0-0* A=CY>>{CY,A}

RRC (HL) m rrc, 2 CB 0E 15 **0P0* [HL]⇒>{[HL]}

RRC (IX+n) n ix rrcx, 4 DD CB xx 0E 23 **0P0* [IX+n]⇒>{[IX+n]}

RRC (IY+n) n iy rrcx, 4 FD CB xx 0E 23 **0P0* [IY+n]⇒>{[IY+n]}

RRC r r rrc, 2 CB 08+r 8 **0P0* r⇒>{r}

RRCA rrca, 1 0F 4 --0-0* A⇒>*

RRD n/a 2 ED 67 18 **0P0- {A,[HL]}=4→{A,[HL]}

RST 0 0 rst, 1 C7 11 ------ -SP,-SP,[SP+1,SP]=PC,PC=00

RST 8H $8 rst, 1 CF 11 ------ -SP,-SP,[SP+1,SP]=PC,PC=08

RST 10H $10 rst, 1 D7 11 ------ -SP,-SP,[SP+1,SP]=PC,PC=10

RST 18H $18 rst, 1 DF 11 ------ -SP,-SP,[SP+1,SP]=PC,PC=18

RST 20H $20 rst, 1 E7 11 ------ -SP,-SP,[SP+1,SP]=PC,PC=20

RST 28H $28 rst, 1 EF 11 ------ -SP,-SP,[SP+1,SP]=PC,PC=28

RST 30H $30 rst, 1 F7 11 ------ -SP,-SP,[SP+1,SP]=PC,PC=30

RST 38H $38 rst, 1 FF 11 ------ -SP,-SP,[SP+1,SP]=PC,PC=38

SBC (HL) m sbc, 1 9E 7 ***V1* A=A-[HL]-CY

40

Z80
instruction

Forth
command

Size Object code Clock SZHPNC Effect

SBC A,(IX+n) n ix sbcx, 3 DD 9E xx 19 ***V1* A=A-[IX+n]-CY

SBC A,(IY+n) n iy sbcx, 3 FD 9E xx 19 ***V1* A=A-[IY+n]-CY

SBC A,n n sbc#, 2 DE xx 7 ***V1* A=A-n-CY

SBC HL,BC b sbcp, 2 ED 42 15 ***V1* HL=HL-BC-CY

SBC HL,DE d sbcp, 2 ED 52 15 ***V1* HL=HL-DE-CY

SBC HL,HL h sbcp, 2 ED 62 15 ***V1* HL=HL-HL-CY

SBC HL,SP sp sbcp, 2 ED 72 15 ***V1* HL=HL-SP-CY

SBC r r sbc, 1 98+r 4 ***V1* A=A-r-CY

SCF scf, 1 37 4 --0-01 CY=1

SET b,(HL) m b set, 2 CB C6+8*b 15 ------ [HL]=[HL]v{2^b}

SET b,(IX+n) n ix b setx, 4 DD CB xx C6+8*b 23 ------ [IX+n]=[IX+n]v{2^b}

SET b,(IY+n) n iy b setx, 4 FD CB xx C6+8*b 23 ------ [IY+n]=[IY+n]v{2^b}

SET b,r r b set, 2 CB C0+8*b+r 8 ------ r=rv{2^b}

SLA (HL) m sla, 2 CB 26 15 **0P0* [HL]=[HL]*2

SLA (IX+n) n ix sla, 4 DD CB xx 26 23 **0P0* [IX+n]=[IX+n]*2

SLA (IY+n) n iy sla, 4 FD CB xx 26 23 **0P0* [IY+n]=[IY+n]*2

SLA r r sla, 2 CB 20+r 8 **0P0* r=r*2

SLL (HL) m sll, 2 CB 36 15 **0P0* [HL]=[HL]*2+1

SLL (IX+n) n ix sllx, 4 DD CB xx 36 23 **0P0* [IX+n]=[IX+n]*2+1

SLL (IY+n) n iy sllx, 4 FD CB xx 36 23 **0P0* [IY+n]=[IY+n]*2+1

SLL r r sll, 2 CB 30+r 8 **0P0* r=r*2+1

SRA (HL) m sra, 2 CB 2E 15 **0P0* [HL]=(signed)[HL]/2

SRA (IX+n) n ix srax, 4 DD CB xx 2E 23 **0P0* [IX+n]=(signed)[IX+n]/2

SRA (IY+n) n iy srax, 4 FD CB xx 2E 23 **0P0* [IY+n]=(signed)[IY+n]/2

SRA r r sra, 2 CB 28+r 8 **0P0* r=(signed)r/2

SRL (HL) m sra, 2 CB 3E 15 **0P0* [HL]=(unsigned)[HL]/2

SRL (IX+n) n ix srlx, 4 DD CB xx 3E 23 **0P0* [IX+n]=(unsigned)[IX+n]/2

SRL (IY+n) n iy srlx, 4 FD CB xx 3E 23 **0P0* [IY+n]=(unsigned)[IY+n]/2

SRL r r srl, 2 CB 38+r 8 **0P0* r=(unsigned)r/2

SUB (HL) m sub, 1 96 7 ***V1* A=A-[HL]

SUB (IX+n) n ix subx, 3 DD 96 xx 19 ***V1* A=A-[IX+n]

SUB (IY+n) n iy subx, 3 FD 96 xx 19 ***V1* A=A-[IY+n]

SUB n n sub#, 2 D6 xx 7 ***V1* A=A-n

41

Z80
instruction

Forth
command

Size Object code Clock SZHPNC Effect

SUB r r sub, 1 90+r 4 ***V1* A=A-r

XOR (HL) m xor, 1 AE 7 ***P00 A=Ax[HL]

XOR (IX+n) n ix xorx, 3 DD AE xx 19 ***P00 A=Ax[IX+n]

XOR (IY+n) n ix xorx, 3 FD AE xx 19 ***P00 A=Ax[IY+n]

XOR n n xor#, 2 EE xx 7 ***P00 A=AxN

XOR r r xor, 1 A8+r 4 ***P00 A=Axr

Legend
Clock

The time it takes to execute the instruction in CPU cycles. If there are two numbers given for
Clock, then the highest is when the jump is taken, the lowest is when it skips the jump.

Size

How many bytes the instruction takes up in a program.

SZHPNC

How the different Z80 flags (bits of the "F" register) are affected (S=Sign, Z=Zero, H=Half Carry,
P=Parity/Overflow, N=Add/Subtract, C=Carry):

Table 14. Flag effect symbols

Symbol Meaning

- Flag unaffected

* Flag affected

0 Flag reset

1 Flag set

? Unknown

P Parity/Overflow flag used as parity

V Parity/Overflow flag used as overflow

Object code

The equivalent machine code instruction in hexadecimal, with "xx" instead of the parameters
(e.g. addresses or bytes), and some calculations based on certain parameters (e.g. registers or bit
numbers).

b

Bit. Can be 0-7.

r

Register. Can be "B", "C", "D", "E", "H", "L" or "A".

42

Table 15. Register values in opcodes

Register Value of r in the object code

B 0

C 1

D 2

E 3

H 4

L 5

A 7

NOTE The Solo Forth’s Z80 assembler treats (HL) as a register named m, with value 6.

43

Glossary

!

!

! (x a --) "store"

Store x at a.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: @, +!, 2!, c!.

Source file: <src/kernel.z80s>.

!>

!>
 Interpretation: (x "name" --)
 Compilation: ("name" --)
 Run-time: (x --)
"store-to"

A simpler and faster alternative to standard to and value.

!> is an immediate word.

Interpretation:

Parse name, which is the name of a word created by constant or const, and make x its value.

Compilation:

Parse name, which is a word created by constant or const, and append the run-time semantics given
below to the current definition.

Run-time:

Make x the current value of constant name.

Origin: IsForth.

See also: c!>, 2!>.

Source file: <src/lib/data.store-to.fs>.

44

!a

!a (x --) "store-a"

Store x at the address register.

See also: a, @a.

Source file: <src/lib/memory.address_register.fs>.

!a+

!a+ (x --) "store-a-plus"

Store x at the address register and increment the address register by one cell.

See also: a, @a+.

Source file: <src/lib/memory.address_register.fs>.

!bank

!bank (x a n --) "store-bank"

Store cell x into address a ($C000..$FFFF) of bank n.

!bank is written in Z80. Its equivalent definition in Forth is the following:

: !bank (x a n --) bank ! default-bank ;

See also: @bank, c!bank.

Source file: <src/lib/memory.far.fs>.

!bit

!bit (f b ca --) "store-bit"

Store flag f in an element of a bit-array, represented by address ca and bitmask b.

See also: @bit, bit-array.

Source file: <src/lib/data.array.bit.fs>.

45

!csp

!csp (--) "store-c-s-p"

Save the current data stack position, sp@, into csp, to be checked later by ?csp. !csp is used by :,
:noname and asm for error checking.

Definition:

: !csp (--) sp@ csp ! ;

Origin: fig-Forth.

Source file: <src/kernel.z80s>.

!exchange

!exchange (x1 a -- x2) "store-exchange"

Store x1 into a and return its previous contents x2.

See also: c!exchange, exchange.

Source file: <src/lib/memory.MISC.fs>.

!p

!p (b a --) "store-p"

Output byte b to port a.

See also: @p, !, c!.

Source file: <src/lib/memory.ports.fs>.

!sound

!sound (b1 b2 --) "store-sound"

Set sound register b2 (0…13) to value b1.

See also: @sound, sound, play, sound-register-port, sound-write-port.

Source file: <src/lib/sound.128.fs>.

46

!volume

!volume (b1 b2 --) "store-volume"

Store b1 at volume register of channel b2 (0..2, equivalent to notation 'A'..'C').

Registers 8..10 (Channels A..C Volume)

Bits 0-4 Channel volume level.

Bit 5 1=Use envelope defined by register 13 and ignore the volume
setting.

Bits 6-7 Not used.

See also: @volume, !sound.

Source file: <src/lib/sound.128.fs>.

"

"n"

"n" (-- c) "quote-n-quote"

A character constant containing the (lowercase) character used by y/n, y/n? and no? to represent a
negative answer. By default it’s "n". For localization, the value can be changed with c!>.

See also: "y".

Source file: <src/lib/keyboard.yes-question.fs>.

"y"

"y" (-- c) "quote-y-quote"

A character constant containing the (lowercase) character used by y/n, y/n? and yes?, to represent
an affirmative answer. By default it’s "y". For localization, the value can be changed with c!>.

See also: "n".

Source file: <src/lib/keyboard.yes-question.fs>.

47

#

#

(ud1 -- ud2) "number-sign"

Divide ud1 by the number in base, giving the quotient ud2 and the remainder n. (n is the least
significant digit of ud1.) Convert n to external form and add the resulting character to the beginning
of the pictured numeric output string that was started by <#.

is tipically used between <# and #>.

Definition:

: # (ud1 -- ud2) base @ ud/mod rot >digit hold ;

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: hold, ud/mod, >digit.

Source file: <src/kernel.z80s>.

#>

#> (xd -- ca len) "number-sign-greater"

End the pictured numeric output conversion that was started by <#: Drop xd and make the pictured
numeric output string available as the string ca len.

Definition:

: #> (xd -- ca len) 2drop hld @ pad over - ;

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: #, #s, hold, hld, sign, pad.

Source file: <src/kernel.z80s>.

#block-drives

#block-drives (-- ca) "number-sign-block-drives"

48

A cvariable. ca is the address of a byte containing the number of block drives defined in block-
drives, i.e. the number of drives that are used for blocks. #block-drives could be modified manually,
provided also block-drives is configured accordingly, but set-block-drives is provided for that.

The default value of #block-drives is 1, which is restored by cold.

See also: max-blocks.

Source file: <src/kernel.z80s>.

#chars

#chars (ca len c -- +n) "dash-chars"

Return the count +n of chars c in a string ca len.

See also: #spaces, char-in-string?, char-position?.

Source file: <src/lib/strings.MISC.fs>.

#do

#do Compilation: (-- do-sys) "dash-do"

Execute 0 ?do and leave do-sys to be consumed by loop or +loop.

#do is an immediate and compile-only word.

Usage example:

: times (n --) #do i . loop ;

0 times \ prints nothing
4 times \ prints 0 1 2 3

See also: ?do, do, -do.

Origin: Comus.

Source file: <src/lib/flow.do.fs>.

#esc-order

#esc-order (-- a) "number-sign-esc-order"

A variable. a is the address of a cell containing the number of word lists in the escaped strings

49

search order.

See also: esc-context, max-esc-order, get-esc-order, set-esc-order, >esc-order.

Source file: <src/lib/strings.escaped.fs>.

#indented

#indented (-- a) "number-sign-indented"

A variable. a is the address of a cell containing the numbers of characters indented on the current
line.

See also: #ltyped, indented+.

Source file: <src/lib/display.ltype.fs>.

#kk

#kk (-- n) "dash-k-k"

A cconstant. n is the number of keyboard keys, i.e. the number of physical rubber keys on the
keyboard of the original ZX Spectrum: 40.

See also: kk-ports, kk-chars, kk-0#, kk-0, kk-1#, kk-1, kk-2#, kk-2, kk-3#, kk-3, kk-4#, kk-4, kk-5#, kk-5,
kk-6#, kk-6, kk-7#, kk-7, kk-8#, kk-8, kk-9#, kk-9, kk-a#, kk-a, kk-b#, kk-b, kk-c#, kk-c, kk-cs#, kk-cs, kk-
d#, kk-d, kk-e#, kk-e, kk-en#, kk-en, kk-f#, kk-f, kk-g#, kk-g, kk-h#, kk-h, kk-i#, kk-i, kk-j#, kk-j, kk-k#,
kk-k, kk-l#, kk-l, kk-m#, kk-m, kk-n#, kk-n, kk-o#, kk-o, kk-p#, kk-p, kk-q#, kk-q, kk-r#, kk-r, kk-s#, kk-s,
kk-sp#, kk-sp, kk-ss#, kk-ss, kk-t#, kk-t, kk-u#, kk-u, kk-v#, kk-v, kk-w#, kk-w, kk-x#, kk-x, kk-y#, kk-y,
kk-z.

Source file: <src/lib/keyboard.MISC.fs>.

#lag

#lag (-- ca n) "number-sign-lag"

Part of specforth-editor: Return cursor address ca and count n after cursor till end of line.

See also: #lead.

Source file: <src/lib/prog.editor.specforth.fs>.

#lead

50

#lead (-- a n) "number-sign-lead"

Part of specforth-editor: From the cursor pointer r# compute the line address a in the block buffer
and the offset from a to the cursor location n.

See also: #locate, #lag.

Source file: <src/lib/prog.editor.specforth.fs>.

#locate

#locate (-- n1 n2) "number-sign-locate"

Part of specforth-editor: From the cursor pointer r# compute the line number n2 and the character
offset n1 in line number n2.

See also: #lead, c/l.

Source file: <src/lib/prog.editor.specforth.fs>.

#ltyped

#ltyped (-- a) "l-typed-number-sign"

A variable . a is the address of a cell containing the number of characters displayed by ltype on the
current row.

See also: ltyped, #indented.

Source file: <src/lib/display.ltype.fs>.

#order

#order (-- a) "number-sign-order"

A user variable. a is the address of a cell containing the number of word lists in the search order.

See also: context, max-order, get-order, set-order, >order, wordlist.

Source file: <src/kernel.z80s>.

#s

#s (ud1 -- ud2) "number-sign-s"

51

Convert one digit of ud1 according to the rule for #. Continue conversion until the quotient is zero.
ud2 is zero. Used between <# and #>.

Definition:

#s (ud1 -- ud2) begin # 2dup or 0until ;

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

Source file: <src/kernel.z80s>.

#spaces

#spaces (ca len -- +n) "dash-spaces"

Count number +n of spaces in a string ca len.

See also: #chars, spaces.

Source file: <src/lib/strings.MISC.fs>.

#tib

#tib (-- a) "number-sign-t-i-b"

A variable. a is the address of a cell containing the number of characters in 'tib', the terminal input
buffer.

Origin: Forth-83 (Required Word Set), Forth-94 (CORE EXT, obsolescent).

See also: /tib.

Source file: <src/kernel.z80s>.

#words

#words (-- n) "number-sign-words"

n is the number of words currently defined in the system, which is updated by header,.

See also: fyi, greeting, cold.

Source file: <src/kernel.z80s>.

52

%

%

% (n1 n2 -- n3) "per-cent"

n1 is percentage n3 of n2.

See also: u%, */.

Source file: <src/lib/math.operators.1-cell.fs>.

'

'

' ("name" -- xt) "tick"

If name is found in the current search order, return its execution token xt, else throw an exception.

Definition:

: ' ("name" -- xt) defined dup ?defined name> ;

Origin: Forth-83 (Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: ['], '', defined, ?defined, >.

Source file: <src/kernel.z80s>.

''

'' ("name" -- xtp) "tick-tick"

If name is found in the current search order, return its execution-token pointer xtp, else throw an
exception.

Since aliases share the execution token of their original word, it’s not possible to get the name of an
alias from its execution token. But '' can do it:

' drop alias discard
' discard >name .name \ this prints "drop"
'' discard >>name .name \ this prints "discard"

53

See also: [''], '.

Source file: <src/lib/compilation.fs>.

'bs'

'bs' (-- c) "tick-b-s-tick"

A character constant that returns the caracter code used as backspace (8).

See also: 'cr', 'tab'.

Source file: <src/lib/display.control.fs>.

'cr'

'cr' (-- c) "tick-c-r-tick"

A character constant that returns the caracter code used as carriage return (13).

See also: cr, crs, newline, 'lf'.

Source file: <src/lib/display.control.fs>.

'lf'

'lf' (-- c) "tick-l-f-tick"

A character constant that returns the caracter code used as line feed (10).

NOTE
In the ZX Spectrum’s character set, control character code 10 is not called "line feed"
but "cursor down", which is analogous.

See also: cr, newline.

Source file: <src/lib/display.control.fs>.

'line

'line (-- ca len)

Part of the gforth-editor: Return the rest of the current line, from the current position.

See also: 'rest, c/l, 'par.

Source file: <src/lib/prog.editor.gforth.fs>.

54

'par

'par (buf "ccc<eol>" -- ca len)

Part of the gforth-editor: Parse ccc. If the result string is empty, discard it and return the counted
string at buf; else return the parsed string and also store it at buf as a counted string.

See also: 'rest, 'line.

Source file: <src/lib/prog.editor.gforth.fs>.

'rest

'rest (-- ca len)

Part of the gforth-editor: Return the rest of the current screen, from the current position.

See also: 'line, 'par, scr, block, b/buf.

Source file: <src/lib/prog.editor.gforth.fs>.

'tab'

'tab' (-- c) "tick-tab-tick"

A character constant that returns the caracter code used as tabulator (6).

See also: tab, 'cr', 'bs'.

Source file: <src/lib/display.control.fs>.

(

(

(("ccc<paren>" --) "paren"

Parse ccc delimited by a right parenthesis. The number of characters in ccc may be zero to the
number of characters in the parse area.

(is an immediate word.

Definition:

55

: (("ccc<paren>" --) ')' parse 2drop ; immediate

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: \, parse.

Source file: <src/kernel.z80s>.

(+ato

(+ato (n1 n2 xt --) "paren-plus-a-to"

Add n1 to element n2 of 1-dimension single-cell values array xt.

See also: avalue, +ato.

Source file: <src/lib/data.array.value.fs>.

(+cato

(+cato (c n xt --) "paren-plus-c-a-to"

Add c to element n of 1-dimension character values array xt.

See also: cavalue, +cato.

Source file: <src/lib/data.array.value.fs>.

(+loop

(+loop (n --) (R: loop-sys1 -- loop-sys2) "paren-plus-loop"

Add n to the loop index. If the loop index did not cross the boundary between the loop limit minus
one and the loop limit, continue execution at the beginning of the loop. Otherwise, discard the loop
parameters and continue execution immediately following the loop.

(+loop is compiled by +loop.

See also: (loop.

Source file: <src/kernel.z80s>.

(-do

56

(-do (n1|u1 n2|u2 --) (R: -- loop-sys |) "paren-minus-do"

If n1|u1 is not less than n2|u2, discard both parameters and continue execution at the location
given by the consumer of the do-sys left by -do at compilation time. Otherwise set up loop control
parameters loop-sys with index n2|u2 and limit n1|u1 and continue executing immediately
following -do. Anything already on the return stack becomes unavailable until the loop control
parameters loop_sys are discarded.

(-do is compiled by -do.

Source file: <src/lib/flow.do.fs>.

(."

(." (--) "paren-dot-quote"

Type the compiled string that follows. (." is the run-time procedure compiled by .".

Definition:

: (." (--) r@ count dup char+ r> + >r type ;

See also: ,", type, count.

Source file: <src/kernel.z80s>.

(.word

(.word (nt --) "paren-dot-word"

Default action of .word: display the name of the definition nt and execute tab.

Source file: <src/lib/tool.list.words.fs>.

(.xs

(.xs (--) "paren-dot-x-s"

Display a list of the items in the current xstack; TOS is the right-most item.

(.xs is a factor of .xs.

Source file: <src/lib/data.xstack.fs>.

57

(0-1-8-color.

(0-1-8-color. (n c --) "paren-zero-one-eight-color-dot"

emit control character c. Then convert n to the set 0, 1 and 8 and emit it. The conversion of n is done
as follows:

• 0, 1 and 8 are not changed.

• 2, 4 and 6 are converted to 0.

• 3, 5 and 7 are converted to 1.

• Values greater than 8 or less than 0 are converted to 8.

This word is a factor of flash. and bright..

Source file: <src/lib/display.attributes.fs>.

(0-9-color.

(0-9-color. (-- a) "paren-zero-nine-color-dot"

Return the address a of a routine used by paper. and ink.. This routine prints a color attribute in
the range 0..9.

Input: - A = attribute control char ($10 for ink, $11 for paper) - TOS = attribute value (0..9)

NOTE If TOS is greater than 9, 9 is used instead.

Source file: <src/lib/display.attributes.fs>.

(2ato

(2ato (xd n xt --) "paren-two-a-to"

Store xd into element n of 1-dimension double-cell values array xt.

See also: 2ato.

Source file: <src/lib/data.array.value.fs>.

(;code

(;code (--) (R: a --) "paren-semicolon-code"

Rewrite the code field of the most recently defined high-level word (it cannot be a code word) to

58

point to the following machine code sequence, which is at a.

(;code is the run-time procedure compiled by ;code and does>.

Definition:

: (;code (--) (R: a --) r> latestxt 1+ ! ;

See also: latestxt.

Source file: <src/kernel.z80s>.

(>drive-block

(>drive-block (u1 -- u2) "paren-to-drive-block"

Convert block u1 to its equivalent u2 in its corresponding disk drive, which is set the current drive.

(>drive-block becomes the action of >drive-block after block-drives has been loaded.

See also: ?drive#, ?block-drive, set-drive, set-block-drives.

Source file: <src/lib/dos.COMMON.fs>.

(>file

(>file (-- ior)

Save a memory zone (whose start address is stored in fda-filestart and whose length is stored in
fda-filelength) to a file (whose filename is stored in fda-filename) returning I/O result ior.

(>file is a factor of >file.

WARNING

When there’s no disk in the drive, TR-DOS prompts "Disc Error.
Retry,Abort,Ignore?". "Retry" is useless; "Abort" exits to BASIC with "Tape
loading error"; "Ignore" crashes the system. See more details in the source
code.

Source file: <src/lib/dos.trdos.fs>.

(>tape-file

(>tape-file (--) "paren-to-tape-file"

Write a tape file using the data stored at tape-header.

59

(>tape-file is a factor of >tape-file.

Source file: <src/lib/tape.fs>.

(?ccase

(?ccase (c ca len --) "paren-question-c-case"

Run-time procedure compiled by ?ccase. If c is in the string ca len, execute the n-th word compiled
after ?ccase, where n is the position of the first c in the string (0..len-1). If c is not in ca len, do
nothing.

Source file: <src/lib/flow.ccase.fs>.

(?do

(?do (n1|u1 n2|u2 --) (R: -- loop-sys |) "paren-question-do"

If n1|u1 is equal to n2|u2, continue execution at the location given by the consumer of the do-sys
left by ?do at compilation time. Otherwise set up loop control parameters loop-sys with index n2|u2
and limit n1|u1 and continue executing immediately following ?do. Anything already on the return
stack becomes unavailable until the loop control parameters loop_sys are discarded.

(?do is compiled by ?do.

See also: (do, (-do.

Source file: <src/kernel.z80s>.

(abort

(abort (--) "paren-abort"

Restart the system by emptying the stack and performing quit.

Definition:

: (abort (--) empty-stack boot quit ;

See also: error, abort, boot, empty-stack.

Source file: <src/kernel.z80s>.

(abort"

60

(abort" (x --) "paren-abort-quote"

If x is not zero, perform the function of -2 throw, displaying the string that was compiled inline by
abort".

(abort" is the run-time procedure compiled by abort".

See also: throw.

Source file: <src/lib/exception.fs>.

(acat

(acat (-- ior) "paren-a-cat"

Display an abbreviated catalogue of the current disk and return the I/O result code ior. (acat is a
factor of acat.

See also: set-drive.

Source file: <src/lib/dos.trdos.fs>.

(aif

(aif (op -- orig cs-id) "paren-a-if"

Compile the Z80 assembler absolute-jump instruction op and put the location of a new unresolved
forward reference orig and the assembler control-structure identifier cs_id onto the stack, to be
consumed by aelse or athen.

op was left by any of the following assembler conditions: nz?, z?, nc?, c?, po?, pe?, p?, m?.

(aif is a factor of aif and aelse.

See also: >mark.

Source file: <src/lib/assembler.fs>.

(any-of

(any-of (x#0 x#1 ... x#n n -- x#0 x#0 | x#0 0) "paren-any-of"

The run-time factor of any-of. If x#0 equals any of x#1 … x#n, return x#0 x#0; else return x#0 0.

Source file: <src/lib/flow.case.fs>.

61

(at-xy

(at-xy (col row --) "paren-at-x-y"

Set the cursor coordinates to column col and row row, by displaying control character 22 followed
by col and row, as needed by some display modes, e.g. mode-64ao and mode-42pw. The upper left
corner is column zero, row zero.

(at-xy is a possible action of at-xy, which is a deferred word (see defer) configured by the current
display mode.

WARNING
The default mode-32 expects row right after control character 22, and then col,
i.e in the order used by Sinclair BASIC. This will be fixed/unified in a future
version of Solo Forth.

Source file: <src/lib/display.mode.COMMON.fs>.

(ato

(ato (x n xt --) "paren-a-to"

Store x into element n of 1-dimension single-cell values array xt.

See also: ato.

Source file: <src/lib/data.array.value.fs>.

(auntil

(auntil (dest cs-id op) "paren-a-until"

Compile a Z80 assembler conditional absolute-jump opcode op.

(auntil is a factor of auntil and aagain.

Source file: <src/lib/assembler.fs>.

(baden-sqrt

(baden-sqrt (n1 -- n2 n3) "paren-baden-square-root"

Integer square root n3 of radicand n1 with remainder n2. (baden-sqrt is a factor of baden-sqrt.

Source file: <src/lib/math.operators.1-cell.fs>.

62

(between-of

(between-of (x1 x2 x3 -- x1 x1 | x1 x4) "paren-between-of"

The run-time factor of between-of. If x1 is in range x2 x3, as calculated by between, return x1 x1;
otherwise return x1 x4, being x4 not equal to x1.

Source file: <src/lib/flow.case.fs>.

(bye

(bye (--) "paren-bye"

Restore the two lower lines of the screen, as expected by BASIC, set interrupt mode 1, restore the OS
stack pointer, restore the alternate HL Z80 register, and finally force a "STOP" BASIC error in order
to return control to the host OS.

(bye is the final low-level procedure of bye.

Source file: <src/kernel.z80s>.

(c

(c (ca len --) "paren-c"

Copy the string ca len to the cursor line at the cursor position. (c is a factor of c.

See also: #lag, r#, #lead, cmove, update.

Source file: <src/lib/prog.editor.specforth.fs>.

(cato

(cato (c n xt --) "paren-c-a-to"

Store c into element n of 1-dimension character values array xt.

See also: cato.

Source file: <src/lib/data.array.value.fs>.

(ccase

(ccase (c ca len --) "paren-c-case"

63

Run-time procedure compiled by ccase. If c is in the string ca len, execute the n-th word compiled
after ccase, where n is the position of the first c in the string (0..len-1). If c is not in ca len, execute
the word compiled right before endccase.

Source file: <src/lib/flow.ccase.fs>.

(ccase0

(ccase0 (c ca len --) "paren-c-case-zero"

Run-time procedure compiled by ccase0. If c is in the string ca len, execute the n-th word compiled
after ccase0, where n is the position of the first c in the string (0..len-1) plus 1. If c is not in ca len,
execute the word compiled right after ccase0.

Source file: <src/lib/flow.ccase.fs>.

(comp'

(comp' (nt -- xt) "paren-comp-tick"

A factor of name>compile. If nt is an immediate word, return the xt of execute, else return the xt of
compile,.

See also: immediate?.

Source file: <src/lib/compilation.fs>.

(cr

(cr (--) "paren-c-r"

Transmit a carriage return to the selected output device. (cr is the default action of the deferred
word cr (see defer).

Source file: <src/kernel.z80s>.

(d.

(d. (d n -- ca len) "paren-d-dot"

Convert d to an unsigned number in the current base, with n digits, as string ca len.

See also: (dbin., (dhex..

Source file: <src/lib/display.numbers.fs>.

64

(dbin.

(dbin. (d n --) "paren-d-bin-dot"

Display d as an unsigned binary number with n digits.

See also: (dhex., 32bin., 16bin., 8bin., bin..

Source file: <src/lib/display.numbers.fs>.

(defer

(defer (--) "paren-defer"

throw error #-261 ("deferred word is uninitialized". (defer is the default action of the uninitialized
deferred words (see defer).

Definition:

: (defer (--) #-261 error ;

Source file: <src/kernel.z80s>.

(delete-file

(delete-file (-- ior) "paren-delete-file"

Delete a disk file using the data hold in fda, returning the I/O result code ior.

(delete-file is a factor of delete-file.

Source file: <src/lib/dos.trdos.fs>.

(dhex.

(dhex. (d n --) "paren-d-hex-dot"

Display d as an unsigned hexadecimal number with n digits.

See also: (dbin., 32hex., 16hex., 8hex., hex..

Source file: <src/lib/display.numbers.fs>.

65

(do

(do (n1|u1 n2|u2 --) (R: -- loop-sys) "paren-do"

Set up loop control parameters loop-sys with index n2|u2 and limit n1|u1 and continue executing
immediately following do. Anything already on the return stack becomes unavailable until the loop
control parameters loop_sys are discarded.

(do is compiled by do.

See also: (?do, (-do.

Source file: <src/kernel.z80s>.

(dstep

(dstep (R: x ud -- x ud' | x) "paren-d-step"

The run-time procedure compiled by dstep.

If the loop index ud is zero, discard it and continue execution after the loop. Otherwise decrement
the loop index and continue execution at the beginning of the loop.

Source file: <src/lib/flow.dfor.fs>.

(file>

(file> (ca len -- ior) "paren-file-from"

Search the disk for the file whose filename is stored at fda and read its metadata into fda. Then read
the file contents to memory zone ca len or to the original memory zone of the file, depending on the
following rules:

1. If len is not zero, read len bytes from the file to address ca.

2. If len is zero, use the original length of the file insted, and then check ca: If ca is not zero, use it
as destination address, else use the original address of the file.

Return I/O result code ior.

(file> is a factor of file>.

See also: fda-filestart, fda-filelength.

Source file: <src/lib/dos.trdos.fs>.

66

(fp@

(fp@ (-- fa) "paren-f-p-fetch"

Return the address fa above the top of the floating-point stack. (fp@ is a factor of fp@.

See also: fp.

Source file: <src/lib/math.floating_point.rom.fs>.

(g-emit

(g-emit (c --) "paren-g-emit"

Display character c (32..127) at the current graphic coordinates.

The character is printed with overprinting (equivalent to 1 overprint).

See also: g-emit, g-emit_.

Source file: <src/lib/display.g-emit.fs>.

(gigatype

(gigatype (ca len a1 a2 --) "paren-gigatype"

If len is greater than zero, display text string ca len at screen address a1 using the current fonts,
doubled pixels (16x16 pixels per character) and modifying the characters on the fly after style data
table a2.

(gigatype is written in Z80 and it’s the low-level procedure of gigatype.

Source file: <src/lib/display.gigatype.fs>.

(greater-of

(greater-of (n1 n2 -- n1 n1 | n1 n3) "paren-greater-of"

The run-time factor of greater-of.

If n1 is greater than n2, leave n1 n1; otherwise leave n1 n3, being n3 not equal to n1.

See also: (less-of.

Source file: <src/lib/flow.case.fs>.

67

(heap-in

(heap-in (--) "paren-heap-in"

If the current heap was created by bank-heap, page in its bank, which is stored at heap-bank; else do
nothing.

(heap-in is the action of heap-in.

Source file: <src/lib/memory.allocate.COMMON.fs>.

(home

(home (--) "paren-home"

Default action of home: Set the cursor position at the top left position (column 0, row 0).

Source file: <src/kernel.z80s>.

(index-block

(index-block (u --) "paren-index-block"

Index block u, evaluating its header line. The only word list in the search order must be index-
wordlist.

(index-block is a common factor of index-block and (make-thru-index.

Source file: <src/lib/blocks.indexer.COMMON.fs>.

(jr,

(jr, (a op --) "paren-j-r-comma"

Compile a Z80 assembler relative-jump intruction op to the absolute address a.

(jr, is a factor of jr,.

Source file: <src/lib/assembler.fs>.

(lcr

(lcr (--) "paren-l-c-r"

A deferred word (see defer) whose default action is cr. (lcr is the actual carriage return done by

68

lcr, before updating the data of the left-justified displaying system. (lcr is a hook for the
application, for special cases.

See also: ltype.

Source file: <src/lib/display.ltype.fs>.

(less-of

(less-of (n1 n2 -- n1 n1 | n1 n3) "paren-less-of"

The run-time factor of less-of.

If n1 is less than n2, leave n1 n1; otherwise leave n1 n3, being n3 not equal to n1.

See also: (greater-of.

Source file: <src/lib/flow.case.fs>.

(load

(load (u --) "paren-load"

Make block u the current input source and interpret it.

(load is a common factor of load and continued.

Definition:

: (load (u --) dup lastblk ! block>source interpret ;

See also: block>source, interpret.

Source file: <src/kernel.z80s>.

(load-program

(load-program (u --) "paren-load-program"

Load a program from block u, i.e. a set of blocks that are loaded as a whole. The blocks of a program
don’t have block headers. Therefore programs cannot have internal requisites, i.e. they use need
only to load from the library, which must be before the blocks of the program on the disk or disks.

Programs don’t need --> or any similar word to control the loading of blocks. The loading starts
from block u and continues until the last block of the disk or until end-program is executed.

69

(load-program is a factor of load-program. (load-program can be used to resume load-program after an
error, provided the code of block where the error happened (lastblk) is not the continuation of the
previous block.

See also: loading-program.

Source file: <src/lib/blocks.fs>.

(located

(located (ca len -- block | 0) "paren-located"

Locate the first block whose header contains the string ca len (surrounded by spaces), and return its
number. If not found, return zero. The search is case-sensitive.

Only the blocks delimited by first-locatable and last-locatable are searched.

(located is a deferred word (see defer). Its default action is multiline-(located, which is under
development; its alternative old action is 1-line-(located.

(located is the default action of located, which is changed by use-fly-index.

See also: default-first-locatable.

Source file: <src/lib/002.need.fs>.

(loop

(loop (R: loop-sys1 -- loop-sys2) "paren-loop"

Increment the loop index by one. If the loop index did not cross the boundary between the loop
limit minus one and the loop limit, continue execution at the beginning of the loop. Otherwise,
discard the loop parameters and continue execution immediately following the loop.

(loop is compiled by loop.

See also: (+loop.

Source file: <src/kernel.z80s>.

(make-thru-index

(make-thru-index (--) "paren-make-thru-index"

Create the blocks index, from first-locatable to last-locatable.

(make-thru-index is a factor of make-thru-index.

70

See also: use-thru-index.

Source file: <src/lib/blocks.indexer.thru.fs>.

(mode-64ao-output_

(mode-64ao-output_ (-- a) "paren-mode-64-a-o-output"

a is the address of a Z80 routine, the low-level mode-64ao driver, which displays the character in the
A register. The Forth IP is not preserved.

mode-64ao-output_ is called by mode-64ao-output_ and mode-64ao-emit.

Source file: <src/lib/display.mode.64ao.fs>.

(options

(options (i*x x -- j*x) "paren-options"

Run-time procedure compiled by options[.

x = option to search for

Source file: <src/lib/flow.options-bracket.fs>.

(or-of

(or-of (x1 x2 x3 -- x1 x1 | x1 x4) "paren-or-of"

The run-time factor of less-of.

Source file: <src/lib/flow.case.fs>.

(parse-esc-string

(parse-esc-string (ca len "ccc<quote>" -- ca' len') "paren-parse-esc-string"

Parse a text string delimited by a double quote, translating some configurable characters that are
escaped with a backslash. Add the translated string to ca len, returning a new string ca' len' in the
stringer.

(parse-esc-string is a factor of parse-esc-string.

See also: set-esc-order.

Source file: <src/lib/strings.escaped.fs>.

71

(pixel-pan-right

(pixel-pan-right (-- a) "paren-pixel-pan-right"

Return the address a of a Z80 routine that pans the whole screen one pixel to the right.

WARNING
The BC register (the Forth IP) is not preserved. This is intended, in order to
save time when this routine is called in a loop. Therefore the calling code must
save the BC register.

See also: pixel-pan-right, pixel-scroll-up.

Source file: <src/lib/graphics.scroll.fs>.

(pixel-scroll-up

(pixel-scroll-up (-- a) "paren-pixel-scroll-up"

Return the address a of a Z80 routine that scrolls the whole screen one pixel up.

WARNING
The BC register (the Forth IP) is not preserved. This is intended, in order to
save time when this routine is called in a loop. Therefore the calling code must
save the BC register.

See also: pixel-scroll-up.

Source file: <src/lib/graphics.scroll.fs>.

(resolve-ref

(resolve-ref (orig b --) "paren-resolve-ref"

Resolve reference at orig to assembler label b.

See also: resolve-rl#, resolve-al#.

Source file: <src/lib/assembler.labels.fs>.

(rif

(rif (op -- orig cs-id) "paren-r-if"

Compile the Z80 assembler conditional relative-jump instruction op. Leave address orig to be
resolved by relse or rthen and the identifier cs-id of the control-flow structure rif .. relse .. rthen.

72

(rif is a factor of rif and relse.

Source file: <src/lib/assembler.fs>.

(runtil

(runtil (dest cs-id op --) "paren-r-until"

Compile a Z80 assembler conditional relative-jump instruction op to address dest, as part of a
control-flow structure identified by cs-id.

(runtil is a factor of runtil, ragain and rstep.

Source file: <src/lib/assembler.fs>.

(source-id

(source-id (-- a) "paren-source-i-d"

A constant. a is the address of a cell containinig the value returned by source-id.

Source file: <src/kernel.z80s>.

(step

(step (R: u -- u') "paren-step"

The run-time procedure compiled by step.

If the loop index is zero, discard the loop parameters and continue execution after the loop.
Otherwise decrement the loop index and continue execution at the beginning of the loop.

Source file: <src/lib/flow.for.fs>.

(substitution

(substitution (ca1 len1 -- ca2) "paren-substitution"

Given a string ca1 len1 create its definition in substitute-wordlist its substitution and return the
address of its storage space in data space, not allocated.

(substitution is a common factor of substitution and xt-substitution.

See also: substitution, xt-substitution, replaces.

Source file: <src/lib/strings.replaces.fs>.

73

(tape-file>

(tape-file> (--) "paren-tape-file-from"

Read a tape file using the data stored at tape-header.

(tape-file> is a factor of tape-file>.

Source file: <src/lib/tape.fs>.

(udg-block

(udg-block (width height a "name..." --) "paren-u-d-g-block"

Parse a UDG block, and store it from address a. width and height are in characters. The maximum
width is 7 (imposed by the size of Forth source blocks). height has no maximum, as the UDG block
can ocuppy more than one Forth block (provided the Forth block has no index line, i.e. load-program
is used to load the source).

The scans can be formed by binary digits, by the characters hold in udg-blank and udg-dot, or any
combination of both notations.

(udg-block is a common factor of udg-block and ,udg-block, whose documentation include usage
examples.

See also: csprite, udg-group.

Source file: <src/lib/graphics.udg.fs>.

(user

(user (+n "name" --) "paren-user"

Create a user variable name. +n is the offset within the user area where the value for name is
stored. Execution of name leaves its absolute user area storage address. No user space is allocated.

(user is a factor of ucreate.

See also: user, 2user, uallot.

Source file: <src/kernel.z80s>.

(warning"

(warning" (f --) "paren-warning-quote"

74

If f is not zero, display the in-line string; else do nothing.

(warning" is the inner procedure compiled by warning".

Source file: <src/lib/exception.fs>.

(wat-xy

(wat-xy (col row --) "paren-w-at-x-y"

Set the cursor coordinates to current-window cursor coordinates col row. The upper left corner of the
window is column zero, row zero.

See also: wat-xy.

Source file: <src/lib/display.window.fs>.

(within-of

(within-of (x1 x2 x3 -- x1 x1 | x1 x4) "paren-within-of"

The run-time factor of within-of. If x1 is in range x2 x3, as calculated by within, return x1 x1;
otherwise return x1 x4, being x4 not equal to x1.

Source file: <src/lib/flow.case.fs>.

(~~

(~~ (nt n u --) "paren-tilde-tilde"

The runtime action compiled by ~~ during the definition of word nt in line n of block u:

If the content of ~~? is not zero, execute the following words in the given order: ~~before-info,
~~info, ~~control and ~~after-info.

See also: ~~y.

Source file: <src/lib/tool.debug.tilde-tilde.fs>.

(~~info

(~~info (--) "paren-tilde-tilde-info"

Default action of ~~info: Show the debugging info compiled by ~~ and the current contents of the
data stack. At least to lines are used, depending on the contents of the stack. The first line shows the
block, line and definition name where ~~ was compiled; the second line shows the contents of the

75

stack. The printing position can be configured with ~~y.

Source file: <src/lib/tool.debug.tilde-tilde.fs>.

)

)

) (f --) "close-paren"

End an assertion.

) is an immediate word.

Origin: Gforth.

See also: assert(.

Source file: <src/lib/tool.debug.assert.fs>.

*

*

* (n1|u1 n2|u2 -- n3|u3) "star"

Multiply n1|u1 by n2|u2 giving the product n3|u3.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: m*, um*, d*.

Source file: <src/kernel.z80s>.

*!

*! (n|u a --) "star-store"

Multiply n|u by the single-cell number stored at a and store the product in a

See also: 2*! /!, +!, -!.

Source file: <src/lib/memory.MISC.fs>.

76

*/

*/ (n1 n2 n3 -- n4) "star-slash"

Multiply n1 by n2 producing the intermediate d. Divide d by n3 giving the quotient n4.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: */mod, m*/, *, /, */_, */-.

Source file: <src/lib/math.operators.1-cell.fs>.

*/-

*/- (n1 n2 n3 -- n4) "star-slash-dash"

Multiply n1 by n2 producing the intermediate result d. Divide d by n3 (doing a symmetric division),
giving the symmetric quotient n4.

See also: */-rem, */, */_, sm/rem.

Source file: <src/lib/math.operators.1-cell.fs>.

*/-rem

*/-rem (n1 n2 n3 -- n4 n5) "star-slash-dash-rem"

Multiply n1 by n2 producing the intermediate result d. Divide d by n3 (doing a symmetric division),
giving the remainder n4 and the symmetric quotient n5.

See also: */mod, */_mod, sm/rem.

Source file: <src/lib/math.operators.1-cell.fs>.

*/_

*/_ (n1 n2 n3 -- n4) "star-slash-underscore"

Multiply n1 by n2 producing the intermediate result d. Divide d by n3 (doing a floored division),
giving the floored quotient n4.

See also: */_mod, */, */-, fm/mod.

Source file: <src/lib/math.operators.1-cell.fs>.

77

*/_mod

*/_mod (n1 n2 n3 -- n4 n5) "star-slash-underscore-mod"

Multiply n1 by n2 producing the intermediate result d. Divide d by n3 (doing a floored division),
giving the remainder n4 and the floored quotient n5.

See also: */mod, */_, */-rem, fm/mod.

Source file: <src/lib/math.operators.1-cell.fs>.

*/mod

*/mod (n1 n2 n3 -- n4 n5) "star-slash-mod"

Multiply n1 by n2 producing the intermediate result d. Divide d by n3 producing the remainder n4
and the quotient n5.

Definition:

: */mod (n1 n2 n3 -- n4 n5) >r m* r> m/ ;

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: /mod, */, */_mod, */-rem, m*, m/.

Source file: <src/kernel.z80s>.

+

+

+ (n1|u1 n2|u2 -- n3|u3) "plus"

Add n1|u1 to n2|u2, giving the sum n3|u3.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: m+, d+, 2+, 1+, -.

Source file: <src/kernel.z80s>.

78

+!

+! (n|u a --) "plus-store"

Add n|u to the single-cell number at a.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: c+!, @, +, !.

Source file: <src/kernel.z80s>.

+3dos

+3dos (--) "plus-three-dos"

An alias of noop that is defined only in the +3DOS version of Solo Forth. Its goal is to check the DOS a
program is running on, using defined or [defined].

+3dos is an immediate word.

See also: dos, tr-dos, g+dos.

Source file: <src/kernel.z80s>.

+ato

+ato (n1 n2 "name" --) "plus-a-to"

Add n1 to element n2 of 1-dimension single-cell values array name.

+ato is an immediate word.

See also: avalue, (+ato.

Source file: <src/lib/data.array.value.fs>.

+beep>note

+beep>note (+n1 -- +n2 +n3) "plus-beet-to-note"

Convert a positive pitch +n1 of beep to its corresponding note +n3 (0..11) in octave +n2, being zero
the middle octave.

See also: beep>note, -beep>note, /octave, beep>dhz, beep>bleep.

79

Source file: <src/lib/sound.48.fs>.

+branch

+branch (n --) "plus-branch"

A run-time procedure to branch conditionally. If n is positive, the following in-line address is copied
to IP to branch forward or backward.

+branch is compiled by -if and -until.

See also: branch, ?branch, 0branch, -branch.

Source file: <src/lib/flow.branch.fs>.

+cato

+cato (c n "name" --) "plus-c-a-to"

Add c to element n of 1-dimension character values array name.

+cato is an immediate word.

See also: cavalue, (+cato.

Source file: <src/lib/data.array.value.fs>.

+exit

+exit (n --) (R: nest-sys | -- nest-sys |) "plus-exit"

If n is positive, return control to the calling definition, specified by nest-sys.

WARNING
+exit is not intended to be used within a loop. Use 0>= if unloop exit then
instead.

+exit can be used in interpretation mode to stop the interpretation of a block.

See also: exit, ?exit, 0exit, -exit, +if, +while, +until.

Source file: <src/lib/flow.conditionals.positive.fs>.

+field

+field (n1 n2 "name" -- n3) "plus-field"

80

Create a definition for name with the execution semantics defined below. Return n3 = n1 + n2 where
n1 is the offset in the data structure before +field executes, and n2 is the size of the data to be
added to the data structure. n1 and n2 are in bytes.

name execution: (a1 -- a2)

Add n1 to a1 giving a2.

In Solo Forth, +field is an unitialized deferred word (see defer), for which three implementations
are provided: +field-unopt, +field-opt-0 and +field-opt-0124.

Origin: Forth-2012 (FACILITY EXT).

See also: begin-structure.

Source file: <src/lib/data.begin-structure.fs>.

+field-opt-0

+field-opt-0 (n1 n2 "name" -- n3) "plus-field-opt-zero"

Optimized implementation of +field. This implementation is more efficient than +field-unopt (but
less than +field-opt-0124) because the field 0 does not calculate the field offset.

+field-opt-0 uses 31 bytes of data space.

NOTE Loading +field-opt-0 makes it the action of +field.

Source file: <src/lib/data.begin-structure.fs>.

+field-opt-0124

+field-opt-0124 (n1 n2 "name" -- n3) "plus-field-opt-zero-one-two-four"

Optimized implementation of +field that optimizes the calculation of field offsets 0, 1, 2 and 4.
Therefore it is more efficient than +field-unopt and +field-opt-0, but it uses 106 bytes of data space
and needs case.

NOTE Loading +field-opt-0124 makes it the action of +field.

Source file: <src/lib/data.begin-structure.fs>.

+field-unopt

+field-unopt (n1 n2 "name" -- n3) "plus-field-unopt"

81

Unoptimized implementation of +field. This implementation is less efficient than +field-opt-0 and
+field-opt-0124 because the field offset is calculated also when it is 0.

The advantage of this implementation is it uses only 22 bytes of data space, so it could be useful in
some cases.

NOTE Loading +field-unopt makes it the action of +field.

Source file: <src/lib/data.begin-structure.fs>.

+if

+if "plus-if"
 Compilation: (C: -- orig)
 Run-time: (f --)

Faster and smaller alternative to the idiom 0>= if.

+if is an immediate and compile-only word.

See also: if, 0if, -if, -branch ,+while, +until, +exit.

Source file: <src/lib/flow.conditionals.positive.fs>.

+load

+load (n --) "plus-load"

Load the block that is n blocks from the current one.

See also: load, blk, +thru.

Source file: <src/lib/blocks.fs>.

+loop

+loop "plus-loop"
 Compilation: (do-sys --)

Compilation: Compile (+loop and resolve the do-sys address left by do, ?do or -do.

+loop is an immediate and compile-only word.

Origin: Forth-83 (Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: loop.

82

Source file: <src/lib/flow.do.fs>.

+order

+order (wid --) "plus-order"

Remove all instances of the word list identified by wid from the search order, then add it to the top.

See also: -order, >order, set-order, order.

Source file: <src/lib/word_lists.fs>.

+origin

+origin (n -- a) "plus-origin"

Leave the memory address a relative by n bytes to the origin parameter area. +origin is used to
access or modify the boot-up parameters at the origin area.

See the details in the source of the kernel.

Origin: fig-Forth.

Source file: <src/kernel.z80s>.

+perform

+perform (a n --) "plus-perform"

Execute the execution token pointed by an offset of n cells from base address a, i.e., execute the
contents of element n of the cell table that starts at a.

If the execution token is zero, do nothing.

See also: perform, execute, array>.

Source file: <src/lib/flow.MISC.fs>.

+place

+place (ca1 len1 ca2 --) "plus-place"

Add the string ca1 len1 to the end of the counted string ca2.

See also: place, s+, smove, count.

83

Source file: <src/lib/strings.MISC.fs>.

+seclusion

+seclusion (wid1 wid2 -- wid1 wid2) "plus-seclusion"

Start more private definitions of a seclusion module.

See also: -seclusion, end-seclusion.

Source file: <src/lib/modules.MISC.fs>.

+stringer

+stringer (-- a) "plus-stringer"

A variable. a is the address of a cell containing the pointer of the stringer, i.e. an offset to its first
free address. The offset equals the number of free characters in the stringer.

See also: empty-stringer.

Source file: <src/kernel.z80s>.

+thru

+thru (u1 u2 --) "plus-thru"

Load consecutively the blocks that are u1 blocks through u2 blocks from the current one.

See also: +load, blk, load.

Source file: <src/lib/blocks.fs>.

+toarg

+toarg (--) "plus-to-arg"

Set the add action for the next local variable. Used with locals created by arguments.

Loading +toarg makes @ the default action of arguments locals, which is hold in arg-default-action.

See also: toarg.

Source file: <src/lib/locals.arguments.fs>.

84

+under

+under (n1|u1 n2|u2 x -- n3|u3 x) "plus-under"

Add n2|u2 to n1|u2, giving the sum n3|u3.

+under is written in Z80. Its definition in Forth is the following:

: +under (n1|u1 n2|u2 x -- n3|u3 x) >r + r> ;

Origin: Comus.

See also: under+, +.

Source file: <src/lib/math.operators.1-cell.fs>.

+until

+until "plus-until"
 Compilation: (C: dest --)
 Run-time: (f --)

Faster and smaller alternative to the idiom 0>= until.

+until is an immediate and compile-only word.

See also: until, 0until, -until, -branch, +if, +while, +exit.

Source file: <src/lib/flow.conditionals.positive.fs>.

+while

+while (n --) "plus-while"
 Compilation: (C: dest -- orig dest)
 Run-time: (f --)

Faster and smaller alternative to the idiom 0>= while.

+while is an immediate and compile-only word.

See also: while, 0while, -while, +if, +until, +exit.

Source file: <src/lib/flow.conditionals.positive.fs>.

85

,

,

, (x --) "comma"

Reserve one cell of data space and store x in the cell.

Definition:

: , (x --) here ! cell allot ;

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: 2,, c,, here, !, cell, allot.

Source file: <src/kernel.z80s>.

,"

," ("ccc<quote>" --) "comma-quote"

Parse "ccc" delimited by a double-quote and compile the string.

Definition:

: ," (--) '"' parse s, ;

See also: parse, s,, far,".

Source file: <src/kernel.z80s>.

,np

,np (x --) "comma-n-p"

Store x into the cell address pointed by np, the name-space pointer, increasing it by one cell.

See also: far!.

Source file: <src/kernel.z80s>.

86

,udg-block

,udg-block (width height "name..." --) "comma-u-d-g-block"

Parse a UDG block, and compile it in data space. width and height are in characters. The maximum
width is 7 (imposed by the size of Forth source blocks). height has no maximum, as the UDG block
can ocuppy more than one Forth block (provided the Forth block has no index line, i.e. load-program
is used to load the source).

The scans can be formed by binary digits, by the characters hold in udg-blank and udg-dot, or any
combination of both notations.

Usage example:

here 3 1 ,udg-block
..........X..X..........
...XXXXXX.X..X.XXXXXXX..
..XXXXXXXXXXXXXXXXXXXXX.
.XXXXXXXXXXXXXXXXXXXXXXX
.XX.X.X.X.X.X.X.X.X.X.XX
..XX..XX..XX..XX..XX.XX.
...X.XXX.XXX.XXX.XXX.X..
....X.X.X.X.X.X.X.X.X... constant tank

: .tank (--)
 tank dup emit-udga /udg+ dup emit-udga /udg+ emit-udga ;

cr .tank cr

See also: udg-block, csprite, udg-group, emit-udga.

Source file: <src/lib/graphics.udg.fs>.

-

-

- (n1|u1 n2|u2 -- n3|u3) "minus"

Substract n2|u2 from n1|u1, giving the difference n3|u3.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: d-, 2-, 1-, +.

Source file: <src/kernel.z80s>.

87

-!

-! (n|u a --) "minus-store"

Subtract n|u from the single-cell number stored at a.

See also: +!, 1-!, c-!.

Source file: <src/lib/memory.MISC.fs>.

-->

--> (--) "next-block"

Continue interpretation with the next block.

--> is an immediate word.

Definition:

: --> (--)
 ?loading refill 0= #-35 ?throw ; immediate

Origin: fig-Forth, Forth-79 (Reference Word Set), Forth-83 (Controlled Reference Words).

See also: ?-->, load, continued, ?loading, refill.

Source file: <src/kernel.z80s>.

--dos-commands--

--dos-commands-- (--)

Do nothing. --dos-commands-- is used only in need --dos-commands-- in order to load all of the TR-
DOS command constants:

88

$00 cconstant dos-init-interface
$01 cconstant dos-init-drive
$02 cconstant dos-seek-track
$03 cconstant dos-set-sector
$04 cconstant dos-define-buffer
$05 cconstant dos-read-sectors
$06 cconstant dos-write-sectors
$07 cconstant dos-cat
$08 cconstant dos-read-file-descriptor
$09 cconstant dos-write-file-descriptor
$0A cconstant dos-find-file
$0B cconstant dos-create-file
$0C cconstant dos-save-basic-program
$0E cconstant dos-read-file
$12 cconstant dos-delete-file
$13 cconstant dos-copy-from-hl-to-descriptor
$14 cconstant dos-copy-from-descriptor-to-hl
$15 cconstant dos-test-track
$16 cconstant dos-select-bottom-side
$17 cconstant dos-select-top-side
$18 cconstant dos-read-system-track

These constants are used to make the TR-DOS calls more legible in code words.

See also: need.

Source file: <src/lib/dos.trdos.fs>.

-1

-1 (-- -1) "minus-one"

Return -1. -1 is not a constant, but a code word, which is faster.

See also: 0, 1, 2, true.

Source file: <src/kernel.z80s>.

-1..1

-1..1 (-- -1|0|1) "minus-one-dot-dot-one"

Return a random number: -1, 0 or 1.

See also: -1|1, rnd, fast-random.

Source file: <src/lib/random.fs>.

89

-1|1

-1|1 (-- -1|1) "minus-one-bar-one"

Return a random number: -1 or 1.

See also: -1..1, rnd, fast-random.

Source file: <src/lib/random.fs>.

->

-> (i*x --)

Part of the hayes-test: Record depth and content of stack.

See also: {, }.

Source file: <src/lib/meta.tester.hayes.fs>.

->

-> (i*x --)

Part of ttester: Record depth and contents of stack.

See also: t{, }t.

Source file: <src/lib/meta.tester.ttester.fs>.

->in/l

->in/l (-- n) "minus-to-in-slash-l"

Return number n of characters not interpreted yet in the current line of the block being
interpreted. No check is done whether any block is actually being interpreted.

->in/l is a factor of \.

Definition:

: ->in/l (-- n) c/l >in/l - ;

See also: blk-line, >in/l, >in, c/l.

90

Source file: <src/kernel.z80s>.

-beep>note

-beep>note (-n1 -- -n2 +n3) "minus-beep-to-note"

Convert a negative pitch -n1 of beep to its corresponding note +n3 (0..11) in octave -n2, being zero
the middle octave.

See also: beep>note, +beep>note, /octave, beep>dhz, beep>dhz.

Source file: <src/lib/sound.48.fs>.

-block-drives

-block-drives (--) "minus-block-drives"

Fill block-drives with not-block-drive, making no disk drive be used as block drive.

See also: set-block-drives, get-block-drives.

Source file: <src/lib/dos.COMMON.fs>.

-branch

-branch (n --) "minus-branch"

A run-time procedure to branch conditionally. If n is negative, the following in-line address is
copied to IP to branch forward or backward.

-branch is compiled by +if and +until.

See also: branch, ?branch, 0branch, +branch.

Source file: <src/lib/flow.branch.fs>.

-do

-do
 Compilation: (-- do-sys)
"minus-do"

Compile (-do and leave do-sys to be consumed by loop or +loop. -do is an alternative to do and ?do, to
create count-down loops with +loop.

-do is an immediate and compile-only word.

91

Usage example:

: -count-down (limit start --)
 -do i . -1 +loop ;

0 0 -count-down \ prints nothing
4 0 -count-down \ prints nothing
0 4 -count-down \ prints 4 3 2 1

\ Compare to:

: ?count-down (limit start --)
 ?do i . -1 +loop ;

0 0 ?count-down \ prints nothing
4 0 ?count-down \ prints 0 -1..-32768 32767..4
0 4 ?count-down \ prints 4 3 2 1 0

: count-down (limit start --)
 do i . -1 +loop ;

0 0 count-down \ prints 0
4 0 count-down \ prints 0 -1..-32768 32767..4
0 4 count-down \ prints 4 3 2 1 0

Origin: Gforth.

Source file: <src/lib/flow.do.fs>.

-dup

-dup (x -- x x | x) "minus-dup"

Duplicate x if it’s negative.

See also: dup, 0dup.

Source file: <src/lib/data_stack.fs>.

-exit

-exit (n --) (R: nest-sys | -- nest-sys |) "minus-exit"

If n is negative, return control to the calling definition, specified by nest-sys.

WARNING
-exit is not intended to be used within a loop. Use 0< if unloop exit then
instead.

92

-exit can be used in interpretation mode to stop the interpretation of a block.

See also: exit, ?exit, 0exit, +exit, -if, -while, -until.

Source file: <src/lib/flow.conditionals.negative.fs>.

-fda-filename

-fda-filename (--) "minus-f-d-a-filename"

Erase the filename stored at TR-DOS fda (File Descriptor Area) with spaces, and set its type to 'C'.

See also: -filename, set-filename.

Source file: <src/lib/dos.trdos.fs>.

-filename

-filename (ca --) "minus-filename"

Erase the filename stored at ca and set its type to 'C'.

See also: -fda-filename, set-filename.

Source file: <src/lib/dos.trdos.fs>.

-if

-if "minus-if"
 Compilation: (C: -- orig)
 Run-time: (f --)

Faster and smaller alternative to the idiom 0< if.

-if is an immediate and compile-only word.

See also: if, 0if, +if, +branch, -while, -until, -exit.

Source file: <src/lib/flow.conditionals.negative.fs>.

-keys

-keys (--) "minus-keys"

Remove all keys from the keyboard buffer.

93

See also: key?, new-key, new-key-, key, xkey.

Source file: <src/lib/keyboard.MISC.fs>.

-leading

-leading (ca1 len1 -- ca2 len2) "minus-leading"

Adjust the start and length of a string ca1 len1 to suppress the leading blanks, returning the result
ca2 len2.

Definition:

: -leading (ca len -- ca' len') bl skip ;

See also: -trailing, trim, bl, skip.

Source file: <src/kernel.z80s>.

-mixer

-mixer (--) "minus-mixer"

Disable the noise and tone mixers for the three channels of the AY-3-8912 sound generator.

See also: set-mixer, get-mixer, silence.

Source file: <src/lib/sound.128.fs>.

-move

-move (ca n --) "minus-move"

Part of specforth-editor: Move a line of text from ca to line n of current block.

See also: m, c/l, cmove, update.

Source file: <src/lib/prog.editor.specforth.fs>.

-order

-order (wid --) "minus-order"

Remove all instances of word list identified by wid from the search order.

94

See also: +order, >order, set-order, order.

Source file: <src/lib/word_lists.fs>.

-prefix

-prefix (ca1 len1 ca2 len2 -- ca1 len1 | ca3 len3) "minus-prefix"

Remove prefix ca2 len2 from string ca1 len1.

See also: -suffix, /string, 1/string, -leading.

Source file: <src/lib/strings.MISC.fs>.

-rem

-rem (n1 n2 -- n3) "dash-rem"

Divide n1 by n2 (doing a symmetric division), giving the remainder n3.

See also: /-rem, /, /_mod.

Source file: <src/lib/math.operators.1-cell.fs>.

-rot

-rot (x1 x2 x3 -- x3 x1 x2) "minus-rot"

Rotate the top three stack entries in reverse order.

See also: rot, over, tuck, swap, roll, pick, unpick.

Source file: <src/kernel.z80s>.

-seclusion

-seclusion (wid1 wid2 -- wid1 wid2) "minus-seclusion"

Start the public definitions of a seclusion module.

See also: +seclusion, end-seclusion.

Source file: <src/lib/modules.MISC.fs>.

95

-suffix

-suffix (ca1 len1 ca2 len2 -- ca1 len1 | ca3 len3) "minus-suffix"

Remove suffix ca2 len2 from string ca1 len1.

See also: -prefix, string/, chop, -trailing.

Source file: <src/lib/strings.MISC.fs>.

-tape-filename

-tape-filename (--) "minus-tape-filename"

Blank tape-filename in tape-header.

Source file: <src/lib/tape.fs>.

-text

-text (ca1 len1 ca2 -- f) "minus-text"

Part of specforth-editor: Return a non-zero f if string ca1 len1 exactly match string ca2 len1, else
return a false flag.

See also: match.

Source file: <src/lib/prog.editor.specforth.fs>.

-trailing

-trailing (ca1 len1 -- ca2 len2) "minus-trailing"

Adjust the length of a string ca1 len1 to suppress the trailing blanks, returning the result ca2 len2.

If len is greater than zero, len2 is equal to len1 less the number of spaces at the end of the character
string specified by ca1 len1. If len1 is zero or the entire string consists of spaces, len2 is zero.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (STRING),
Forth-2012 (STRING).

See also: -leading, trim.

Source file: <src/kernel.z80s>.

96

-until

-until "minus-until"
 Compilation: (C: dest --)
 Run-time: (f --)

Faster and smaller alternative to the idiom 0< until.

-until is an immediate and compile-only word.

See also: until, 0until, +until, +branch, -if, -while, -exit.

Source file: <src/lib/flow.conditionals.negative.fs>.

-while

-while "minus-while"
 Compilation: (C: dest -- orig dest)
 Run-time: (f --)

Faster and smaller alternative to the idiom 0< while.

-while is an immediate and compile-only word.

See also: while, 0while, +while, -if, -until, -exit.

Source file: <src/lib/flow.conditionals.negative.fs>.

.

.

. (n --) "dot"

Display signed integer n according to current base, followed by one blank.

See also: ?, u., d., f..

Source file: <src/kernel.z80s>.

."

." "dot-quote"
 Compilation: ("ccc<quote>" --)
 Run-time: (--)

97

Parse "ccc" delimited by a double-quote and compile the corresponding string and the execution
procedure (.", which will display it at run-time.

." is an immediate and compile-only word.

Definition:

: ." ("ccc<quote> --) compile (." ," ; immediate

Origin: Forth-83 (Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: s", .(, ,".

Source file: <src/kernel.z80s>.

.(

.(("ccc<paren>" --) "dot-paren"

Parse and display ccc delimited by a right parenthesis.

.(is an immediate word.

Origin: Forth-83 (Required Word Set), Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: .", (.

Source file: <src/kernel.z80s>.

.00

.00 (+n --) "dot-zero-zero"

Display +n with two digits.

See also: .0000, .time, .date.

Source file: <src/lib/display.numbers.fs>.

.0000

.0000 (+n --) "dot-zero-zero-zero-zero"

Display +n with four digits.

See also: .00, .date.

98

Source file: <src/lib/display.numbers.fs>.

.\"

.\"
 Compilation: ("ccc<quote>" --)
 Run-time: (-- ca len)
"dot-backslash-quote"

.\" is an immediate and compile-only word.

NOTE
When .\" is loaded, esc-standard-chars-wordlist is set as the only word list by set-
esc-order. That is the standard behaviour. Alternative escaped chars can be
configured with esc-block-chars-wordlist and esc-udg-chars-wordlist.

See also: parse-esc-string, set-esc-order, s\".

Source file: <src/lib/strings.escaped.fs>.

.context

.context (--) "dot-context"

Display the word lists in the search order in their search order sequence, from first searched to last
searched.

See also: get-order, .wordlist, order.

Source file: <src/lib/tool.list.word_lists.fs>.

.current

.current (--) "dot-current"

Display the compilation word list.

See also: get-current, .wordlist, order.

Source file: <src/lib/tool.list.word_lists.fs>.

.date

.date (day month year --) "dot-date"

Display the given time in ISO 8601 extended format.

99

See also: .time, .time&date, time&date, .0000, .00.

Source file: <src/lib/time.fs>.

.depth

.depth (n --)

Display n with the format used by .s and u.s to display the depth of the data stack`.

See also: .r, depth.

Source file: <src/lib/tool.list.stack.fs>.

.drives

.drives (--) "dot-drives"

Display TR-DOS variables related to disk drives.

See also: .step-rates, .fda.

Source file: <src/kernel.trdos.z80s>.

.error-word

.error-word (--) "dot-error-word"

Display the string identified by the cell pair stored in parsed-name, followed by a question mark.

Definition:

: .error-word (--) parsed-name 2@ cr type ." ? " ;

See also: error, .throw.

Source file: <src/kernel.z80s>.

.fda

.fda (--) "dot-F-D-A"

Display the contents of TR-DOS File Descriptor Area.

See also: .drives, .step-rates.

100

Source file: <src/kernel.trdos.z80s>.

.fda-filename

.fda-filename (--) "dot-f-d-a-filename"

Display the contents of fda-filename, using the TR-DOS filename format.

See also: .filename, /filename.

Source file: <src/lib/dos.trdos.fs>.

.filename

.filename (ca --) "dot-filename"

Display the filename stored at ca, using the TR-DOS filename format.

See also: .fda-filename, /filename.

Source file: <src/lib/dos.trdos.fs>.

.fs

.fs (F: i*r -- i*r)

See also: dump-fs, f..

Source file: <src/lib/math.floating_point.rom.fs>.

.gil-heap

.gil-heap (--) "dot-gil-heap"

Print the map of the current memory heap, in the implementation based on code written by Javier
Gil, whose words are defined in gil-heap-wordlist.

Occupied chunks are marked with a 'x'; free chunks are marked with a '-'.

Source file: <src/lib/memory.allocate.gil.fs>.

.index

.index (u --) "dot-index"

101

Display the first line of the block u, which conventionally contains a comment with a title.

Source file: <src/lib/tool.list.blocks.fs>.

.l

.l (--) "dot-l"

Dump the contents of the tables pointed by labels and l-refs.

.l is a debugging tool for assembler labels defined by l:.

Source file: <src/lib/assembler.labels.fs>.

.line

.line (n1 n2 --) "dot-line"

Display line n1 from block n2, without trailing spaces.

Origin: fig-Forth.

See also: .line#, blk-line.

Source file: <src/lib/tool.list.blocks.fs>.

.line#

.line# (n --) "dot-line-number-sign"

Display line number n right-aligned in a field whose width depends on the current radix (decimal,
hex or binary).

See also: /line#.

Source file: <src/lib/tool.list.blocks.fs>.

.menu

.menu (--) "dot-menu"

Display the current menu, which has been set by set-menu and can be activated by menu.

See also: new-menu, .menu-banner, .menu-options, .menu-border.

Source file: <src/lib/menu.sinclair.fs>.

102

.menu-banner

.menu-banner (--) "dot-menu-banner"

Display the banner of the current menu.

See also: menu-banner-attr, menu-title, menu-width, .sinclair-stripes, .menu, .menu-options, .menu-
border, type-left-field, menu-xy.

Source file: <src/lib/menu.sinclair.fs>.

.menu-border

.menu-border (--) "dot-menu-border"

Draw a 1-pixel border around the current menu options, preserving the attributes.

See also: .menu, .menu-options, .menu-banner, ortholine, menu-xy, xy>gxy.

Source file: <src/lib/menu.sinclair.fs>.

.menu-option

.menu-option (n --) "dot-menu-option"

Display menu option n of the current menu.

See also: .menu-options, .menu.

Source file: <src/lib/menu.sinclair.fs>.

.menu-options

.menu-options (--) "dot-menu-options"

Display the options of the current menu.

See also: .menu, .menu-option, .menu-border, .menu-banner.

Source file: <src/lib/menu.sinclair.fs>.

.name

.name (nt --) "dot-name"

103

Display the name of the word identified by nt.

NOTE .name is called .id or id. in other Forth systems.

See also: name>string, type, space.

Source file: <src/lib/compilation.fs>.

.ok

.ok (--) "dot-ok"

Display "ok". .ok is the default action of ok.

Source file: <src/kernel.z80s>.

.os-chans

.os-chans (--) "dot-o-s-chans"

Display the contents of os-chans.

See also: .os-strms.

Source file: <src/lib/os.fs>.

.os-strms

.os-strms (--) "dot-o-s-streams"

Display the contents of os-strms.

See also: .os-chans, first-stream, last-stream, stream?.

Source file: <src/lib/os.fs>.

.r

.r (n1 n2 --) "dot-r"

Display n1 right aligned in a field n2 characters wide. If the number of characters required to
display n1 is greater than n2, all digits are displayed with no leading spaces in a field as wide as
necessary.

Definition:

104

: .r (n1 n2 --) >r s>d r> d.r ;

Origin: Forth-79 (Reference Word Set)[7], Forth-83 (Controlled Reference Word)[8], Forth-94 (CORE
EXT), Forth-2012 (CORE EXT).

See also: u.r, d.r, 0.r, s>d.

Source file: <src/kernel.z80s>.

.s

.s (--)

Display, using ., the values currently on the data stack.

See also: u.s, depth, .depth.

Source file: <src/lib/tool.list.stack.fs>.

.sinclair-stripes

.sinclair-stripes (--) "dot-sinclair-stripes"

Display the Sinclair stripes by using sinclair-stripes as UDG font and typing sinclair-stripes$.
The current UDG font is preserved.

See also: set-udg, get-udg.

Source file: <src/lib/menu.sinclair.fs>.

.step-rates

.step-rates (--) "dot-step-rates"

Display the configured step rates of the TR-DOS disk drives.

See also: .drives, .fda.

Source file: <src/kernel.trdos.z80s>.

.throw

.throw (n --) "dot-throw"

Display a message giving information about the condition associated with the throw code n.

105

.throw is executed by error. It’s a deferred word (see defer) whose default action is .throw#, which
displays only the number. An alternative action is .throw-message, which displays also the
description.

Source file: <src/kernel.z80s>.

.throw#

.throw# (n --) "dot-throw-number-sign"

Display the number of throw code n, as a decimal number, prefixed with a '#' and followed by a
space.

.throw# is the default action of .throw. Its alternative action .throw-message displays also the error
description.

Source file: <src/kernel.z80s>.

.throw-message

.throw-message (n --) "dot-throw-message"

Alternative action of the deferred word .throw (see defer): Display the description of the throw
exception code n. The variable errors-block contains the number of the first block where messages
are hold. If errors-block contains zero, only the error number is displayed.

For convenience, loading .throw-message makes it the action of .throw.

NOTE
The error descriptions are not stored in memory, but read from the library every
time. Therefore the library must be accessible.

See also: .throw#, error>line.

Source file: <src/lib/exception.fs>.

.time

.time (second minute hour --) "dot-time"

Display the given time in ISO 8601 extended format.

See also: .date, .time&date, time&date, .00.

Source file: <src/lib/time.fs>.

106

.time&date

.time&date (second minute hour day month year --) "dot-time-and-date"

Display the given time and date in ISO 8601 extended format.

See also: .date, .time, time&date.

Source file: <src/lib/time.fs>.

.unused

.unused (--) "dot-unused"

Display the total RAM in the system, and the amount of space remaining in the regions addressed
by here and np, in bytes.

See also: unused, farunused, .words.

Source file: <src/lib/tool.debug.MISC.fs>.

.version

.version (--) "dot-version"

Display the Solo Forth version.

Source file: <src/kernel.z80s>.

.word

.word (nt --) "dot-word"

A deferred word (see defer) whose default action is (.word. This word is used by words, words-like
and wordlist-words, therefore their output can be changed by the user in special cases, for example
when more details are needed for debugging.

Source file: <src/lib/tool.list.words.fs>.

.wordlist

.wordlist (wid --) "dot-wordlist"

If the wordlist identified by wid has an associated name, display it; else display wid.

107

See also: wordlists, dump-wordlist, wordlist>name.

Source file: <src/lib/tool.list.word_lists.fs>.

.wordname

.wordname (nt --) "dot-wordname"

An alternative action for the deferred word .word (see defer), which is used by words, words-like and
wordlist-words. .wordname prints nt and its correspondent name.

Source file: <src/lib/tool.list.words.fs>.

.words

.words (--) "dot-words"

Display a message informing about the number of words defined in the system.

See also: #words, greeting, .unused.

Source file: <src/lib/tool.debug.MISC.fs>.

.xs

.xs (--) "dot-x-s"

Display the number of items on the current xstack, followed by a list of the items, if any; TOS is the
right-most item.

See also: xdepth ,(.xs.

Source file: <src/lib/data.xstack.fs>.

/

/

/ (n1 n2 -- n3) "slash"

Divide n1 by n2, giving the quotient n3.

Definition:

108

: / (n1 n2 -- n3) /mod nip ;

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: m/, /mod, /_, /-, gcd.

Source file: <src/kernel.z80s>.

/!

/! (n a --) "slash-store"

Divide n by the single-cell number stored at a and store the quotient in a

See also: 2/!, *!, +!, -!.

Source file: <src/lib/memory.MISC.fs>.

/-

/- (n1 n2 -- n3) "slash-dash"

Divide n1 by n2 (doing a symmetric division), giving the symmetric quotient n4.

See also: /-rem, /, /_, sm/rem.

Source file: <src/lib/math.operators.1-cell.fs>.

/-rem

/-rem (n1 n2 -- n3 n4) "slash-dash-rem"

Divide n1 by n2 (doing a symmetric division), giving the remainder n3 and the symmetric quotient
n4.

See also: /mod, /_mod, sm/rem.

Source file: <src/lib/math.operators.1-cell.fs>.

/_

/_ (n1 n2 -- n3) "slash-underscore"

Divide n1 by n2 (doing a floored division), giving the floored quotient n4.

109

See also: /_mod, /, /-, fm/mod.

Source file: <src/lib/math.operators.1-cell.fs>.

/_mod

/_mod (n1 n2 -- n3 n4) "slash-underscore-mode"

Divide n1 by n2 (doing a floored division), giving the remainder n3 and the floored quotient n4.

See also: /mod, /-rem, fm/mod.

Source file: <src/lib/math.operators.1-cell.fs>.

/bank

/bank (-- n) "slash-bank"

n is the size in bytes of a memory bank: $4000.

See also: bank-start.

Source file: <src/lib/memory.far.fs>.

/counted-string

/counted-string (-- n) "slash-counted-string"

n is the maximum size of a counted string, in characters.

See also: max-char, environment?.

Source file: <src/lib/environment-question.fs>.

/fda

/fda (-- b) "slash-f-d-a"

Return the length of TR-DOS fda (File Descriptor Area).

Source file: <src/lib/dos.trdos.fs>.

/filename

110

/filename (-- len) "slash-filename"

Return the maximum length len of a TR-DOS filename, which is 9. In TR-DOS, the last character of
the filename (character offset 8) is the filetype:

Table 16. Meaning of the last character of a filename.

Character Filetype

B BASIC program

C Code file

D BASIC data array file

Serial/random access data file

other Defined by the programmer

If the filetype is not specified in a filename, 'C' is used.

See also: set-filename, fda.

Source file: <src/lib/dos.trdos.fs>.

/first-name

/first-name (ca1 len1 -- ca2 len2 ca3 len3) "slash-first-name"

Get the first name ca3 len3 from string ca2 len2, returning also the remaining string ca3 len3.

See also: first-name, /name.

Source file: <src/lib/strings.MISC.fs>.

/heap

/heap (-- n) "slash-heap"

Size of the current heap, in bytes.

See also: get-heap.

Source file: <src/lib/memory.allocate.COMMON.fs>.

/hold

/hold (-- len) "slash-hold"

111

A 'cconstant`. len is the length of the pictured output string buffer, which is located right below pad.

The default value of /hold is 80. It may be changed by c!>.

See also: hld, <#, /pad.

Source file: <src/kernel.z80s>.

/kk

/kk (-- n) "slash-k-k"

n is the number of bytes ocuppied by every key stored in kk-ports: 3 (smaller and slower table) or 4
(bigger and faster table).

There are two versions of kk, and kk@. They depend on the value of /kk.

The application can define /kk before needing kk-ports; otherwise it will be defined as a cconstant
with value 4.

Source file: <src/lib/keyboard.MISC.fs>.

/l-ref

/l-ref (-- n) "slash-l-ref"

n is the size in bytes of each assembler label reference stored in the l-refs table.

See also: /l-refs.

Source file: <src/lib/assembler.labels.fs>.

/l-refs

/l-refs (-- n) "slash-l-refs"

n is the size in bytes of the l-refs table.

See also: max-l-refs, /l-ref, /labels.

Source file: <src/lib/assembler.labels.fs>.

/labels

/labels (-- n) "slash-labels"

112

n is the size in bytes of the labels table.

See also: max-labels, /l-refs.

Source file: <src/lib/assembler.labels.fs>.

/line#

/line# (-- n) "slash-line-number-sign"

Maximum length of a line number in the current radix. It works for decimal, hex and binary.

See also: .line#.

Source file: <src/lib/tool.list.blocks.fs>.

/mod

/mod (n1 n2 -- n3 n4) "slash-mod"

Divide n1 by n2, giving the remainder n3 and the quotient n4.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: m/, du/mod, /, mod, /-rem, /_mod.

Source file: <src/kernel.z80s>.

/name

/name (ca1 len1 -- ca2 len2 ca3 len3) "slash-name"

Split string ca1 len1 into ca2 len2 (from the start of the first name in ca1 len1) and ca3 len3 (from the
char after the first name in _ca1 len1). A name is a substring separated by spaces.

See also: first-name, /string, -prefix, -suffix, string/.

Source file: <src/lib/strings.MISC.fs>.

/octave

/octave (-- c) "slash-octave"

A cconstant that returns the number of notes in one octave: 12.

See also: middle-octave.

113

Source file: <src/lib/sound.48.fs>.

/pad

/pad (-- n) "slash-pad"

n is the size of the scratch area pointed to by pad, in characters.

See also: /hold, environment?.

Source file: <src/lib/environment-question.fs>.

/qx

/qx (-- n) "slash-q-x"

n is the number of header lines shown on a quick index. It depends on the rows and columns of the
current screen mode.

See also: qx.

Source file: <src/lib/tool.list.blocks.fs>.

/qx-column

/qx-column (-- n) "slash-q-x-column"

n is the width of a column of the quick index. It depends on the columns (32, 42, 64…) of the current
screen mode.

See also: qx, qx-columns.

Source file: <src/lib/tool.list.blocks.fs>.

/sinclair-stripes

/sinclair-stripes (-- len)

A cconstant. len is the size of sinclair-stripes$ in graphic characters, i.e. the visible length of the
string when displayed.

/sinclair-stripes is used by set-menu and other menu words.

Source file: <src/lib/menu.sinclair.fs>.

114

/sound

/sound (-- b) "slash-sound"

A character constant that returns 14, the number of sound registers used by ZX Spectrum 128.

See also: !sound, @sound, sound, play.

Source file: <src/lib/sound.128.fs>.

/string

/string (ca1 len1 n -- ca2 len2) "slash-string"

Adjust the character string ca1 len1 by n characters. The resulting character string ca2 len2 begins
at ca1 plus n characters and is len1 minus n characters long.

/string is written in Z80. Equivalent definitions in Forth are the following:

: /string (ca1 len1 n -- ca2 len2) rot over + -rot - ;

: /string (ca1 len1 n -- ca2 len2) dup >r - swap r> + swap ;

Origin: Forth-94 (STRING), Forth-2012 (STRING).

See also: 1/string, -prefix, string/.

Source file: <src/kernel.z80s>.

/stringer

/stringer (-- len) "slash-stringer"

A constant. len is the maximum size of the stringer, in characters. See how to configure it in the
documentation of stringer.

See also: +stringer, empty-stringer, `default-stringer'.

Source file: <src/kernel.z80s>.

/tabulate

/tabulate (-- ca) "slash-tabulate"

115

ca is the address of a byte containing the number of spaces that tabulate counts for. Its default
value is 8.

See tabulate.

Source file: <src/lib/display.control.fs>.

/tape-filename

/tape-filename (-- n) "slash-tape-filename"

n is the maximum length of a tape filename, which is 10 characters.

See also: tape-filename. /filename.

Source file: <src/lib/tape.fs>.

/tape-header

/tape-header (-- n) "slash-tape-header"

n is the length of a tape-header: 17 bytes.

Source file: <src/lib/tape.fs>.

/tib

/tib (-- b) "slash-t-i-b"

A cconstant. b is the maximum size of tib, the terminal input buffer,

See also: #tib.

Source file: <src/kernel.z80s>.

/udg

/udg (-- b) "slash-u-d-g"

b is the size of a UDG (User Defined Graphic), in bytes.

See also: udg-width, udg!, /udg*, /udg+.

Source file: <src/lib/graphics.udg.fs>.

116

/udg*

/udg* (n1 -- n2) "slash-u-d-g-star"

Multiply n1 by /udg, resulting n2. Used by udg>.

/udg* is equivalent to /udg * but faster: it’s an alias of 8*.

See also: /udg+.

Source file: <src/lib/graphics.udg.fs>.

/udg+

/udg+ (n1 -- n2) "slash-u-d-g-plus"

Add /udg to n1, resulting n2.

/udg+ is useful when UDG are referenced by address, e.g. with emit-udga and ,udg-block.

/udg+ is equivalent to /udg + but faster: it’s an alias of 8+.

See also: /udg*.

Source file: <src/lib/graphics.udg.fs>.

/user

/user (-- n) "slash-user"

A constant. n is the length of the user area.

See also: up.

Source file: <src/kernel.z80s>.

/window

/window (-- n) "slash-window"

A cconstant. n is the size in bytes of a window data structure.

See also: current-window.

Source file: <src/lib/display.window.fs>.

117

/wordlist

/wordlist (-- n)

A cconstant. n is the length in bytes of a wordlist data structure, created by wordlist,.

Source file: <src/lib/word_lists.fs>.

/wtype

/wtype (ca len len1 n -- ca' len') "slash-w-type"

Display the first len1 characters of string ca len in the current-window, then remove the first n
characters from the string, returning the result string ca' len'.

/wtype is a factor of wltype.

See also: free/wtype.

Source file: <src/lib/display.window.fs>.

0

0

0 (-- 0)

Return 0. 0 is not a constant, but a code word, which is faster.

See also: -1, 1, 2, false.

Source file: <src/kernel.z80s>.

0.r

0.r (n --) "zero-dot-r"

Display n according to current base, with no leading or trailing spaces. 0.r is a faster alternative to
the idiom 0 .r.

0.r is written in Z80. Its equivalent definition in Forth is the following:

: 0.r (n --) 0 .r ;

118

See also: .r, 0d.r.

Source file: <src/kernel.z80s>.

0<

0< (x -- f) "0-less"

f is true if and only if n is less than zero.

Origin: Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE), Forth-2012
(CORE).

See also: 0>, 0<=, 0=, 0<>.

Source file: <src/kernel.z80s>.

0<=

0<= (n -- f) "zero-less-or-equal"

f is true if and only if n is less than or equal to zero.

See also: 0>=, <=, u<=.

Source file: <src/lib/math.operators.1-cell.fs>.

0<>

0<> (x -- f) "zero-not-equals"

f is true if and only if x is not equal to zero.

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: 0=.

Source file: <src/kernel.z80s>.

0=

0= (x -- f) "zero-equals"

f is true if and only if x is equal to zero.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),

119

Forth-2012 (CORE).

See also: 0<>, 0<, 0>, negate, invert.

Source file: <src/kernel.z80s>.

0>

0> (n -- f) "zero-greater"

f is true if and only if n is greater than zero.

Origin: Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE EXT), Forth-
2012 (CORE EXT).

See also: 0<, 0>=, 0=, 0<>.

Source file: <src/kernel.z80s>.

0>=

0>= (n -- f) "zero-greater-or_equal"

f is true if and only if n is greater than or equal to zero.

See also: 0<=, >=, u>=.

Source file: <src/lib/math.operators.1-cell.fs>.

0branch

0branch (f --) "zero-branch"

A run-time procedure to branch conditionally. If f is false (zero), the following in-line address is
copied to IP to branch forward or backward.

Origin: fig-Forth.

See also: branch, ?branch, -branch, +branch.

Source file: <src/kernel.z80s>.

0d.r

0d.r (d --) "zero-d-dot-r"

120

Display d according to current base, with no leading or trailing spaces. d0.r is a faster alternative to
the idiom 0 d.r.

0d.r is written in Z80. Its equivalent definition in Forth is the following:

: 0d.r (d --) 0 d.r ;

See also: d.r, 0.r.

Source file: <src/kernel.z80s>.

0dup

0dup (x -- x | 0 0) "zero-dup"

Duplicate x if it’s zero.

See also: dup, -dup.

Source file: <src/lib/data_stack.fs>.

0exit

0exit (f --) (R: nest-sys | -- nest-sys |) "zero-exit"

If f is zero, return control to the calling definition, specified by nest-sys.

WARNING
0exit is not intended to be used within a loop. Use 0= if unloop exit then
instead.

0exit can be used in interpretation mode to stop the interpretation of a block.

See also: ?exit, exit, -exit ,+exit, 0if, 0while, 0until, unloop.

Source file: <src/kernel.z80s>.

0if

0if "zero-if"
 Compilation: (C: -- orig)
 Run-time: (f --)

Faster and smaller alternative to the idiom 0= if.

0if is an immediate and compile-only word.

121

See also: if, -if, +if, 0while, 0until, 0exit.

Source file: <src/lib/flow.conditionals.zero.fs>.

0leave

0leave (f --) (R: loop-sys -- | loop-sys) "question-leave"

If f is zero, discard the loop-control parameters for the current nesting level and continue execution
immediately following the innermost syntactically enclosing loop or +loop.

See also: ?leave, leave, unloop, do, ?do.

Source file: <src/lib/flow.MISC.fs>.

0max

0max (n -- n | 0) "zero-max"

If n is negative, return 0; else return n. 0max is a faster alternative to the idiom 0 max.

See also: max, min, 0.

Source file: <src/lib/math.operators.1-cell.fs>.

0repeat

0repeat "zero-repeat"
 Compilation: (dest -- dest)
 Run-time: (f --)

An alternative exit point for begin … until loops: If f is zero, continue execution at begin, otherwise
continue execution after until.

0repeat is an immediate word.

Usage example:

122

: test (--)
 begin
 ...
 flag 0repeat \ Go back to ``begin`` if flag is zero
 ...
 flag ?repeat \ Go back to ``begin`` if flag is non-zero
 ...
 flag until \ Go back to ``begin`` if flag is false
 ...
 ;

See also: ?repeat.

Source file: <src/lib/flow.MISC.fs>.

0until

0until "zero-until"
 Compilation: (C: dest --)
 Run-time: (f --)

Faster and smaller alternative to the idiom 0= until.

0until is an immediate and compile-only word.

See also: until, -until, +until, 0if, 0while, 0exit.

Source file: <src/lib/flow.conditionals.zero.fs>.

0while

0while "zero-while"
 Compilation: (C: dest -- orig dest)
 Run-time: (f --)

Faster and smaller alternative to the idiom 0= while.

0while is an immediate and compile-only word.

See also: while, -while, +while, 0if, 0until, 0exit.

Source file: <src/lib/flow.conditionals.zero.fs>.

1

123

1

1 (-- 1)

Return 1. 1 is not a constant, but a code word, which is faster.

See also: -1, 0, 2.

Source file: <src/kernel.z80s>.

1+

1+ (n1 -- n2) "one-plus"

Add 1 to n1, according to the operation of +, giving n2.

1+ is equivalent to 1 + but faster.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set).

See also: 1-, 2+, 8+, c@1+, 1, +.

Source file: <src/kernel.z80s>.

1+!

1+! (a -) "one-plus-store"

Increment the single-cell number stored at a.

See also: c1+!, 1-!, +!.

Source file: <src/lib/memory.MISC.fs>.

1-

1- (n1 -- n2) "one-minus"

Subtract 1 from n1, according to the operation of -, giving n2.

1- is equivalent to 1 - but faster.

Origin: Forth-79 (Required Word Set), Forth-83 (Required Word Set).

See also: 1+, 2-, 8-, c@1-, 1, -.

Source file: <src/kernel.z80s>.

124

1-!

1-! (a -) "one-minus-store"

Decrement the single-cell number stored at a.

See also: 1+!, c1-!, -!.

Source file: <src/lib/memory.MISC.fs>.

1-line-(located

1-line-(located (ca len -- block | 0) "one-line-paren-located"

Locate the first block whose single-line header contains the string ca len (surrounded by spaces),
and return its number. If not found, return zero. The search is case-sensitive.

Only the blocks delimited by first-locatable and last-locatable are searched.

1-line-(located is an alternative, deprecated action of (located.

Source file: <src/lib/002.need.fs>.

1/string

1/string (ca1 len1 -- ca1+1 len1-1) "one-slash-string"

Adjust the character string ca1 len1 by 1 character.

1/string is equivalent to the idiom 1 /string but faster (0.9 the execution time).

See also: /string.

Source file: <src/kernel.z80s>.

16bin.

16bin. (n --) "16-bin-dot"

Display n as an unsigned 16-bit binary number.

See also: 16bin., 32bin., 8bin., bin., binary.

Source file: <src/lib/display.numbers.fs>.

125

16hex.

16hex. (d --) "16-hex-dot"

Display d as an unsigned 16-bit hexadecimal number.

See also: 16bin., 32hex., 8hex., hex., hex.

Source file: <src/lib/display.numbers.fs>.

1array

1array (n1 n2 "name" --) "one-array"

Define a 1-dimension array name with n1 items of n2 bytes each.

See also: }, array>items, 2array.

Source file: <src/lib/data.array.noble.fs>.

1line

1line (-- f) "1-line"

Part of specforth-editor: Scan the cursor line for a match to pad text. Return flag and update the
cursor r# to the end of matching text, or to the start of the next line if no match is found.

See also: #lag, match.

Source file: <src/lib/prog.editor.specforth.fs>.

2

2

2 (-- 2)

Return 2. 2 is not a constant, but a code word, which is faster.

See also: -1, 0, 1, cell.

Source file: <src/kernel.z80s>.

126

2!

2! (x1 x2 a --) "two-store"

Store the cell pair x1 x2 at a, with x2 at a and x1 at the next consecutive cell. It is equivalent to the
sequence swap over ! cell+ !.

Origin: Forth-79 (Double Number Word Set), Forth-83 (Double Number Extension Word Set), Forth-
94 (CORE), Forth-2012 (CORE).

See also: 2@, !, c!.

Source file: <src/kernel.z80s>.

2!>

2!>
 Interpretation: (xd "name" --)
 Compilation: ("name" --)
 Run-time: (xd --)
"two-store-to"

A simpler and faster alternative to standard to and 2value.

2!> is an immediate word.

Interpretation:

Parse name, which is the name of a word created by 2constant or 2const, and make xd its value.

Compilation:

Parse name, which is a word created by 2constant or 2const, and append the run-time semantics
given below to the current definition.

Run-time:

Make xd the current value of double-cell constant name.

Origin: IsForth’s !>.

See also: !>, c!>.

Source file: <src/lib/data.store-to.fs>.

2*

2* (x1 -- x2) "two-star"

127

x2 is the result of shifting x1 one bit toward the most-significant bit, filling the vacated least-
significant bit with zero.

2* is equivalent to 1 lshift, but faster.

Origin: Forth-83 (Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: lshift, 8*, 3*, *.

Source file: <src/kernel.z80s>.

2*!

2*! (a --) "two-star-store"

Do a 2* shift to the single-cell number stored at a.

See also: 2/!, 2*.

Source file: <src/lib/memory.MISC.fs>.

2+

2+ (n1 -- n2) "two-plus"

Add 2 to n1, according to the operation of +, giving n2.

2+ is equivalent to 2 + but faster.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set).

See also: 2-, 1+, 8+, c@2+, 2, +.

Source file: <src/kernel.z80s>.

2,

2, (x1 x2 --) "2-comma"

Definition:

: 2, (x1 x2 --) here 2! [2 cells] literal allot ;

Reserve two cells of data space and store x1 x2 in them. x2 is stored in the first cell, and x1 is stored
in the second cell.

128

See also: ,, c,, here, 2!, cells, literal, allot.

Source file: <src/kernel.z80s>.

2-

2- (n1 -- n2) "two-minus"

Subtract 2 from n1, according to the operation of -, giving n2.

2- is equivalent to 2 - but faster.

Origin: Forth-79 (Required Word Set), Forth-83 (Required Word Set).

See also: 2+, 1-, 8-, c@2-, 2, -.

Source file: <src/kernel.z80s>.

2-block-drives

2-block-drives (--)

Set the first two drives as block drives, in normal order.

NOTE For convenience, when this word is loaded, it’s also executed.

See also: 3-block-drives, 4-block-drives, set-block-drives.

Source file: <src/lib/dos.trdos.fs>.

2/

2/ (x1 -- x2) "two-slash"

x2 is the result of shifting x1 one bit toward the least-significant bit, leaving the most-significant bit
unchanged.

2/ is equivalent to s>d 2 fm/mod swap drop. 2/ is not the same as 2 /, nor is it the same as 1 rshift.

Origin: Forth-83 (Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: /, rshift, s>d, fm/mod, 2.

Source file: <src/lib/math.operators.1-cell.fs>.

129

2/!

2/! (a --) "two-slash-store"

Do a 2/ shift to the single-cell number stored at a.

See also: 2*!, 2/.

Source file: <src/lib/memory.MISC.fs>.

2>bstring

2>bstring (x1 x2 -- ca len) "two-to-b-string"

Convert xd to a 2-cell binary string in the stringer. ca len contains x2 x1, i.e. in the usual order in
memory.

See also: >bstring, char>string, chars>string.

Source file: <src/lib/strings.MISC.fs>.

2>false

2>false (x1 x2 -- false) "two-to-false"

Replace x1 x2 with false.

See also: 2>true, >false.

Source file: <src/lib/data_stack.fs>.

2>r

2>r (x1 x2 --) (R: -- x1 x2) "two-to-r"

Move x1 x2 from the data stack to the return stack. Semantically equivalent to swap >r >r.

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: 2r>, 2r@, >r.

Source file: <src/kernel.z80s>.

2>true

130

2>true (x1 x2 -- true) "two-to-true"

Replace x1 x2 with true.

See also: 2>false, >true.

Source file: <src/lib/data_stack.fs>.

2>x

2>x (x1 x2 --) (X: -- x1 x2) "two-to-x"

Move the cell pair x1 x2 from the data stack to the current xstack.

See also: 2x>, 2x@, >x.

Source file: <src/lib/data.xstack.fs>.

2?

2? (ca --) "two-question"

Display the double-cell signed integer stored at a, using the format of d..

See also: ?, c?, 2@.

Source file: <src/lib/memory.MISC.fs>.

2@

2@ (a -- x1 x2) "two-fetch"

Fetch the cell pair x1 x2 stored at a. x2 is stored at a and x1 is stored at the next consecutive cell. It is
equivalent to the sequence dup cell+ @ swap @.

Origin: Forth-79 (Double Number Word Set), Forth-83 (Double Number Extension Word Set), Forth-
94 (CORE), Forth-2012 (CORE).

See also: 2!, @, c@.

Source file: <src/kernel.z80s>.

2@+

2@+ (a -- a' xd) "two-fetch-plus"

131

Fetch xd from a. Return a', which is a incremented by two cells. This is handy for stepping through
double-cell arrays.

See also: 2@, @+, c@+.

Source file: <src/lib/memory.MISC.fs>.

2array

2array (n1 n2 n3 "name" --) "two-array"

Define a 2-dimension array name with n1 x n2 items of n3 bytes each.

See also: }}, 1array.

Source file: <src/lib/data.array.noble.fs>.

2array<

2array< (a1 n -- a2) "two-array-from"

Return address a2 of element n of a 1-dimension double-cell array a1.

2array< is written in Z80. Its equivalent definition in Forth is the following:

: 2array< (a1 n -- a2) [2 cells] literal * + ;

See also: 2array>, array<.

Source file: <src/lib/data.array.COMMON.fs>.

2array>

2array> (n a1 -- a2) "two-array-to"

Return address a2 of element n of a 1-dimension double-cell array a1. 2array> is a common factor of
2avalue and 2avariable.

2array> is written in Z80. Its equivalent definition in Forth is the following:

: 2array> (n a1 -- a2) swap [2 cells] literal * + ;

See also: 2array<, array>.

Source file: <src/lib/data.array.COMMON.fs>.

132

2ato

2ato (xd n "name" --) "two-a-to"

Store xd into element n of 1-dimension double-cell values array name.

2ato is an immediate word.

See also: 2avalue, (2ato.

Source file: <src/lib/data.array.value.fs>.

2avalue

2avalue (n "name" --) "two-a-value"

Create a 1-dimension double-cell values array name with n elements and the execution semantics
defined below.

name execution:

name (n — xd)

Return contents xd of element n.

See also: 2ato.

Source file: <src/lib/data.array.value.fs>.

2avariable

2avariable (n "name" --) "two-a-variable"

Create a 1-dimension double-cell variables array name with n elements and the execution
semantics defined below.

name execution:

name (n — a)

Return address a of element n.

See also: avariable, cavariable, far2avariable.

Source file: <src/lib/data.array.variable.fs>.

133

2const

2const (x1 x2 "name" --) "two-const"

Create a double fast constant name, with value x1 x2.

A double fast constant works like an ordinary 2constant, except its value is compiled as a literal.

Origin: IsForth’s const.

See also: [2const], const, cconst.

Source file: <src/lib/data.const.fs>.

2constant

2constant (x1 x2 "name" --) "two-constant"

Parse name. create a definition for name that will place x1 x2 on the stack. name is referred to as a
"two-constant".

Origin: Forth-79 (Double Number Word Set), Forth-83 (Double Number Extension Word Set), Forth-
94 (DOUBLE), Forth-2012 (DOUBLE).

See also: constant, cconstant, 2!>, 2const, [2const], 2value, 2variable.

Source file: <src/kernel.z80s>.

2drop

2drop (x1 x2 --) "two-drop"

Remove cell pair x1 x2 from the stack.

Origin: Forth-79 (Double Number Word Set), Forth-83 (Double Number Extension Word Set), Forth-
94 (CORE), Forth-2012 (CORE).

See also: drop, nip.

Source file: <src/kernel.z80s>.

2dup

2dup (x1 x2 -- x1 x2 x1 x2) "two-dup"

Duplicate cell pair x1 x2.

134

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: dup, 2over, 2drop, 3dup, 4dup.

Source file: <src/kernel.z80s>.

2entry:

2entry: (dx wid "name" --) "two-entry-colon"

Create a double-cell entry name in the associative-list wid, with value dx.

See also: entry:, centry:, sentry:, create-entry.

Source file: <src/lib/data.associative-list.fs>.

2field:

2field: (n1 "name" -- n2) "two-field-colon"

Parse name. offset is the first double-cell aligned value greater than or equal to n1. n2 = offset + 2
cells.

Create a definition for name with the execution semantics defined below.

name execution: (a1 -- a2)

Add the offset calculated during the compile-time action to a1 giving the address a2.

See also: begin-structure, +field.

Source file: <src/lib/data.begin-structure.fs>.

2lit

2lit (-- x1 x2) "two-lit"

Return x1 x2, which was compiled by 2literal after 2lit.

2lit is a compile-only word.

See also: lit, clit.

Source file: <src/kernel.z80s>.

135

2literal

2literal (x1 x2 --) "two-literal"

Compile x1 x2 in the current definition.

2literal is an immediate and compile-only word.

Definition:

: 2literal (x1 x2 --) postpone 2lit 2, ; immediate compile-only

See also: 2lit, literal, cliteral, xliteral,]2l.

Source file: <src/kernel.z80s>.

2local

2local (a --)

Save the value of double-cell variable a, which will be restored at the end of the current definition.

2local is a compile-only word.

Usage example:

2variable v
1. v 2! v 2@ d. \ default value

: test (--)
 v 2local
 v 2@ u. 1887. v 2! v 2@ d. ;

v 2@ d. \ default value

See also: local, clocal, arguments, anon.

Source file: <src/lib/locals.local.fs>.

2ndrop

2ndrop (dx1...dxn n --) "two-n-drop"

Drop n double cell items from the stack.

136

See also: ndrop, drop, 2drop.

Source file: <src/lib/data_stack.fs>.

2nip

2nip (x1 x2 x3 x4 -- x3 x4) "two-nip"

See also: nip.

Source file: <src/lib/data_stack.fs>.

2over

2over (x1 x2 x3 x4 -- x1 x2 x3 x4 x1 x2) "two-over"

Copy cell pair x1 x2 on top of the stack.

Origin: Forth-79 (Double Number Word Set), Forth-83 (Double Number Extension Word Set), Forth-
94 (CORE), Forth-2012 (CORE).

See also: over, 2swap.

Source file: <src/kernel.z80s>.

2r>

2r> (-- x1 x2) (R: x1 x2 --) "two-r-from"

Move x1 x2 from the return stack to the data stack. Semantically equivalent to r> r> swap.

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: 2>r, 2r@, r>.

Source file: <src/kernel.z80s>.

2r@

2r@ (-- x1 x2) (R: x1 x2 -- x1 x2) "two-r-fetch"

Copy x1 x2 from the return stack to the data stack. Semantically equivalent to r> r> 2dup >r >r
swap.

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

137

See also: 2>r, 2r>, r@.

Source file: <src/kernel.z80s>.

2rdrop

2rdrop (R: x1 x2 --) "two-r-drop"

Remove x1 x2 from the return stack.

See also: rdrop, 2drop.

Source file: <src/lib/return_stack.fs>.

2rot

2rot (x1 x2 x3 x4 x5 x6 -- x3 x4 x5 x6 x1 x2) "two-rot"

Source file: <src/lib/data_stack.fs>.

2storer

2storer (xd a "name" --) `two-storer"

Define a word name which, when executed, will cause that xd be stored at a.

Origin: variant of the word set found in Forth-79 (Reference Word Set) and Forth-83 (Appendix B.
Uncontrolled Reference Words).

Source file: <src/lib/data.storer.fs>.

2swap

2swap (x1 x2 x3 x4 -- x3 x4 x1 x2) "two-swap"

Exchange the top two cell pairs.

Origin: Forth-79 (Double Number Word Set), Forth-83 (Double Number Extension Word Set), Forth-
94 (CORE), Forth-2012 (CORE).

See also: swap, 2over.

Source file: <src/kernel.z80s>.

138

2switch

2switch (xd switch --) "two-switch"

Execute the switch switch for the key xd.

See also: switch:, :2clause.

Source file: <src/lib/flow.switch-colon.fs>.

2toval

2toval (--) "two-to-val"

Change the default behaviour of words created by 2val: make them store a new value instead of
returning its actual one.

2toval and 2val are a non-parsing alternative to the standard to and 2value.

See also: toval, ctoval.

Source file: <src/lib/data.val.fs>.

2user

2user ("name" --) "two-user"

Parse name. Create a user double-cell variable name in the first available offset within the user
area. When name is later executed, its absolute user area storage address is placed on the stack.

See also: user, ucreate, uallot, ?user.

Source file: <src/lib/data.user.fs>.

2val

2val (x1 x2 "name" --) "two-val"

Create a definition for name that will place x1 x2 on the stack (unless 2toval is used first) and then
will execute init-2val.

2val is an alternative to the standard 2value.

See also: val, cval, 2variable, 2constant.

Source file: <src/lib/data.val.fs>.

139

2value

2value (x1 x2 "name" --) "two-value"

Create a definition name with initial value x1 x2. When name is later executed, x1 x2 will be placed
on the stack. to can be used to assign a new value to name.

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: cvalue, value, 2constant, 2variable, 2val.

Source file: <src/lib/data.value.fs>.

2variable

2variable ("name" --) "two-variable"

Parse name. create a definition for name, which is referred to as a "two-variable". allot two cells of
data space, the data field of name, to hold the contents of the two-variable. When name is later
executed, the address of its data field is placed on the stack.

The program is responsible for initializing the contents of the two-variable.

Origin: Forth-79 (Double Number Word Set), Forth-83 (Double Number Extension Word Set), Forth-
94 (DOUBLE), Forth-2012 (DOUBLE).

See also: cells, literal, variable, 2variable, 2constant.

Source file: <src/lib/data.MISC.fs>.

2x>

2x> (-- x1 x2) (X: x1 x2 --) "two-x-from"

Move the cell pair x1 x2 from the current xstack to the data stack.

See also: 2>x, 2x@, x>.

Source file: <src/lib/data.xstack.fs>.

2x@

2x@ (-- x1 x2) (X: x1 x2 -- x1 x2) "two-x-fetch"

Copy the cell pair x1 x2 from the current xstack to the data stack.

140

Source file: <src/lib/data.xstack.fs>.

2xdrop

2xdrop (X: x1 x2 --) "two-x-drop"

Remove the cell pair x1 x2 from the current xstack.

See also: xdrop.

Source file: <src/lib/data.xstack.fs>.

2xdup

2xdup (X: x1 x2 -- x1 x2 x1 x2) "two-x-dup"

Duplicate the cell pair x1 x2 in the current xstack.

See also: xdup.

Source file: <src/lib/data.xstack.fs>.

3

3*

3* (n1 -- n2) "three-plus"

Multiply n1 by 3 giving n2.

3* is equivalent to 3 * or dup dup + +, but faster.

See also: 2*, 8*, *, +.

Source file: <src/lib/math.operators.1-cell.fs>.

3-block-drives

3-block-drives (--)

Set the first three drives as block drives, in normal order.

NOTE For convenience, when this word is loaded, it’s also executed.

See also: 2-block-drives, 4-block-drives, set-block-drives.

141

Source file: <src/lib/dos.trdos.fs>.

32bin.

32bin. (d --) "32-bin-dot"

Display d as an unsigned 32-bit binary number.

See also: 32hex., 16bin., 8bin., bin., binary.

Source file: <src/lib/display.numbers.fs>.

32hex.

32hex. (d --) "32-hex-dot"

Display d as an unsigned 32-bit hexadecimal number.

See also: 32bin., 16hex., 8hex., hex., hex.

Source file: <src/lib/display.numbers.fs>.

3drop

3drop (x1 x2 x3 --) "three-drop"

See also: 3dup, drop, 2drop, 4drop.

Source file: <src/lib/data_stack.fs>.

3dup

3dup (x1 x2 x3 -- x1 x2 x3 x1 x2 x3) "three-dup"

3dup is written is Z80. An equivalent definition in Forth is the following:

: 3dup (x1 x2 x3 -- x1 x2 x3 x1 x2 x3) dup 2over rot ;

See also: 3drop, dup, 2dup, 4dup.

Source file: <src/lib/data_stack.fs>.

142

4

4-block-drives

4-block-drives (--)

Set all 4 drives as block drives, in normal order.

NOTE For convenience, when this word is loaded, it’s also executed.

See also: 2-block-drives, 3-block-drives, set-block-drives.

Source file: <src/lib/dos.trdos.fs>.

4drop

4drop (x1 x2 x3 x4 --) "four-drop"

See also: 4dup, drop, 2drop, 3drop.

Source file: <src/lib/data_stack.fs>.

4dup

4dup (x1 x2 x3 x4 -- x1 x2 x3 x4 x1 x2 x3 x4) "four-dup"

See also: 4drop, dup, 2dup, 3dup.

Source file: <src/lib/data_stack.fs>.

8

8*

8* (x1 -- x2) "eight-star"

x2 is the result of shifting x1 three bits toward the most-significant bit, filling the vacated least-
significant bit with zero.

8* is equivalent to 3 lshift or 2* 2* 2*, but faster.

See also: 2*, 3*, lshift, 8+, 8-, *.

Source file: <src/lib/math.operators.1-cell.fs>.

143

8+

8+ (n1 -- n2) "eight-plus"

Add 8 to n1, according to the operation of +, giving n2.

8+ is equivalent to 8 + but faster.

See also: 8-, 1+, 2+, 8*, +.

Source file: <src/lib/math.operators.1-cell.fs>.

8-

8- (n1 -- n2) "eight-minus"

Subtract 8 from n1, according to the operation of -, giving n2.

8- is equivalent to 8 - but faster.

See also: 8+, 1-, 2-, 8*, -.

Source file: <src/lib/math.operators.1-cell.fs>.

8bin.

8bin. (n --) "8-bin-dot"

Display n as an unsigned 8-bit binary number.

See also: 8hex., 32bin., 16bin., bin., binary.

Source file: <src/lib/display.numbers.fs>.

8hex.

8hex. (d --) "8-hex-dot"

Display d as an unsigned 8-bit hexadecimal number.

See also: 8bin., 16hex., hex., hex.

Source file: <src/lib/display.numbers.fs>.

144

:

:

: ("name" --) "colon"

Parse name. Create a definition for name, called a "colon definition". Enter compilation state and
start the current definition. Append the initiation semantics given below to the current definition.

Initiation: (i*x -- i*x) (R: -- nest-sys)

Save implementation-dependent information nest-sys about the calling definition. The stack effects
i*x represent arguments to name.

name execution: (i*x -- j*x)

Execute the definition name. The stack effects i*x and j*x represent arguments to and results from
name, respectively.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: ;, does>, header.

Source file: <src/kernel.z80s>.

:2clause

:2clause (xd switch --) "colon-two-clause"

Start the definition of a switch clause xd for switch switch.

See also: switch:, 2switch.

Source file: <src/lib/flow.switch-colon.fs>.

::

:: (class "name" --) "colon-colon"

Compile the method for the selector name of the class class (not immediate!).

Source file: <src/lib/objects.mini-oof.fs>.

:cclause

145

:cclause (switch --) "colon-c-clause"

Start the definition of a switch clause c for switch switch.

See also: switch:, cswitch.

Source file: <src/lib/flow.switch-colon.fs>.

:clause

:clause (x switch --) "colon-clause"

Start the definition of a switch clause x for switch switch.

See also: switch:, switch.

Source file: <src/lib/flow.switch-colon.fs>.

:noname

:noname (-- xt) "colon-no-name"

Create an execution token xt. Enter compilation state and start the current definition, which can be
executed later by using xt.

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: nextname.

Source file: <src/lib/define.MISC.fs>.

:switch

:switch (xt "name" -- a) "colon-switch"

Create a code switch name whose default action is given by xt. Leave the address a of the head of its
list on the stack.

The head a of the switch structure is the address of a 2-cell structure, with the following contents:

1. Link to the last clause of the switch

2. Execution token of the default action

Usage example:

146

: one (--) ." unu " ;
: two (--) ." du " ;
: three (--) ." tri " ;
 \ clauses of the switch

: many (n --) . ." is too much! " ;
 \ default action of the switch

' many :switch .number

 ' one 1 <switch
 ' two 2 <switch
 ' three 3 <switch drop

cr 1 .number 2 .number 3 .number 4 .number

' .number >body :noname ." kvar " ; 4 <switch drop
 \ add a new nameless clause for number 4

cr 1 .number 2 .number 3 .number 4 .number

NOTE [switch is the syntactic-sugar variant of :switch.

Origin: SwiftForth.

See also: <switch, [switch, switcher.

Source file: <src/lib/flow.bracket-switch.fs>.

;

;

; "semicolon"
 Compilation: (--)
 Run-time: (--) (R: nest-sys --)

Compilation: Append the run-time semantics below to the current definition. End the current
definition, allow it to be found in the dictionary and enter interpretation state.

Run-time: Return to the calling definition specified by nest-sys.

; is an immediate and compile-only word.

Definition:

147

: ; \ Compilation: (--)
 \ Run-time: (--) (R: nest-sys --)
 postpone exit finish-code ;

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: exit, :, finish-code, ;code.

Source file: <src/kernel.z80s>.

;]

;] "semicolon-bracket"
 Compilation: (orig xt1 --)
 Run-time: (-- xt2)

End a quotation started by [:.

;] is an immediate and compile-only word.

Compilation:

End the current nested definition, and resume compilation to the previous (containing) current
definition, identified by xt1. Resolve the branch from orig left by [:. Append the following run-time
to the (containing) current definition:

Run-time:

xt2 is the execution token of the nested definition.

Source file: <src/lib/flow.bracket-colon.fs>.

;and

;and (--) "colon-and"

Allow continuation of a definition where make is used.

doer flashes
cls \ does nothing
: activate (--) make cls page ;and ." cls is ready" ;
activate \ reconfigure ``cls`` and display "cls is ready"
cls \ do ``page``

;and is an immediate word.

148

See also: undo.

Source file: <src/lib/flow.doer.fs>.

;code

;code "semicolon-code"
 Compilation: (--)
 Run-time: (--) (R: nest-sys --)

Define the execution-time action of a word created by a low-level defining word. Used in the form:

: namex ... create ... ;code ... end-code

namex name

where create could be also any user defined word which executes create.

;code marks the termination of the defining part of the defining word namex and then begins the
definition of the execution-time action for words that will later be defined by namex. When name is
called, its parameter field address is in register HL and the assembler code compiled between ;code
and end-code is executed.

Detailed description:

Compilation:

Append the run-time semantics below to the current definition. End the current definition, allow it
to be found in the dictionary, and enter interpretation state.

Enter assembler mode by executing asm, until end-code is executed.

Run-time:

Replace the execution semantics of the most recent definition, which should be defined with create
or a user-defined word that calls create, with the name execution semantics given below. Return
control to the calling definition specified by nest-sys.

Initiation: (i*x -- i*x dfa) (R: -- nest-sys2)

Save information nest-sys2 about the calling definition. Place name's data field address dfa on the
stack. The stack effects i*x represent arguments to name.

name execution:

Perform the machine code sequence that was generated following ;code and finished by end-code.

;code is an immediate and compile-only word.

149

Usage example:

: border-changer (n --)
 create c, ;code (--) m a ld, FE out, jpnext, end-code

0 border-changer black-border
1 border-changer blue-border
2 border-changer red-border

Which is equivalent to:

: border-changer (n --)
 create c, does> (--) (dfa) c@ border ;

0 border-changer black-border
1 border-changer blue-border
2 border-changer red-border

Origin: fig-Forth, Forth-79 (Assembler Word Set), Forth-83 (Assembler Extension Word Set), Forth-94
(TOOLS EXT), Forth-2012 (TOOLS EXT).

See also: (;code, does>, asm, create.

Source file: <src/lib/assembler.MISC.fs>.

<

<

< (n1 n2 -- f) "less-than"

f is true if and only if n1 is less than n2.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: >, u<, 0<, min.

Source file: <src/kernel.z80s>.

<#

<# (--) "less-number-sign"

Initialize the pictured numeric output process: Set hld to its initial value, right below pad.

150

Definition:

: <# (--) pad hld ! ;

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: /hold, #>, #, #s, hold, holds, sign.

Source file: <src/kernel.z80s>.

<<

<< (-- ca +n) "less-than-less-than"

Mark the start of a code zone to be dumped by >>. ca is the current data-pointer and +n is the
current depth. Both of them are used by >>. See >> for a usage example.

Origin: Pygmy Forth.

Source file: <src/lib/assembler.MISC.fs>.

<=

<= (n1 n2 -- f) "less-or-equal"

f is true if and only if n1 is less than or equal to n2.

See also: >=, u<=, 0<=.

Source file: <src/lib/math.operators.1-cell.fs>.

<=>

<=> (n1 n2 -- -1|0|1) "less-or-equal-or-greater"

If n1 equals n2, return zero. If n1 is less than n2, return negative one. If n1 is greater than n2, return
positive one.

See also: polarity, <, =, >.

Source file: <src/lib/math.operators.1-cell.fs>.

<>

151

<> (x1 x2 -- f) "not-equals"

f is true only and only if x1 is not bit-for-bit the same as x1.

Origin: Forth-79 (Reference Word Set), Forth-83 (Uncontrolled Reference Words), Forth-94 (CORE),
Forth-2012 (CORE).

See also: =, >, <.

Source file: <src/kernel.z80s>.

<bin

<bin (--) "start-bin"

Start a code zone where binary radix is the default, by saving the current value of base to base' and
executing binary. The zone is finished by bin>.

See also: <hex.

Source file: <src/lib/display.numbers.fs>.

<hex

<hex (--) "start-hex"

Start a code zone where hexadecimal radix is the default, by save the current value of base to base'
and executing hex. The zone is finished by hex>.

Origin: lina.

See also: <bin.

Source file: <src/lib/display.numbers.fs>.

<is>

<is> (xt "name" --) "less-is"

Set name, which was defined by defer, to execute xt.

<is> is a factor of is.

Origin: Gforth.

See also: [is].

152

Source file: <src/lib/define.deferred.fs>.

<mark

<mark (C: -- dest) "backward-mark"

dest is the current data-space pointer, to be used as the destination of a backward branch. dest is
typically only used by <resolve to compile a branch address.

<mark is an alias of here.

Origin: Forth-83 (System Extension Word Set).

See also: >mark, begin.

Source file: <src/kernel.z80s>.

<resolve

<resolve (C: dest --) "backward-resolve"

Resolve a backward branch. Compile a branch address using dest, the address left by <mark, as the
destination address. Used at the source of a backward branch after either branch or ?branch or
0branch.

<resolve is an alias of ,.

Origin: Forth-83 (System Extension Word Set).

Source file: <src/kernel.z80s>.

<rresolve

<rresolve (dest --) "less-than-r-resolve"

Resolve a Z80 assembler backward relative branch reference dest.

See also: >rresolve, rresolve.

Source file: <src/lib/assembler.fs>.

<switch

<switch (a xt n -- a) "start-switch"

Define a new clause of a :switch structure whose head is a to execute xt when the key n is matched.

153

The switch clauses are 3-cell structures:

1. Link to the previous clause of the switch

2. Key

3. Execution token

Origin: SwiftForth.

Source file: <src/lib/flow.bracket-switch.fs>.

=

=

= (x1 x2 -- f) "equals"

f is true only and only if x1 is bit-for-bit the same as x1.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: <>, >, <.

Source file: <src/kernel.z80s>.

>

>

> (n1 n2 -- f) "greater-than"

f is true if and only if n1 is greater than n2.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: <, u>, 0>, max.

Source file: <src/kernel.z80s>.

>=

>= (n1 n2 -- f) "greater-or-equal"

f is true if and only if n1 is greater than or equal to n2.

154

See also: <=, u>=, 0>=.

Source file: <src/lib/math.operators.1-cell.fs>.

>>

>> (ca +n --) "greater-than-greater-than"

Display starting address ca as a 16-bit hexadecimal number. Then dump the code compiled in data
space from ca to the current data-space pointer, in hexadecimal. +n is used for error checking. ca
and +n were left by <<.

<< and >> allow you to dump short (or long) snippets of assembly code to the screen for your
inspection. If you want to see how a piece of assembly code gets assembled, just put it between the
brackets.

Usage example:

create useless-code-routine (-- a)
 asm << C9 c, >> end-asm

need assembler

code useless-code-word (n1 -- n1)
 << h pop, h incp, h decp, h push, jpnext, >>
end-code

Origin: Pygmy Forth.

See also: dump, wdump, assembler.

Source file: <src/lib/assembler.MISC.fs>.

>>link

>>link (xtp -- lfa) "to-to-link"

Convert xtp into its corresponding lfa.

See also: >>name, name>link.

Source file: <src/lib/compilation.fs>.

>>name

>>name (xtp -- nt) "to-to-name"

155

Convert xtp into its corresponding nt.

See also: name>>, >>link, >name.

Source file: <src/lib/compilation.fs>.

>action

>action (xt -- a) "to-action"

Return the address a that contains the execution token currently associated to the deferred word xt.

See also: defer, action-of, defer!, defer@.

Source file: <src/kernel.z80s>.

>amark

>amark (-- a) "greater-than-a-mark"

Leave the address of a Z80 assembler absolute forward reference.

Source file: <src/lib/assembler.fs>.

>aresolve

>aresolve (orig --) "greater-than-a-resolve"

Resolve a Z80 assembler forward absolute branch reference orig.

See also: >amark.

Source file: <src/lib/assembler.fs>.

>body

>body (xt -- dfa) "to-body"

Convert xt into its corresponding dfa.

If xt is for a word defined by create, dfa is the address that here would have returned had it been
executed immediately after the execution of the create that defined xt.

If xt is for a word defined by variable, 2variable, cvariable, constant, 2constant and cconstant, dfa is
the address containing their value.

156

If xt is for a word defined by :, dfa is the address of its compiled definition.

If xt is for a word defined by code, dfa makes no sense.

dfa is always in data space.

Origin: Forth-83 (Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: body>, name>body, >name.

Source file: <src/lib/compilation.fs>.

>bstring

>bstring (x -- ca len) "to-b-string"

Convert x to a 1-cell binary string ca len in the stringer. ca len contains x "as is", as stored in
memory.

See also: 2>bstring, chars>string, char>string.

Source file: <src/lib/strings.MISC.fs>.

>digit

>digit (n -- c) "to-digit"

Convert a number to its character digit: 0 .. 9A .. Z.

>digit is written in Z80. Its equivalent definition if Forth is the following:

: >digit (n -- c)
 dup 9 > ['A' '0' - 1+] literal and + '0' + ;

Source file: <src/kernel.z80s>.

>drive-block

>drive-block (u1 -- u2) "to-drive-block"

Convert block u1 to its equivalent u2 in its corresponding disk drive, which is set the current drive.

>drive-block is a deferred word (see defer) whose default action is noop. Its action is set to (>drive-
block when block-drives is loaded.

Source file: <src/kernel.z80s>.

157

>e

>e (x a --) "to-e"

Move x to the extra stack a defined with estack.

See also: e>, e@.

Source file: <src/lib/data.estack.fs>.

>esc-order

>esc-order (wid --) "to-esc-order"

Push wid on the escaped strings search order.

See also: set-esc-order, get-esc-order, esc-standard-chars-wordlist, esc-block-chars-wordlist, esc-
udg-chars-wordlist.

Source file: <src/lib/strings.escaped.fs>.

>false

>false (x -- false) "to-false"

Replace x with false.

See also: >true, 2>false.

Source file: <src/lib/data_stack.fs>.

>file

>file (ca1 len1 ca2 len2 -- ior)

Save memory zone ca1 len2 to file ca2 len2, returning I/O result ior.

WARNING

When there’s no disk in the drive, TR-DOS prompts "Disc Error.
Retry,Abort,Ignore?". "Retry" is useless; "Abort" exits to BASIC with "Tape
loading error"; "Ignore" crashes the system. See more details in the source
code.

See also: set-filename, fda-filelength, fda-filestart, (>file.

Source file: <src/lib/dos.trdos.fs>.

158

>form

>form (cols rows --) "to-form"

Adapt the cursor position of the current display mode to a display mode whose form is cols rows.

>form is used by the display modes, e.g. mode-32 and mode-64ao.

NOTE
When >form is executed, the action of at-xy must be that of the new mode, but xy,
rows and columns must still return the values of the current (old) mode.

Source file: <src/lib/display.mode.COMMON.fs>.

>graphic-ascii-char

>graphic-ascii-char (c1 -- c1 | c2)

If character c1 is a printable ASCII character, return it, else return the character returned by
default-graphic-ascii-char.

See also: graphic-ascii-char?.

Source file: <src/lib/chars.fs>.

>in

>in (-- a) "to-in"

A user variable. a is the address of a cell containing the offset in characters from the start of the
input buffer to the start of the parse area.

Source file: <src/kernel.z80s>.

>in/l

>in/l (-- n) "to-in-slash-l"

Return number n of characters already interpreted in the current line of the block being
interpreted. No check is done whether any block is actually being interpreted.

Definition:

: >in/l (-- n) >in @ c/l mod ;

159

See also: blk-line, ->in/l, >in, c/l.

Source file: <src/kernel.z80s>.

>l

>l (b -- a) "to-l"

a is the address of label b in the labels table.

Source file: <src/lib/assembler.labels.fs>.

>mark

>mark (C: -- orig) "forward-mark"

Compile space in the dictionary for a branch address which will later be resolved by >resolve.

Used at the source of a forward branch. Typically used after either branch, 0branch or ?branch.

Definition:

: >mark (C: -- orig) here 0 , ;

Origin: Forth-83 (System Extension Word Set).

See also: <mark.

Source file: <src/kernel.z80s>.

>name

>name (xt -- nt | 0) "to-name"

Try to find the name token nt of the word represented by execution token xt. Return 0 if it fails.

NOTE

>name searches all word lists, from newest to oldest; and the searching of every word
list is done also from the newest to the oldest definition. The first header whose
execution token pointer contains xt is a match. Therefore, when a word has
additional headers created by alias or synonym, the nt of its latest alias or synonym
is found first.

Origin: Gforth.

See also: >name/order, >oldest-name, >oldest-name/order, >oldest-name/fast, name>, >body, name>body,
name>name, >>name.

160

Source file: <src/lib/compilation.fs>.

>name/order

>name/order (xt -- nt | 0) "to-name-slash-order"

Try to find the name token nt of the word represented by execution token xt, in the current search
order. Return 0 if it fails.

NOTE

>name/order searches all word lists in the current search order, and the searching of
every word list is done from the newest to the oldest definition. The first header
whose execution token pointer contains xt is a match. Therefore, when a word has
additional headers created by alias or synonym, the nt of its latest alias or synonym
in the current search order is found first.

See also: >name, >oldest-name/order, >oldest-name, >oldest-name/fast, name>, >body, name>body,
name>name, name>>.

Source file: <src/lib/compilation.fs>.

>number

>number (ud1 ca1 len1 -- ud2 ca2 len2) "to-number"

ud2 is the unsigned result of converting the characters within the string specified by ca1 len1 into
digits, using the number in base, and adding each into ud1 after multiplying ud1 by the number in
base. Conversion continues left-to-right until a character that is not convertible, including any "+" or
"-", is encountered or the string is entirely converted. ca2 is the location of the first unconverted
character or the first character past the end of the string if the string was entirely converted. len2 is
the number of unconverted characters in the string.

Definition:

: >number (d1 ca1 len1 -- d2 ca2 len2)
 begin dup while
 over c@ base @ digit? while
 >r 2swap r> swap base @ um* drop rot base @
 um* d+ 2swap 1 /string
 repeat then ;

Origin: Forth-94 (CORE), Forth-2012 (CORE).

See also: number?, number.

Source file: <src/kernel.z80s>.

161

>oldest-name

>oldest-name (xt -- nt | 0) "to-oldest-name"

Try to find the oldest name token nt of the word represented by execution token xt, in the current
search order. Return 0 if it fails.

NOTE

>oldest-name searches all word lists, from newest to oldest; and the searching of
every word list is done also from the newest to the oldest definition. The oldest
header whose execution token pointer contains xt is a match. Therefore, when a
word has additional headers created by alias or synonym, the nt of the original word
is returned.

See also: >oldest-name/order, >oldest-name/fast, >name, >name/order, name>, >body, name>body,
name>name, name>>.

Source file: <src/lib/compilation.fs>.

>oldest-name/fast

>oldest-name/fast (xt -- nt | 0) "to-oldest-name-slash-fast"

Try to find the name token nt of the word represented by execution token xt. Return 0 if it fails.

>oldest-name/fast searches the whole dictionary, from the oldest definition to the newest one, for
the first definition whose execution token pointer contains xt. This way, when a word has
additional headers created by alias or synonym, its original name is found first.

WARNING

>oldest-name/fast is not absolutely reliable, because it uses name>name to
calculate the address of the next header. If something other than definition
headers was compiled in name space or the name-space pointer np was altered
between two definitions, the linking will fail and the algorithm probably will
enter and endless loop.

Origin: Gforth.

See also: >oldest-name, >oldest-name/order, >name, >name/order, name>, >body, name>body, name>name,
>>name.

Source file: <src/lib/compilation.fs>.

>oldest-name/order

>oldest-name/order (xt -- nt | 0) "to-oldest-name-slash-order"

Try to find the oldest name token nt of the word represented by execution token xt, in the current

162

search order. Return 0 if it fails.

NOTE

>oldest-name/order searches all word lists in the current search order, and the
searching of every word list is done from the newest to the oldest definition. The
oldest header whose execution token pointer contains xt is a match. Therefore,
when a word has additional headers created by alias or synonym, the nt of the
original word is returned.

See also: >oldest-name, >oldest-name/fast, >name, >name/order, name>, >body, name>body, name>name,
name>>.

Source file: <src/lib/compilation.fs>.

>order

>order (wid --) "to-order"

Push word list identifier wid on the search order.

Definition:

: >order (wid --) also context ! ;

Origin: Gforth.

See also: previous, also, set-order, context.

Source file: <src/kernel.z80s>.

>r

>r (x --) (R: -- x) "to-r"

Move x from the data stack to the return stack.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: r>, r@, 2>r`, dup>r.

Source file: <src/kernel.z80s>.

>resolve

>resolve (C: orig --) "forward-resolve"

163

Resolve a forward branch by placing the address of the current data-space pointer into the space
compiled by >mark.

Definition:

: >resolve (C: orig --) here swap ! ;

Origin: Forth-83 (System Extension Word Set).

See also: here, <resolve.

Source file: <src/kernel.z80s>.

>rmark

>rmark (-- orig) "greater-than-r-mark"

Leave the origin address of a Z80 assembler forward relative branch just compiled, to be resolved by
>rresolve.

Source file: <src/lib/assembler.fs>.

>rresolve

>rresolve (orig --) "greater-than-r-resolve"

Resolve a Z80 assembler forward relative branch reference orig.

See also: <rresolve, rresolve.

Source file: <src/lib/assembler.fs>.

>stringer

>stringer (ca1 len1 -- ca2 len1) "to-stringer"

Copy string ca1 len1 to the stringer and return it as ca2 len1.

Definition:

: >stringer (ca1 len1 -- ca2 len1)
 dup allocate-stringer swap 2dup 2>r move 2r> ;

See also: allocate-stringer, far>stringer.

164

Source file: <src/kernel.z80s>.

>tape-file

>tape-file (ca1 len1 ca2 len2 --) "to-tape-file"

Write a memory region ca1 len1 into a tape file ca2 len2.

See also: tape-file>, (>tape-file , >file.

Source file: <src/lib/tape.fs>.

>true

>true (x -- true) "to-true"

Replace x with true.

See also: >false, 2>true.

Source file: <src/lib/data_stack.fs>.

>x

>x (x --) (X: -- x) "to-x"

Move x from the data stack to the xstack.

See also: x>, x@.

Source file: <src/lib/data.xstack.fs>.

?

?

? (a --) "question"

Display the 1-cell signed integer stored at a, using the format of ..

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-94 (TOOLS), Forth-2012 (TOOLS).

See also: c?, 2?, @.

Source file: <src/lib/memory.MISC.fs>.

165

?(

?((f "ccc<space><question><paren><space>" --) "question-paren"

If f is not zero, parse and discard until "?)" is found or until the end of the parse area is reached. ?(
cannot be used across blocks.

?(is used for conditional compilation, as a simpler but more compact alternative to the standard
[if].

?(is an immediate word.

Definition:

: ?((f "ccc<space><question><paren><space>" --)
 0exit begin parse-name dup
 while s" ?)" str= ?exit repeat 2drop ; immediate

See also: ?\, ?-->, (.

Source file: <src/kernel.z80s>.

?)

?) (--) "question-right-paren"

Do nothing. ?(parses until ?) is found.

?) is an immediate word.

Source file: <src/kernel.z80s>.

?-->

?--> (f --) "question-next-block"

If f is not false, continue interpretation on the next sequential block. parse area. ?--> is used for
conditional compilation.

?--> is an immediate word.

See also: -->, ?(, ?\.

Source file: <src/lib/blocks.fs>.

166

??

?? "question-question"
 Compilation: ("name" --)
 Run-time: (f --)

?? is an immediate and compile-only word.

Compilation:

Parse name and search the current search order for it. If not found, throw an exception #-13. If
found and it’s an immediate word, execute it, else compile it.

Run-time:

If f is not zero, execute name, which was compiled.

Source file: <src/lib/flow.MISC.fs>.

?\

?\ (f "ccc<eol>" --) "question-backslash"

If f is not zero, execute \, else do nothing.

?\ is an immediate word.

?\ is a conditional version of \, used for conditional compilation, as a simpler but more compact
alternative to the standard [if].

Definition:

: ?\ ("ccc<eol>" --) 0exit postpone \ ; immediate

See also: ?(, ?-->, \.

Source file: <src/kernel.z80s>.

?block-drive

?block-drive (u --) "question-block-drive"

If u is not-block-drive, throw an exception #-35 ("invalid block number").

See also: (>drive-block, block-drives, ?drive#, ?drives.

Source file: <src/lib/dos.COMMON.fs>.

167

?branch

?branch (f --) "question-branch"

A run-time procedure to branch conditionally. If f is not not zero, the following in-line address is
copied to IP to branch forward or backward.

NOTE

This ?branch is not Forth-83’s ?branch, which is equivalent to fig-Forth’s 0branch,
which is a more logical name for the "branch if zero" action. Solo Forth borrows
0branch from fig-Forth, and completes the branches after a logical naming
convention shared with optional control flow words, e.g. ?exit, 0exit, -exit…

See also: branch, -branch, +branch.

Source file: <src/kernel.z80s>.

?c1-!

?c1-! (ca -) "question-c-one-minus-store"

If the character stored at ca is not zero, decrement it.

See also: c1-!, c1+!, c-!, 1-!.

Source file: <src/lib/memory.MISC.fs>.

?call,

?call, (a op --) "question-call-comma"

Compile a Z80 assembler conditional absolute-call instruction to address a, being op the identifier of
the condition, which was put on the stack by z?, nz?, c?, nc?, po?, pe?, p?, or m?.

See also: call,, ?ret,, ?jp,.

Source file: <src/lib/assembler.fs>.

?cat-fda

?cat-fda (n --) "question-cat-f-d-a"

If catalogue entry n of the current drive is not a deleted file, display it. The entry is already stored at
fda.

?cat-fda is a factor of cat.

168

See also: fda-deleted?, cat-fda.

Source file: <src/lib/dos.trdos.fs>.

?ccase

?ccase "question-c-case"
 Compilation: (C: -- orig)
 Run-time: (c ca len --)

Start a ?ccase..end?ccase structure. If c is in the string ca len, execute the n-th word compiled after
?ccase, where n is the position of the first c in the string (0..len-1), then continue after end?ccase. If c
is not in ca len, just continue after end?ccase.

?ccase is an immediate and compile-only word.

Usage example:

: .a (--) ." Letter A" ;
: .b (--) ." Letter B" ;
: .c (--) ." Letter C" ;

: letter (c --)
 s" abc" ?ccase .a .b .c end?ccase ." The End" cr ;

See also: ccase, ccase0.

Source file: <src/lib/flow.ccase.fs>.

?compiling

?compiling (--) "question-compiling"

If not compiling, throw exception #-14 ("interpreting a compile-only word").

See also: compile-only, ?executing.

Source file: <src/lib/exception.fs>.

?csp

?csp (--) "question-c-s-p"

If the current data stack position does not match the value saved by !csp, throw an exception #-264
("definition not finished").

169

Origin: fig-Forth.

Source file: <src/kernel.z80s>.

?defined

?defined (f --) "question-defined"

If f is false, throw exception code #-13 (not found).

Source file: <src/kernel.z80s>.

?depth

?depth (--) "question-depth"

If depth is not zero, set base to decimal, display the stack on a new line with .s and finally throw
exception #-258 (stack imbalance).

See also: ?csp.

Source file: <src/lib/tool.debug.MISC.fs>.

?dnegate

?dnegate (d1 n -- d1|d2) "question-d-negate"

If n is negative, negate d1, giving its arithmetic inverse d2. Otherwise return d1.

?dnegate is written in Z80. Its equivalent definition in Forth is the following:

: ?dnegate (d1 n -- d1|d2) 0< if dnegate then ;

Origin: fig-Forth’s d+-.

See also: dnegate, ?negate.

Source file: <src/kernel.z80s>.

?do

?do "question-do"
 Compilation: (-- do-sys)

Compile (?do and leave do-sys to be consumed by loop or +loop.

170

?do is an immediate and compile-only word.

Definition:

: ?do (-- do-sys)
 postpone (?do >mark ; immediate compile-only

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: do, -do, times, executions.

Source file: <src/kernel.z80s>.

?drive#

?drive# (u --) "question-drive-number-sign"

If u is greater than the maximum number of disk drives, throw an exception #-35 ("invalid block
number").

See also: (>drive-block, block-drives, ?block-drive, ?drives.

Source file: <src/lib/dos.COMMON.fs>.

?drives

?drives (n --) "question-drives"

If n is greater than the maximum number of disk drives, throw an exception #-287 ("wrong number
of drives").

See also: set-block-drives. ?block-drive, ?drive#.

Source file: <src/lib/dos.COMMON.fs>.

?dup

?dup (x -- 0 | x x) "question-dup"

Duplicate x if it is non-zero.

Origin: Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE), Forth-2012
(CORE).

See also: dup, 0dup, -dup.

171

Source file: <src/kernel.z80s>.

?esc-order

?esc-order (n --) "question-esc-order"

Check if n is a valid size for the escaped strings search order, else throw an exception #-281
("escaped strings search-order overflow").

See also: #esc-order, esc-context, >esc-order, set-esc-order, get-esc-order.

Source file: <src/lib/strings.escaped.fs>.

?executing

?executing (--) "question-executing"

If not executing, throw exception #-263 ("execution only").

See also: ?compiling.

Source file: <src/lib/exception.fs>.

?exit

?exit (f --) (R: nest-sys | -- nest-sys |) "question-exit"

If f is zero, do nothing. Otherwise return control to the calling definition, specified by nest-sys.

?exit is the conditional version of exit.

?exit cannot be used within a loop. Use if unloop exit then instead.

?exit can be used in interpretation mode to stop the interpretation of a block.

See also: exit, 0exit, -exit, +exit.

Source file: <src/kernel.z80s>.

?index-block

?index-block (block --) "question-index-block"

Index block block, if not done before.

See also: use-fly-index.

172

Source file: <src/lib/blocks.indexer.fly.fs>.

?jp,

?jp, (a op --) "question-j-p-comma"

Compile a Z80 assembler conditional absolute-jump instruction to the address a, being op the
identifier of the condition, which was put on the stack by z?, nz?, c?, nc?, po?, pe?, p?, or m?.

See also: jp,, ?jr,, ?ret,, ?call,.

Source file: <src/lib/assembler.fs>.

?jr,

?jr, (a op --) "question-j-r-comma"

Compile a Z80 assembler conditional relative-jump instruction to address a, being op the identifier
of the condition, which was put on the stack by z?, nz?, c?, or nc?.

See also: jr,, ?jp,, djnz,, jp>jr, (jr,.

Source file: <src/lib/assembler.fs>.

?l#

?l# (n --) "question-l-number-sign"

If assembler label n is out of range, throw exception #-283.

See also: max-labels.

Source file: <src/lib/assembler.labels.fs>.

?leave

?leave (f --) (R: loop-sys -- | loop-sys) "question-leave"

If f is non-zero, discard the loop-control parameters for the current nesting level and continue
execution immediately following the innermost syntactically enclosing loop or +loop.

See also: 0leave, leave, unloop, do, ?do.

Source file: <src/lib/flow.MISC.fs>.

173

?load

?load (u f --) "question-load"

Load block u if flag f is true, else do nothing.

Origin: Pygmy Forth.

See also: load.

Source file: <src/lib/blocks.fs>.

?loading

?loading (--) "question-loading"

If a block is not being loaded, i.e., if the content of blk is zero, throw exception code #-265 ("loading
only").

See also: loading?, load.

Source file: <src/kernel.z80s>.

?located

?located (n --) "question-located"

If n is zero, store needed-word into parsed-name (in order to make needed-word displayed) and throw an
exception #-268 ("needed, but not located"). Otherwise do nothing.

Source file: <src/lib/002.need.fs>.

?negate

?negate (n1 n2 -- n1|n3) "question-negate"

If n2 is negative, negate n1, giving its arithmetic inverse n3. Otherwise return n1.

?negate is written in Z80. Its equivalent definition in Forth is the following:

: ?negate (n1 n2 -- n1|n3) 0< if negate then ;

Origin: fig-Forth’s +-.

See also: negate, ?dnegate.

174

Source file: <src/kernel.z80s>.

?next-bank

?next-bank (a -- a|a') "question-next-bank"

If the actual far-memory address a ($C000 .. $FFFF) has increased to the next bank ($0000 .. $3FFF),
convert it to the corresponding actual address a' ($C000 .. $FFFF) in the next bank and page in the
next bank. Otherwise return a.

See also: ?next-bank_, ?previous-bank.

Source file: <src/kernel.z80s>.

?next-bank_

?next-bank_ (-- a) "question-next-bank-underscore"

Address of the question_next_bank routine of the kernel, which does the following:

If the actual far-memory address ($C000..$FFFF) in the HL register has increased to the next bank
($0000..$3FFF), convert it to the corresponding actual address ($C000..$FFFF) in the next bank and
page in the next bank, else do nothing.

This is the routine called by ?next-bank. ?next-bank_ is used in code words.

Input:

• HL = address in a paged bank ($C000..$FFFF) or higher ($0000..$BFFF).

Output when HL is above the paged bank:

• HL = corresponding address in the next bank, which is paged in

• A corrupted

• D = 0

• E = bank

Output when HL is an address in a paged bank:

• HL preserved

• A corrupted

Source file: <src/lib/memory.far.fs>.

?order

175

?order (n --) "question-order"

If n is not a valid size for the search order, throw an exception #-49 ("search-order overflow").

Definition:

: ?order (n --)
 dup 0< #-50 ?throw max-order < ?exit #-49 throw ;

See also: #order, set-order, >order, order.

Source file: <src/kernel.z80s>.

?os-unused

?os-unused (u --) "question-o-s-unused"

If u is less than the the amount of unused space by the OS and the BASIC interpreter, throw
exception code #-291 (out of OS memory).

See also: os-unused.

Source file: <src/lib/os.fs>.

?pairs

?pairs (x1 x2 --) "question-pairs"

If x1 not equals x2 throw an exception #-22 (control structure mismatch).

Source file: <src/lib/compilation.fs>.

?previous-bank

?previous-bank (a -- a|a') "question-previous-bank"

If the actual far-memory address a ($C000 .. $FFFF) has decreased to the previous bank ($8000 ..
$BFFF), convert it to the corresponding actual address a' ($C000 .. $FFFF) in the previous bank and
page in the next bank. Otherwise return a.

See also: ?previous-bank_, ?next-bank.

Source file: <src/kernel.z80s>.

176

?previous-bank_

?previous-bank_ (-- a) "question-previous-bank-underscore"

Address of the question_previous_bank routine of the kernel, which does the followig:

If the actual far-memory address ($C000..$FFFF) in the HL register has decreased to the previous
bank ($8000..$BFFF), convert it to the corresponding actual address ($C000..$FFFF) in the previous
bank and page in the next bank, else do nothing.

This is the routine called by ?previous-bank. ?previous-bank_ is used in code words.

Input:

• HL = address in a paged bank ($C000..$FFFF) or lower ($8000..$BFFF).

Output when HL is below the paged bank:

• HL = corresponding address in the previous bank, which is paged in

• A corrupted

• D = 0

• E = bank

Output when HL is an address in a paged bank:

• HL preserved

• A corrupted

Source file: <src/lib/memory.far.fs>.

?rel

?rel (n --) "question-rel"

If Z80 assembler relative branch n is too long, throw exception #-269 (relative jump too long).

Source file: <src/lib/assembler.fs>.

?repeat

?repeat "question-repeat"
 Compilation: (dest -- dest)
 Run-time: (f --)

An alternative exit point for begin … until loops: If f is non-zero, continue execution at begin,
otherwise continue execution after until.

177

?repeat is an immediate and compile-only word.

Usage example:

: test (--)
 begin
 ...
 flag ?repeat \ Go back to ``begin`` if flag is non-zero
 ...
 flag 0repeat \ Go back to ``begin`` if flag is zero
 ...
 flag until \ Go back to ``begin`` if flag is false
 ...
 ;

See also: 0repeat.

Source file: <src/lib/flow.MISC.fs>.

?ret,

?ret, (op --) "question-ret-comma"

Compile a Z80 assembler conditional return instruction, being op the identifier of the condition,
which was put on the stack by z?, nz?, c?, nc?, po?, pe?, p?, or m?.

See also: ret,, ?jp,, ?call,.

Source file: <src/lib/assembler.fs>.

?retry

?retry "question-retry"
 Compilation: (--)
 Run-time: (f --)

If f is zero, do nothing. Otherwise do a branch to the start of the word.

?retry is an immediate and compile-only word.

See also: retry, ?repeat, 0repeat.

Source file: <src/lib/flow.MISC.fs>.

?rstack

178

?rstack (--) "question-r-stack"

throw an error if the return stack is out of bounds.

Origin: fig-Forth’s ?stack.

See also: ?stack.

Source file: <src/kernel.z80s>.

?seconds

?seconds (u --) "question-seconds"

Wait at least u seconds or until a key is pressed.

See also: seconds, ms, ?ticks-pause.

Source file: <src/lib/time.fs>.

?set-drive

?set-drive (c -- ior)

If drive c is not equal to the current default drive, returned by get-drive, use set-drive to make c
the current default drive, returning I/O result code ior. Otherwise do nothing, and ior is zero.

?set-drive is used by (>drive-block, in order to update the current default drive only when needed,
i.e. when the desired block is not in the current default drive.

Source file: <src/lib/dos.COMMON.fs>.

?set-tape-filename

?set-tape-filename (ca len --) "question-set-tape-filename"

If filename ca len is not empty, store it into the tape header by executing set-tape-filename; else use
a wildcard instead, by executing any-tape-filename.

Source file: <src/lib/tape.fs>.

?shift

?shift (x1 n -- x1 | x2) "question-shift"

179

If n is zero, drop it and return x1. If n is negative, convert it to its absolute value and execute rshift,
returning x2. If n is positive execute lshift, returning x2.

Source file: <src/lib/math.operators.1-cell.fs>.

?stack

?stack (--) "question-stack"

throw an error if the data stack is out of bounds.

Origin: fig-Forth.

See also: ?rstack.

Source file: <src/kernel.z80s>.

?stringer

?stringer (len --) "question-stringer"

If len is greater than /stringer, then throw error #-293 (string too long). Otherwise do nothing.

?stringer is provided as an optional check. for allocate-stringer.

Source file: <src/lib/strings.MISC.fs>.

?throw

?throw (f n --) "question-throw"

If f is non-zero, throw exception code n

Definition:

: ?throw (f n --) swap if throw else drop then ;

Source file: <src/kernel.z80s>.

?ticks-pause

?ticks-pause (u --) "question-ticks-pause"

Stop execution during at least u clock ticks, or until a key is pressed.

180

See also: ticks-pause, basic-pause, ?seconds, ticks/second.

Source file: <src/lib/time.fs>.

?user

?user (--) "question-user"

throw an exception if the user area pointer is out of bounds.

See also: udp, /user.

Source file: <src/lib/data.user.fs>.

?warn

?warn (ca len -- ca len | ca len xt) "question-warn"

Check if a warning about the redefinition of the word name ca len is needed. If no warning is
needed, unnest the calling definition and return ca len. If a warning is needed, return ca len and the
xt of the word found in the current compilation wordlist.

?warn is factor of error-code-warn, message-warn and error-warn.

See also: no-warnings?, not-redefined?, message-warn, error-code-warn, error-warn.

Source file: <src/lib/compilation.fs>.

?wcr

?wcr (--) "question-w-c-r"

If the column cursor coordinate of the current-window is not zero, cause subsequent output to the
current window appear at the beginning of the next line.

WARNING
When the end of the window is reached, the cursor is set to the top left corner
with whome. In a future version of the code, the window will be scrolled.

See also: wcr.

Source file: <src/lib/display.window.fs>.

@

181

@

@ (a -- x) "fetch"

x is the value stored at a.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: !, 2@, c@.

Source file: <src/kernel.z80s>.

@+

@+ (a -- a' x) "fetch-plus"

Fetch x from a. Return a', which is a incremented by one cell. This is handy for stepping through cell
arrays.

See also: @, 2@+, c@+.

Source file: <src/lib/memory.MISC.fs>.

@a

@a (-- x) "fetch-a"

Fetch cell x stored at the address register.

See also: a, !a.

Source file: <src/lib/memory.address_register.fs>.

@a+

@a+ (-- x) "fetch-a-plus"

Fetch cell x stored at the address register and increment the address register by one cell.

See also: a, !a+.

Source file: <src/lib/memory.address_register.fs>.

182

@bank

@bank (a n -- x) "fetch-bank"

Fetch x from address a ($C000..$FFFF) of bank n.

@bank is written in Z80. Its equivalent definition in Forth is the following:

: @bank (a n -- x) bank @ default-bank ;

See also: !bank, c@bank.

Source file: <src/lib/memory.far.fs>.

@bit

@bit (b ca -- f) "fetch-bit"

Fetch f from an element of a bit-array, represented by address ca and bitmask b.

@bit is an alias of c@and?.

See also: !bit, bit-array.

Source file: <src/lib/data.array.bit.fs>.

@order

@order (a --)

Restore the search order stored at a by executing nn@ and set-order.

@order is a useful factor of unmarker.

See also: order,, @wordlists.

Source file: <src/lib/tool.marker.fs>.

@p

@p (a -- b) "fetch-p"

Input byte b from port a.

See also: !p, @, c@.

183

Source file: <src/lib/memory.ports.fs>.

@sound

@sound (b1 -- b2) "fetch-sound"

Get the contents b2 of sound register b1 (0…13).

See also: !sound, sound, play, sound-register-port.

Source file: <src/lib/sound.128.fs>.

@volume

@volume (b1 -- b2) "fetch-volume"

Fetch b2 from the volume register of channel b1 (0..2, equivalent to notation 'A'..'C').

Registers 8..10 (Channels A..C Volume)

Bits 0-4 Channel volume level.

Bit 5 1=Use envelope defined by register 13 and ignore the volume
setting.

Bits 6-7 Not used.

See also: !volume, @sound.

Source file: <src/lib/sound.128.fs>.

@wordlists

@wordlists (a --) "fetch-wordlists"

Fetch the wordlist definitions from a.

@wordlists is a factor of unmarker.

See also: wordlists,, last-wordlist, @order.

Source file: <src/lib/tool.marker.fs>.

184

[

[

[(--) "left-bracket"

Enter interpretation state.

[is an immediate word.

Definition:

: [(--) state off ; immediate

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also:].

Source file: <src/kernel.z80s>.

['']

['']
 Compilation: ("name" --) "bracket-tick-tick"

If name is found in the current search order, compile its execution-token pointer as a literal, else
throw an exception.

[''] is an immediate and compile-only word.

See also: literal, '', ['].

Source file: <src/lib/compilation.fs>.

[']

['] "bracket-tick"
 Compilation: ("name" --)

Compilation: If name is found in the current search order, compile its execution token as a literal,
else throw an exception.

['] is an immediate and compile-only word.

Definition:

185

: ['] \ Compilation: ("name" --)
 ' postpone literal ; immediate

Origin: Forth-83 (Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: literal, ', [''].

Source file: <src/kernel.z80s>.

[+switch

[+switch ("name" -- a) "bracket-plus-switch"

Open the [switch structure name to include additional clauses. The default behavior remains
unchanged. The additions, like the original clauses, are terminated by switch]. Leave the head a of
the given [switch name, for clauses to append to.

Origin: SwiftForth.

See also: runs, run:.

Source file: <src/lib/flow.bracket-switch.fs>.

[2const]

[2const] ("name" --) "bracket-two-const"

Evaluate name. Then compile the double-cell value left on the stack.

[2const] is intented to compile double-cell constants as literals, in order to gain execution speed.

Usage example:

48. 2constant zx
: test (--) [2const] zx d. ;

[2const] is an immediate and compile-only word.

See also: 2const, [const], [xconst], [cconst], eval.

Source file: <src/lib/compilation.fs>.

[:

186

[: "bracket-colon"
 Compilation: (-- orig xt)

Start a quotation.

Suspend compiling to the current definition, start a new nested definition and compilation
continues with this nested definition. Return orig and the execution token xt of of the host
definition, both to be consumed by ;].

NOTE Locals are not supported yet.

[: is an immediate and compile-only word.

Source file: <src/lib/flow.bracket-colon.fs>.

[cconst]

[cconst] ("name" --) "bracket-c-const"

Evaluate name. Then compile the char left on the stack.

[cconst] is intented to compile char constants as literals, in order to gain execution speed.

Usage example:

48 cconstant zx
: test (--) [cconst] zx emit ;

[cconst] is an immediate and compile-only word.

See also: cconst, [2const], [const], [xconst], eval.

Source file: <src/lib/compilation.fs>.

[char]

[char]
 Compilation: ("name" --)
 Run-time: (-- c)
"bracket-char"

Compilation: ("name" — )

Parse name and append the run-time semantics given below to the current definition.

Run-time: ( — c)

187

Place c, the value of the first character of name, on the stack.

[char] is an immediate and compile-only word.

Solo Forth recognizes the standard notation for characters, so [char] is not needed:

: test (--) 'x' emit ." equals " [char] x emit ;

Origin: Forth-94 (CORE), Forth-2012 (CORE).

See also: char.

Source file: <src/lib/parsing.fs>.

[comp']

[comp'] "bracket-comp-tick"
 Compilation: ("name" --)
 Run-time: (-- x xt)

Compilation token x xt represents the compilation semantics of name.

[comp'] is an immediate and compile-only word.

Origin: Gforth.

See also: comp', '.

Source file: <src/lib/compilation.fs>.

[compile]

[compile] ("name" --) "bracket-compile"

Parse name. Find name. If name has other than default compilation semantics, append them to the
current definition; otherwise append the execution semantics of name.

In other words: Force compilation of name. This allows compilation of an immediate word when it
would otherwise have been executed.

[compile] is an immediate word.

[compile] has been be superseded by postpone.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE EXT),
Forth-2012 (CORE EXT, obsolescent).

See also: compile, compile,.

188

Source file: <src/lib/compilation.fs>.

[const]

[const] ("name" --) "bracket-const"

Evaluate name. Then compile the single-cell value left on the stack.

[const] is intented to compile constants as literals, in order to gain execution speed. name can be
any word, as long as its execution returns a single-cell value on the stack.

Usage example:

48 constant zx
: test (--) [const] zx . ;

[const] is an immediate and compile-only word.

See also: const, [2const], [xconst], [cconst], eval.

Source file: <src/lib/compilation.fs>.

[defined]

[defined] ("name" -- f) "bracket-defined"

Parse name. Return a true flag if name is the name of a word that can be found in the current
search order; else return a false flag.

[defined] is an immediate word.

Origin: Forth-2012 (TOOLS EXT).

See also: defined, [undefined].

Source file: <src/lib/compilation.fs>.

[else]

[else] ("ccc" --) "bracket-else"

Parse and discard space-delimited words from the parse area, including nested occurrences of [if]
… [then], and [if] … [else] … [then], until either the word [else] the word [then] (case
ignored) has been parsed and discarded. If the parse area becomes exhausted, it is refilled as with
refill.

189

Origin: Forth-94 (TOOLS EXT), Forth-2012 (TOOLS EXT).

See also: [if].

Source file: <src/lib/compilation.fs>.

[false]

[false] (-- false) "bracket-false"

[false] is an immediate word.

See also: [true], false.

Source file: <src/lib/compilation.fs>.

[if]

[if] (f "ccc" --) "bracket-if"

If flag is true, do nothing. Otherwise, parse and discard space-delimited words from the parse area,
including nested occurrences of [if] … [then], and [if] … [else] … [then], until either the
word [else] or the word [then] (case ignored) has been parsed and discarded. If the parse area
becomes exhausted, it is refilled as with refill.

[if] is an immediate word.

Origin: Forth-94 (TOOLS EXT), Forth-2012 (TOOLS EXT).

See also: ?\, ?(.

Source file: <src/lib/compilation.fs>.

[is]

[is] "bracket-is"
 Compilation: (xt "name" --)
 Run-time: (xt --)

Compilation: ("name" — )

Append the run-time semantics given below to the current definition.

Run-time: (xt — )

Set name, which was defined by defer, to execute xt.

[is] is an immediate and compile-only factor of is.

190

Origin: Gforth.

See also: <is>.

Source file: <src/lib/define.deferred.fs>.

[switch

[switch ("name1" "name2" -- a) "bracket-switch"

Start the definition of a switch structure name1 consisting of a linked list of single-precision
numbers and associated behaviors, with its default action name2. The head a of the switch is left on
the stack for defining clauses. The switch definition will be terminated by switch], and can be
extended by [+switch.

Usage example:

: one (--) ." unu " ;
: two (--) ." du " ;
: three (--) ." tri " ;
 \ clauses

: many (n --) . ." is too much! " ;
 \ default action

[switch .number many
 1 runs one 2 runs two 3 runs three switch]

cr 1 .number 3 .number 4 .number

: four ." kvar " ;

[+switch .number 4 runs four switch]
 \ add a new clause for number 4

cr 1 .number 3 .number 4 .number

[+switch .number 5 run: ." kvin" ; switch]
 \ add a new unnamed clause for number 5

cr 1 .number 4 .number 5 .number

NOTE [switch is the syntactic-sugar variant of :switch.

Origin: SwiftForth.

See also: runs, run:.

191

Source file: <src/lib/flow.bracket-switch.fs>.

[then]

[then] (--) "bracket-then"

Do nothing. [then] is parsed and recognized by [if].

[then] is an immediate word.

Origin: Forth-94 (TOOLS EXT), Forth-2012 (TOOLS EXT).

Source file: <src/lib/compilation.fs>.

[true]

[true] (-- true) "bracket-true"

[true] is an immediate word.

See also: [false], true.

Source file: <src/lib/compilation.fs>.

[undefined]

[undefined] ("name" -- f) "bracket-undefined"

Parse name. Return a false flag if name is the name of a word that can be found in the current
search order; else return a true flag.

[undefined] is an immediate word.

Origin: Forth-2012 (TOOLS EXT).

See also: [defined].

Source file: <src/lib/compilation.fs>.

[xconst]

[xconst] ("name" --) "bracket-x-const"

Evaluate name. Then compile the single-cell value left on the stack, using xliteral.

[xconst] is intented to compile constants as literals, when it’s uncertain if the literal is a character

192

or a cell, in order to gain execution speed. name can be any word, as long as its execution returns a
single-cell value on the stack.

Usage example:

48 constant zx
: test (--) [xconst] zx . ;

[xconst] is an immediate and compile-only word.

See also: [2const], [const], [cconst], eval.

Source file: <src/lib/compilation.fs>.

\

\

\ ("ccc<eol>" --) "backslash"

If blk contains zero, parse and discard the remainder of the parse area; otherwise parse and
discard the portion of the parse area corresponding to the remainder of the current line.

\ is an immediate word.

Definition:

: \ ("ccc" --)
 loading? if ->in/l parsed exit then #tib @ >in ! ;

Origin: Forth-94 (BLOCK EXT), Forth-2012 (BLOCK EXT).

See also: (, ->in/l.

Source file: <src/kernel.z80s>.

]

]

] (--) "right-bracket"

Enter compilation state.

Definition:

193

:] (--) state on ;

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: [,]l,]2l,]cl,]xl.

Source file: <src/kernel.z80s>.

]2l

]2l (xd --) "right-bracket-two-l"

A short form of the idiom] 2literal.

]2l is an immediate and compile-only word.

See also:], 2literal,]l,]xl,]cl.

Source file: <src/lib/compilation.fs>.

]cl

]cl (x --) "right-bracket-c-l"

A short form of the idiom] cliteral.

]cl is an immediate and compile-only word.

See also:], cliteral,]2l,]l,]xl.

Source file: <src/lib/compilation.fs>.

]l

]l (x --) "right-bracket-l"

A short form of the idiom] literal.

]l is an immediate and compile-only word.

See also:], literal,]2l,]xl,]cl.

Source file: <src/lib/compilation.fs>.

194

]options

]options (a1 a2 a3 --) "right-bracket-options"

End a options[…]options structure. Resolve the addresses left by options[:

• a1 = address of exit point

• a2 = address of default option xt

• a3 = address of number of options

See options[for a usage example.

Source file: <src/lib/flow.options-bracket.fs>.

]xl

]xl (x --) "right-bracket-x-l"

A short form of the idiom] xliteral.

]xl is an immediate and compile-only word.

See also:], xliteral,]2l,]l,]cl.

Source file: <src/lib/compilation.fs>.

_

_mod

_mod (n1 n2 -- n3) "underscore-mod"

Divide n1 by n2 (doing a floored division), giving the remainder n3.

See also: /_mod, /, -rem.

Source file: <src/lib/math.operators.1-cell.fs>.

a

a

a (-- reg)

195

Return the identifier reg of the Z80 assembler register "A", which is interpreted as register pair "AF"
by assembler words that use register pairs (for example push, and pop,).

See also: b, c, d, e, h, l, m, ix, iy, sp.

Source file: <src/lib/assembler.fs>.

a

a (-- a)

A variable. a is the address of a cell containing the address register.

See also: a!, a@, !a, @a, c!a, c@a, !a+, @a+, c!a+, c@a+.

Source file: <src/lib/memory.address_register.fs>.

a

a (--)

A command of gforth-editor: Go to marked position, marking the current position first.

See also: m, h, d, f, r.

Source file: <src/lib/prog.editor.gforth.fs>.

a!

a! (a --) "a-store"

Set the address register.

See also: a, a@.

Source file: <src/lib/memory.address_register.fs>.

a@

a@ (-- a) "a-fetch"

Get the address register.

See also: a, a!.

Source file: <src/lib/memory.address_register.fs>.

196

aagain

aagain (dest cs-id --) "a-again"

aagain is part of the assembler absolute-address control-flow structure abegin .. aagain.

See also: ragain.

Source file: <src/lib/assembler.fs>.

abase

abase (-- a) "a-base"

A variable. a is the address of a cell where the current value of base is preserved by asm.

Source file: <src/kernel.z80s>.

abegin

abegin (-- dest cs-id) "a-begin"

abegin is part of the assembler absolute-address control-flow structure abegin .. awhile .. arepeat.

See also: rbegin.

Source file: <src/lib/assembler.fs>.

abort

abort (--)

Empty the data stack and perform the function of quit, which includes emptying the return stack,
without displaying a message.

Definition:

abort (--) -1 throw ;

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE,
EXCEPTION EXT), Forth-2012 (CORE, EXCEPTION EXT).

See also: (abort, abort", throw, error.

Source file: <src/kernel.z80s>.

197

abort"

abort" "abort-quote"
 Compilation: ("ccc<quote>" --)
 Run-time: (x --)

Compile (abort", parse ccc delimited by a double quote and compile it.

abort" is an immediate and compile-only word.

Origin: Forth-79 (Reference Word Set), Forth-83 (Required Word Set), Forth-94 (EXCEPTION EXT),
Forth-2012 (EXCEPTION EXT).

See also: abort-message, abort, throw, warning".

Source file: <src/lib/exception.fs>.

abort-message

abort-message (-- a)

A 2variable. a is the address of a cell pair containing the address and length of the abort" message.

Source file: <src/kernel.z80s>.

aborted?

aborted? (c -- f) "aborted-question"

If no key is pressed return false. If a key is pressed, discard it and wait for a second key. Then
return true if it’s c, else return false.

aborted? is a useful factor of nuf?.

Usage example:

: listing (--)
 begin ." bla " bl aborted? until ." Aborted" ;

Source file: <src/lib/keyboard.MISC.fs>.

abs

abs (n -- u)

198

Leave the absolute value u of a number n.

Definition:

: abs (n -- u) dup ?negate ;

Source file: <src/kernel.z80s>.

acat

acat (--) "a-cat"

Display an abbreviated catalogue of the current disk.

See also: set-drive, (acat.

Source file: <src/lib/dos.trdos.fs>.

accept

accept (ca1 len1 -- len2)

Receive a string of at most len1 characters. No characters are received or transferred if len1 is zero.
Display graphic characters as they are received.

Input terminates when an implementation-defined line terminator is received. When input
terminates, nothing is appended to the string or displayed on the screen.

len2 is the length of the string stored at ca1.

In Solo Forth accept is a deferred word (see defer). Its default action is simple-accept, which
provides only the basic editing options. Alternative definitions are provided in the library.

Origin: Forth-94 (CORE), Forth-2012 (CORE).

Source file: <src/kernel.z80s>.

action-of

action-of (--)
 Interpretation: ("name" -- xt)
 Compilation: ("name" --)
 Run-time: (-- xt)

Interpretation

Parse name, which is a word defined by defer. Return xt, which is the execution token that name is

199

set to execute.

Compilation

Parse name, which is a word defined by defer. Append the runtime semantics given below to the
current definition.

Runtime

Return xt, which is the execution token that name is set to execute.

action-of is an immediate word.

Origin: Forth-2012 (CORE EXT).

See also: defer@, defers.

Source file: <src/lib/define.deferred.fs>.

actions-table

actions-table (-- a)

A variable, a is the address of a cell containing the address of a cell array which holds the execution
tokens of the current menu options. actions-table is set by set-menu.

See also: options-table.

Source file: <src/lib/menu.sinclair.fs>.

adc#,

adc#, (b --) "a-d-c-number-sign-comma"

Compile the Z80 assembler instruction ADC A,b.

Source file: <src/lib/assembler.fs>.

adc,

adc, (reg --) "a-d-c-comma"

Compile the Z80 assembler instruction ADC reg.

See also: add,, sub,, sbc,, addp,.

Source file: <src/lib/assembler.fs>.

200

adcp,

adcp, (regp1 regp2 --) "a-d-c-p-comma"

Compile the Z80 assembler instruction ADC regp2,regp1.

See also: adcp,.

Source file: <src/lib/assembler.fs>.

adcx,

adcx, (disp regpi --) "a-d-c-x-comma"

Compile the Z80 assembler instruction ADC A,(regpi+disp).

See also: addx,, sbcx,.

Source file: <src/lib/assembler.fs>.

add#,

add#, (b --) "add-number-sign-comma,"

Compile the Z80 assembler instruction ADD A,b.

Source file: <src/lib/assembler.fs>.

add,

add, (reg --) "add-comma"

Compile the Z80 assembler instruction ADD reg.

See also: sub,, sbc,, addp,.

Source file: <src/lib/assembler.fs>.

addix,

addix, (regp --) "add-i-x-comma"

Compile the Z80 assembler instruction ADD IX,regp.

See also: addiy,, addp,.

201

Source file: <src/lib/assembler.fs>.

addiy,

addiy, (regp --) "add-i-y-comma"

Compile the Z80 assembler instruction ADD IY,regp.

See also: addiy,, addp,.

Source file: <src/lib/assembler.fs>.

addp,

addp, (regp --) "add-p-comma"

Compile the Z80 assembler instruction ADD HL,regp.

See also: add,.

Source file: <src/lib/assembler.fs>.

address-unit-bits

address-unit-bits (-- n)

n is the size of one address unit, in bits.

See also: max-char, environment?.

Source file: <src/lib/environment-question.fs>.

addx,

addx, (disp regpi --) "add-x-comma"

Compile the Z80 assembler instruction ADD A,(regpi+disp).

See also: adcx,, subx,.

Source file: <src/lib/assembler.fs>.

adraw176

202

adraw176 (gx gy --) "a-draw-176"

Draw a line from the current coordinates to the given absolute coordinates gx gy, using only the top
176 pixel rows of the screen (the lower 16 pixel rows are not used). gx is 0..255; gy is 0..175.

See also: rdraw176.

Source file: <src/lib/graphics.lines.fs>.

aelse

aelse (orig1 cs-id -- orig2 cs-id) "a-else"

Check the Z80 assembler control-flow structure identifier cs_id, and resolve the forward reference
orig1, both left by aif; then compile a Z80 assembler unconditional absolute-address jump, putting
its unresolved forward reference orig2 and control-flow structure identifier cs-id on the stack, to be
resolved by athen.

Also put the location of a new unresolved forward reference orig2 and the control-structure
identifier cs_id onto the stack, to be consumed by athen.

aelse is part of the assembler absolute-address control-flow structure aif .. aelse .. athen, equivalent
to Forth if .. else .. then.

See also: relse, ?pairs, (aif.

Source file: <src/lib/assembler.fs>.

again

again
 Compilation: (C: dest --)
 Run-time: (--)

Compilation: Compile an unconditional branch to the backward reference dest, usually left by begin.

Run-time: Continue execution at the location specified by dest.

again is an immediate and compile-only word.

Definition:

: again \ Compilation: (C: dest --)
 \ Run-time: (--)
 compile branch <resolve ; immediate compile-only

203

Origin: fig-Forth, Forth-79 (Reference Word Set), Forth-83 (Uncontrolled Reference Words), Forth-94
(CORE EXT), Forth-2012 (CORE EXT).

See also: until, repeat.

Source file: <src/kernel.z80s>.

ahead

ahead
 Compilation: (C: -- orig)
 Run-time: (--)

Compilation: Compile an unconditional branch and put the location orig of its unresolved
destination on the control-flow stack.

Run-time: Continue execution at the location specified by the resolution of orig.

ahead is an immediate and compile-only word.

Definition:

: ahead \ Compilation: (C: -- orig)
 \ Run-time: (--)
 compile branch >mark ; immediate compile-only

Origin: Forth-94 (TOOLS EXT), Forth-2012 (TOOLS EXT).

Source file: <src/kernel.z80s>.

aif

aif (op -- orig cs-id) "a-if"

Compile the Z80 assembler absolute-jump instruction op and put the location of a new unresolved
forward reference orig and the control-structure identifier cs_id onto the stack, to be consumed by
aelse or athen.

op was left by any of the following assembler conditions: nz?, z?, nc?, c?, po?, pe?, p?, m?.

aif is part of the assembler absolute-address control-flow structure aif .. aelse .. athen, equivalent to
Forth if .. else .. then.

See also: rif, (aif, inverse-cond.

Source file: <src/lib/assembler.fs>.

204

al#

al# (--) "a-l-number-sign"

Create an absolute reference to an assembler label defined by l:. The label number has been
compiled in the last cell of the latest Z80 instruction. If the corresponding label is already defined,
its value is patched into the latest Z80 instruction. Otherwise it will be patched when the label is
defined by l:.

Usage example:

code my-code (--)
 #2 call, al# \ a call to label #2
 nop,
 #2 l: \ definition of label #2
 ret,
end-code

WARNING
al# is used after the Z80 command, while its counterpart rl# is used before the
Z80 command.

Source file: <src/lib/assembler.labels.fs>.

al-id

al-id (-- b) "a-l-i-d"

b is the identifier of absolute references created by al#. al-id is used as a bitmask added to the
assembler label number stored in l-refs.

See also: rl-id.

Source file: <src/lib/assembler.labels.fs>.

alias

alias (xt "name" --)

Create an alias name that will execute xt.

Aliases have the execution token xt of the original word, but, contrary to synonyms created by
synonym, don’t inherit its attributes (immediate and compile-only).

See realias, alias!, synonym.

205

Origin: Gforth.

Source file: <src/lib/define.alias.fs>.

alias!

alias! (xt nt --) "alias-store"

Set the alias nt to execute xt.

See alias, realias.

Source file: <src/lib/define.alias.fs>.

align

align (--)

If the data-space pointer is not aligned, reserve enough space to align it.

In Solo Forth, align does nothing (it’s an immediate alias of noop).

Origin: Forth-94 (CORE), Forth-2012 (CORE).

See also: dp, aligned.

Source file: <src/lib/memory.MISC.fs>.

aligned

aligned (a1 -- a2)

a2 is the first aligned address greater than or equal to a1.

In Solo Forth, aligned does nothing (it’s an immediate alias of noop).

Origin: Forth-94 (CORE), Forth-2012 (CORE).

See also: align.

Source file: <src/lib/memory.MISC.fs>.

aline176

aline176 (gx gy --) "a-line-176"

206

Draw a line from the current coordinates to the given absolute coordinates gx gy, using only the top
176 pixel rows of the screen (the lower 16 pixel rows are not used) and preserving the current
attributes of the screen. gx is 0..255; gy is 0..175.

aline176 is faster than adraw176.

See also: rdraw176.

Source file: <src/lib/graphics.lines.fs>.

allocate

allocate (u -- a ior)

Allocate u bytes of contiguous data space. The data-space pointer is unaffected by this operation.
The initial content of the allocated space is undefined.

If the allocation succeeds, a is the starting address of the allocated space and ior is zero.

If the operation fails, a does not represent a valid address and ior is the I/O result code.

allocate is a deferred word (see defer) whose action can be charlton-allocate or gil-allocate,
depending on the heap implementation used by the application.

Origin: Forth-94 (MEMORY), Forth-2012 (MEMORY).

See also: free, resize, empty-heap.

Source file: <src/lib/memory.allocate.COMMON.fs>.

allocate-stringer

allocate-stringer (len -- ca)

Allocate len characters in the stringer and return the address ca of the allocated space. If len is
greater than unused-stringer, empty-stringer is executed, no check is done whether len is greater
than /stringer (the maximum capacity of the buffer).

Definition:

: allocate-stringer (len -- ca)
 fit-stringer stringer unused-stringer + ;

See also: >stringer.

Source file: <src/kernel.z80s>.

207

allocate-xstack

allocate-xstack (n -- a) "allocate-x-stack"

Create an xstack in the heap. n is the size in cells. Return its address a.

See also: xfree, allocate-xstack.

Source file: <src/lib/data.xstack.fs>.

allot

allot (n --)

If n is greater than zero, reserve n bytes of data space. If n is less than zero, release n bytes of data
space. If n is zero, leave the data-space pointer unchanged.

Definition:

: allot (n --) dp +! ;

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: allotted, dp, here`, reserve.

Source file: <src/kernel.z80s>.

allot-heap

allot-heap (n -- a)

Create a heap of n bytes in the data space. Return its address a.

See also: limit-heap, bank-heap, farlimit-heap, empty-heap.

Source file: <src/lib/memory.allocate.COMMON.fs>.

allot-xstack

allot-xstack (n -- a) "allot-x-stack"

Create an xstack in data space. n is the size in cells. Return its address a.

See also: allocate-xstack.

208

Source file: <src/lib/data.xstack.fs>.

allotted

allotted (n -- a)

Reserve n bytes of data space and return its address a.

See also: reserve, buffer:, allot, here.

Source file: <src/lib/memory.MISC.fs>.

also

also (--)

Duplicate the word list at the top of the search order.

Definition:

: also (--) get-order over swap 1+ set-order ;

Origin: Forth-83 (Experimental proposals), Forth-94 (SEARCH EXT), Forth-2012 (SEARCH-EXT).

See also: previous, get-order, set-order, only, order, >order.

Source file: <src/kernel.z80s>.

ambulance

ambulance (n --)

Ambulance sound for ZX Spectrum 48. Make it n times.

Source file: <src/lib/sound.48.fs>.

and

and (x1 x2 -- x3)

x3 is the bit-by-bit logical "and" of x1 with x2.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

209

See also: or, xor, negate, 0=, dand.

Source file: <src/kernel.z80s>.

and#,

and#, (b --) "and-number-sign-comma"

Compile the Z80 assembler instruction AND b.

See also: or#,, xor#,, sub#,.

Source file: <src/lib/assembler.fs>.

and,

and, (reg --) "and-comma"

Compile the Z80 assembler instruction AND reg.

See also: xor,, or,.

Source file: <src/lib/assembler.fs>.

andif

andif "and-if"
 Compilation: (C: -- orig)
 Run-time: (f --)

Short-circuit and variant of if.

andif is an immediate and compile-only word.

Usage example:

: the-end? (-- f) cond won-battle? andif
 found-treasure? andif
 kill-dragon? andif
 thens ;

Compare with the following equivalent definition, where all three conditions are always checked:

210

: the-end? (-- f) won-battle?
 found-treasure? and
 kill-dragon? and ;

See also: orif, cond, thens.

Source file: <src/lib/flow.MISC.fs>.

andx,

andx, (disp regpi --) "and-x-comma"

Compile the Z80 assembler instruction AND (regpi+disp).

See also: xorx,, orx,, cpx,.

Source file: <src/lib/assembler.fs>.

anew

anew ("name" --)

Parse name. If name is the name of a word in the current search order, execute it. Then restore >in
to its value previous to the parsing of name and execute marker.

The function of anew is to execute a name already created by marker and then create it again.

See also: possibly.

Source file: <src/lib/tool.marker.fs>.

anon

anon
 Compilation: (n --)
 Run-time: (-- a)

anon is an immediate and compile-only word.

Compilation:

Compile a reference to cell n (0 index) of the buffer pointed by anon> and initialized by set-anon.

Run-time:

Return address a of cell n (0 index) of the buffer that was pointed by anon> during the compilation.

211

See set-anon for a usage example.

See also: arguments, local.

Source file: <src/lib/locals.anon.fs>.

anon>

anon> (-- a) "anon-to"

A variable. a contains the address of the buffer used by local variables defined by set-anon and
accessed by anon.

anon> must be set by the application before compiling a word that uses set-anon and anon. One
single buffer pointed by anon> can be shared by several words, provided they dont’t need to use it at
the same time, e.g. because of nesting.

Source file: <src/lib/locals.anon.fs>.

any-of

any-of
 Compilation: (C: -- of-sys)
 Run-time: (x#0 x#1 ... x#n n -- | x#0)

A variant of of.

Compilation:

Put of-sys onto the control flow stack. Append the run-time semantics given below to the current
definition. The semantics are incomplete until resolved by a consumer of of-sys, such as endof.

Run-time:

If x#0 equals any of x#1 … x#n, discard x#1 … x#n n and continue execution at the location specified
by the consumer of of-sys, e.g., following the next endof. Otherwise, consume also x0 and continue
execution in line.

any-of is an immediate and compile-only word.

Usage example:

212

: test (n --)
 case
 1 of ." one" endof
 2 7 10 3 any-of ." two, seven or ten" endof
 6 of ." six" endof
 endcase ;

See also: case, or-of, (any-of.

Source file: <src/lib/flow.case.fs>.

any-tape-filename

any-tape-filename (--)

Configure tape-header to load any filename, by replacing the first char of tape-filename with 255,
which will be recognized as a wild card.

Source file: <src/lib/tape.fs>.

any?

any? (x[0] x[1]..x[n] n -- f) "any-question"

Is any x[1]..x[n] equal to x[0]?

Origin: John A. Peters' tools for CP/M F83 2.1.1, 1984.

See also: either, neither, ifelse.

Source file: <src/lib/math.operators.1-cell.fs>.

arepeat

arepeat (dest cs-id1 orig cs-id2) "a-repeat"

arepeat is part of the assembler absolute-address control-flow structure abegin .. awhile .. arepeat.

See also: rrepeat.

Source file: <src/lib/assembler.fs>.

arg-action

213

arg-action (-- a)

A variable. a holds the execution token of the action performed by the locals defined by arguments.
Its default value is stored in arg-default-action. The content of arg-default-action is copied to arg-
action by arguments, and also every time a local variable is used.

Source file: <src/lib/locals.arguments.fs>.

arg-default-action

arg-default-action (-- a)

A variable. a holds the execution token of the default action performed by the locals defined by
arguments. Its default value is zero, which means "no action" (noop can be used too, but arg-default-
action off is simpler than ' noop arg-defaul-action !).

toarg and +toarg change the content of arg-default-action.

The content of arg-default-action is copied to arg-action by arguments, and also every time a local
variable is used.

See also: arg-action.

Source file: <src/lib/locals.arguments.fs>.

arguments

arguments (i*x +n -- j*x)

Define the number +n of arguments to take from the stack and assign them to the first local
variables from l0 to l9. By default, local variables are manipulated with @, ! and +!, like ordinary
variables. They are returned with results.

Example: The phrase 3 arguments assigns the names of local variables l0 through l9 to ten stack
positions, with l0, l1 and l2 returning the address of the top 3 stack values that were there before 3
arguments was executed. l3 through l9 are zero-filled and the stack pointer is set to just below l9.
After all calculating is done, the phrase 3 results leaves that many results on the stack relative to
the stack position when arguments was executed. All intermediate stack values are lost, which is
good because you can leave the stack "dirty" and it doesn’t matter.

Usage example:

214

: test (length width height -- length' volume surface)
 3 arguments
 l0 @ l1 @ * l5 ! \ surface
 l5 @ l2 @ * l4 ! \ volume
 $2000 l0 +! \ length+$2000
 l4 @ l1 ! \ volume
 l5 @ l2 ! \ surface
 3 results ;

When toarg or +toarg are loaded, they change the default behaviour of locals: Then l0 through l9
return their contents, not their addresses. To write them you precede them with the word toarg. For
example 5 toarg l4 writes a 5 into l4. Execution of l4 returns 5 to the stack. To add a number to a
local variable, you precede it with the word +toarg. For example, 5 +toarg l4 adds 5 to the current
content of l4.

Example:

need toarg need +toarg

: test (length width height -- length' volume surface)
 3 arguments
 l0 l1 * toarg l5 \ surface
 l5 l2 * toarg l4 \ volume
 $2000 +toarg l0 \ add $2000 to length
 l4 toarg l1 \ volume
 l5 toarg l2 \ surface
 3 results ;

The default action of local variables (either return its address or its value) is hold in arg-default-
action, as an execution token.

arguments is a compile-only word.

See also: local, anon.

Source file: <src/lib/locals.arguments.fs>.

array<

array< (a1 n -- a2) "array-from"

Return address a2 of element n of a 1-dimension single-cell array a1.

array< is written in Z80. Its equivalent definition in Forth is the following:

: array< (a1 n -- a2) cells + ;

215

See also: array>, +perform.

Source file: <src/lib/data.array.COMMON.fs>.

array>

array> (n a1 -- a2) "array-to"

Return address a2 of element n of a 1-dimension single-cell array a1. array> is a common factor of
avalue and avariable.

array> is written in Z80. Its equivalent definition in Forth is the following:

: array> (n a1 -- a2) swap cells + ;

See also: 2array>, array<, +perform.

Source file: <src/lib/data.array.COMMON.fs>.

array>items

array>items (a -- n) "array-to-items"

Convert address of array a to its number of items n.

See also: 1array.

Source file: <src/lib/data.array.noble.fs>.

ascii-char?

ascii-char? (c -- f) "ascii-char-question"

Is character c an ASCII character, i.e. in the range 0..126?

See also: graphic-ascii-char?, control-char?.

Source file: <src/lib/chars.fs>.

ascii-ocr

ascii-ocr (--) "ascii-o-c-r"

Set ocr to work with the current ASCII charset, pointed by os-chars.

216

See also: ocr-font, ocr-first, ocr-chars, udg-ocr, set-font.

Source file: <src/lib/graphics.ocr.fs>.

asm

asm (--)

Enter the assembler mode. asm is executed by code and ;code.

Definition:

: asm (--)
 !csp init-asm base @ abase ! hex assembler-wordlist >order ;

See also: end-asm, init-asm, abase, !csp, hex.

Source file: <src/kernel.z80s>.

assembler

assembler (--)

Replace the first word list in the search order with assembler-wordlist, which contains the
assembler words (see the main ones in section Z80 instructions).

need assembler will load the assembler from the library, except the absolute-jump control-flow
structures (aif, athen, aelse, abegin, awhile, auntil, aagain, arepeat), labels (l:, rl#, al#, etc.) macros
(macro, endm) and some specific words (execute-hl,, call-xt,, hook,, prt,).

Origin: Forth-79 (Assembler Word Set), Forth-83 (Assembler Extension Word Set), Forth-94 (TOOLS
EXT), Forth-2012 (TOOLS EXT).

Source file: <src/lib/assembler.fs>.

assembler-wordlist

assembler-wordlist (-- wid)

Return wid, the identifier of the word list that includes the words defined as part of the assembler
(see the main ones in section Z80 instructions).

See also: wordlist, set-order, forth-wordlist, root-wordlist.

Source file: <src/kernel.z80s>.

217

assert(

assert((--) "assert-paren"

Start a normal assertion. Normal assertion are turned on by default. assert(is equivalent to
assert1(.

assert(is an immediate word.

Origin: Gforth.

See also: assert-level, assert0(, assert1(, assert2(, assert3(,).

Source file: <src/lib/tool.debug.assert.fs>.

assert-level

assert-level (-- a)

A variable. a is the address of a cell containing the highest assertions that are turned on (0..3). Its
default value is 1: all assertions above 1 are turned off.

Origin: Gforth.

See also: assert(.

Source file: <src/lib/tool.debug.assert.fs>.

assert0(

assert0((--) "assert-zero"

Start an important assertion. Important assertions should always be turned on.

assert0(is an immediate word.

Origin: Gforth.

See also: assert-level, assert(, assert1(, assert2(, assert3(,).

Source file: <src/lib/tool.debug.assert.fs>.

assert1(

assert1((--) "assert-one"

218

Start a normal assertion. Normal assertions are turned on by default.

assert1(is an immediate word.

Origin: Gforth.

See also: assert-level, assert(, assert0(, assert2(, assert3(,).

Source file: <src/lib/tool.debug.assert.fs>.

assert2(

assert2((--) "assert-two"

Start a debugging assertion.

assert2(is an immediate word.

Origin: Gforth.

See also: assert-level, assert(, assert0(, assert1(, assert3(,).

Source file: <src/lib/tool.debug.assert.fs>.

assert3(

assert3((--) "assert-three"

Start a slow assertion. Slow assertions are those you may not want to turn on in normal debugging;
you would turn them on mainly for thorough checking.

assert3(is an immediate word.

Origin: Gforth.

See also: assert-level, assert(, assert0(, assert1(, assert2(,).

Source file: <src/lib/tool.debug.assert.fs>.

assertn

assertn (n --) "assert-n"

If the contents of assert-level is greater than n, then parse and discard the input stream to the next
right paren (the end of the assertion); else do nothing. assertn is the common factor of assert0(,
assert1(, assert2(, and assert3(.

Origin: Gforth.

219

See also: assert(.

Source file: <src/lib/tool.debug.assert.fs>.

associative-case:

associative-case: ("name" --) "associative-case-colon"

Create an associative case definition "name": name (i*x n -- j*x).

Usage example:

: red ." red" ;
: blue ." blue" ;
: orange ." orange" ;
: pink ." pink" ;
: black ." black" ;

associative-case: color (n --)
 7 red 12 blue 472 orange 15 pink 0 black ;

7 color cr 472 color cr 3000 color cr

n for default must be 0 and the default pair must be last. Numbers can be in any order except 0
must be last. An actual zero or a no match causes the default to be executed. Numbers can’t be
constants.

See also: associative:, associative-list.

Source file: <src/lib/flow.associative-case-colon.fs>.

associative-list

associative-list ("name" --)

Create a new associative list "name".

See also: entry:, centry:, 2entry:, sentry:, item, item?, items, associative:, associative-case:.

Source file: <src/lib/data.associative-list.fs>.

associative:

associative: (n "name" --) "associative-colon"

Create a table lookup name with n entries.

220

An associative memory word. It must be followed by a set of values to be looked up. At runtime, the
values stored in the data field are searched for a match. If a match is made, the index to that value
is returned. If no match is made, then the number of entries is returned. This is the inverse of an
array.

Usage example:

1000 constant zx1
200 constant zx2
30 constant zx3

3 associative: unzx (value -- n) zx1 , zx2 , zx3 ,

1000 unzx . \ prints 0
200 unzx . \ prints 1
30 unzx . \ prints 2

See also: associative-list, associative-case:.

Source file: <src/lib/data.associative-colon.fs>.

at-wxy

at-wxy (--) "at-w-x-y"

Set the cursor coordinates to the current-window cursor coordinates.

See also: wat-xy, at-xy.

Source file: <src/lib/display.window.fs>.

at-x

at-x (col --)

Set the cursor at the given column (x coordinate) col and the current row (y coordinate).

See also: at-y, at-xy, row, column.

Source file: <src/lib/display.cursor.fs>.

at-xy

at-xy (col row --) "at-x-y"

Set the cursor coordinates to column col and row row. The upper left corner is column zero, row

221

zero.

at-xy is a deferred word (see defer) whose default action is mode-32-at-xy.

Origin: Forth-94 (FACILITY), Forth-2012 (FACILITY).

See also: home.

Source file: <src/kernel.z80s>.

at-xy-display-udg

at-xy-display-udg (c col row --) "at-x-y-display-u-d-g"

Display UDG c at cursor coordinates col row. at-xy-display-udg is much faster than using at-xy and
emit-udg, because no ROM routine is used, the cursor coordinates are not updated and the screen
attributtes are not changed (only the character bitmap is displayed).

See also: udg-at-xy-display.

Source file: <src/lib/graphics.udg.fs>.

at-y

at-y (row --)

Set the cursor at the current column (x coordinate) and the given row (y coordinate) row.

See also: at-x, at-xy, row, column.

Source file: <src/lib/display.cursor.fs>.

athen

athen (orig cs-id --) "a-then"

Check the assembler control-structure identifier cs_id, then resolve the location of the unresolved
forward reference orig; both parameters were left by aif or aelse.

athen is part of the assembler absolute-address control-flow structure aif .. aelse .. athen, equivalent
to Forth if .. else .. then.

See also: rthen, ?pairs, >resolve.

Source file: <src/lib/assembler.fs>.

222

ato

ato (x n "name" --) "a-to"

Store x into element n of 1-dimension single-cell values array name.

ato is an immediate word.

See also: avalue, (ato.

Source file: <src/lib/data.array.value.fs>.

attr!

attr! (b --) "attribute-store"

Set b as the current attribute.

See also: attr@, perm-attr!, set-paper, set-ink, set-flash, set-bright.

Source file: <src/lib/display.attributes.fs>.

attr-cls

attr-cls (b --) "attr-c-l-s"

Clear the screen with the attribute b, reset the graphic coordinates at the lower left corner (x 0, y 0)
and reset the cursor position at the top left corner (column 0, row 0).

See also: cls, page, attr-wcls.

Source file: <src/kernel.z80s>.

attr-mask!

attr-mask! (b --) "attribute-mask-store"

Set b as the current attribute mask.

See also: attr-mask@, perm-attr-mask!.

Source file: <src/lib/display.attributes.fs>.

attr-mask@

223

attr-mask@ (-- b) "attribute-mask-fetch"

Get the current attribute mask b.

See also: attr-mask!, perm-attr-mask@.

Source file: <src/lib/display.attributes.fs>.

attr-setter

attr-setter (b "name" --) "attribute-setter"

Create a definition name that, when executed, will set b as the current attribute.

See also: mask+attr-setter.

Source file: <src/lib/display.attributes.fs>.

attr-wcls

attr-wcls (b --) "attr-w-c-l-s"

Clear the current-window with color attribute b and reset its cursor position at the upper left corner
(column 0, row 0).

See also: wcolor, wcls, wblank, whome, clear-rectangle, cls.

Source file: <src/lib/display.window.fs>.

attr>ink

attr>ink (b1 -- b2) "attribute-to-ink"

Convert attribute b1 to its ink color number b2.

attr>ink is written in Z80. Its equivalent definition in Forth is the following:

: attr>ink (b1 -- b2) ink-mask and ;

See also: attr>paper, ink-mask.

Source file: <src/lib/display.attributes.fs>.

224

attr>paper

attr>paper (b1 -- b2) "attribute-to-paper"

Convert attribute b1 to its paper color number b2.

attr>paper is written in Z80. Its equivalent definition in Forth is the following:

: attr>paper (b1 -- b2) paper-mask and 3 rshift ;

See also: attr>ink, papery, paper-mask, rshift.

Source file: <src/lib/display.attributes.fs>.

attr@

attr@ (-- b) "attribute-fetch"

Get the current attribute b.

See also: attr!, perm-attr@.

Source file: <src/lib/display.attributes.fs>.

auntil

auntil (dest cs-id op --) "a-until"

auntil is part of the assembler absolute-address control-flow structure abegin .. auntil.

See also: runtil, (auntil, inverse-cond.

Source file: <src/lib/assembler.fs>.

avalue

avalue (n "name" --) "a-value"

Create a 1-dimension single-cell values array name with n elements and the execution semantics
defined below.

name execution:

name (n — x)

225

Return contents x of element n.

See also: ato, +ato.

Source file: <src/lib/data.array.value.fs>.

avariable

avariable (n "name" --) "a-variable"

Create a 1-dimension single-cell variables array name with n elements and the execution semantics
defined below.

name execution:

name (n — a)

Return address a of element n.

See also: 2avariable, cavariable, faravariable.

Source file: <src/lib/data.array.variable.fs>.

awhile

awhile (op -- orig cs-id) "a-while"

Compile a Z80 assembler absolute-jump instruction op, which was put on the stack by z?, nz?, c?, nc?,
po?, pe?, p?, or m?. Put the location of a forward reference orig onto the stack, to be resolved by
arepeat, and the control-structure identifier cs-id.

awhile is part of the assembler absolute-address control-flow structure abegin .. awhile .. arepeat.

See also: rwhile.

Source file: <src/lib/assembler.fs>.

b

b

b (-- reg)

Return the identifier reg of the Z80 assembler register "B", which is interpreted as register pair "BC"
by assembler words that use register pairs (for example ldp,).

See also: a, c, d, e, h, l, m, ix, iy, sp.

226

Source file: <src/lib/assembler.fs>.

b

b (--)

A command of specforth-editor: Used after f to backup the cursor by the length of the most recent
text hold in pad.

See also: c, d, e, f, h, i, l, m, n, p, r, s, t, x.

Source file: <src/lib/prog.editor.specforth.fs>.

b/buf

b/buf (-- n) "b-slash-buf"

A constant. n is the number of bytes per block buffer: 1024.

Origin: fig-Forth[9], Forth-79 (Reference Word Set), Forth-83 (Uncontrolled Reference Words).

See also: c/l, l/scr.

Source file: <src/kernel.z80s>.

b/sector

b/sector (-- n) "b-slash-sector"

A constant. n is the number of bytes per sector.

See also: sectors/block, sectors/track.

Source file: <src/lib/dos.COMMON.fs>.

backspace

backspace (--)

Emit a backspace character (character code 8).

See also: 'bs'.

Source file: <src/lib/display.control.fs>.

227

backspaces

backspaces (n --)

Emit n number of backspace characters (character code 8).

See also: backspace, 'bs'.

Source file: <src/lib/display.control.fs>.

baden-sqrt

baden-sqrt (n1 -- n2) "baden-square-root"

Integer square root n2 of radicand n1. Original code by Wil Baden, published on Forth Dimensions
(volume 18, number 5, page 27, 1997-01). This method is 7..8 times faster than newton-sqrt.

Loading baden-sqrt makes it the action of sqrt.

See also: (baden-sqrt.

Source file: <src/lib/math.operators.1-cell.fs>.

bank

bank (+n --)

Page in the 16-KiB memory bank +n at $C000 .. $FFFF.

The range of +n depends on the computer:

Table 17. Range of memory banks per computer.

Computer Memory banks

ZX Spectrum 128 0 .. 7

ZX Spectrum +2/+2A/+2B 0 .. 7

ZX Spectrum +3/+3e 0 .. 7

Pentagon 128 0 .. 7

Scorpion ZS 256 0 .. 15

Pentagon 512 0 .. 31

Pentagon 1024 0 .. 63

See also: default-bank, banks, far-banks.

Source file: <src/kernel.z80s>.

228

bank-heap

bank-heap (n b a -- a)

Create a heap of n bytes at address a of bank b. a is the actual address ($C000..$FFFF) when bank b is
paged in, which is stored in heap-bank.

allocate, resize and free page in bank b at the start and restore the default bank at the end.

See also: heap-in, heap-out, allot-heap, limit-heap, farlimit-heap, empty-heap.

Source file: <src/lib/memory.allocate.COMMON.fs>.

bank-index

bank-index (-- ca)

A cvariable. ca is the address of a byte containing the bank index (0 .. 3) calculated by the latest
execution of far.

See also: far-banks, bank, banks.

Source file: <src/kernel.z80s>.

bank-start

bank-start (-- a)

a is the memory address where banks are paged in: $C000.

See also: /bank, bank, banks, far-banks, default-bank.

Source file: <src/lib/memory.far.fs>.

banks

banks (-- n)

A cconstant. n is the number of 16-KiB RAM memory banks:

Table 18. Number of memory banks per computer.

Computer Banks

ZX Spectrum 128 8

ZX Spectrum +2/+2A/+2B 8

229

Computer Banks

ZX Spectrum +3/+3e 8

Pentagon 128 8

Scorpion ZS 256 16

Pentagon 512 32

Pentagon 1024 64

See also: bank, far-banks, default-bank, ram.

Source file: <src/kernel.z80s>.

base

base (-- a)

A user variable. a is the address of a cell containing the current number-conversion radix.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: >number, number?, abase.

Source file: <src/kernel.z80s>.

base'

base' (-- a) "base-tick"

A temporary variable used by <hex, hex>, <bin and bin>. to store the current value of base.

See also: abase.

Source file: <src/lib/display.numbers.fs>.

base-execute

base-execute (xt n --)

Execute xt with the content of base being n and restoring the original base afterwards.

Source file: <src/lib/flow.MISC.fs>.

230

base>

base> (--) "base-from"

Restore the previous value of base from base'. base> is executed by bin> and hex>.

Source file: <src/lib/display.numbers.fs>.

basic-pause

basic-pause (u --)

If u is zero, stop execution until a key is pressed. Otherwise stop execution during at least u clock
ticks, or until a key is pressed.

basic-pause is a convenience that works like Sinclair BASIC’s PAUSE.

See also: ticks-pause, ?ticks-pause, ?seconds, ticks/second.

Source file: <src/lib/time.fs>.

beep

beep (duration pitch --)

Produce a tone in the internal beeper, with parameters that are equivalent to those of the
homonymous Sinclair BASIC command:

duration is in miliseconds (instead of seconds used by BASIC).

pitch is identical to the BASIC parameter: number of semitones from middle C (positive number for
notes above, negative number for notes below).

Here is a diagram to show the pitch values of all the notes in one octave on the piano (extracted
from the manual of the ZX Spectrum +3 transcripted by Russell et al.):

			C#	D#			F#	G#	A#				
			Db	Eb			Gb	Ab	Bb				
-2			1	3			6	8	10			13	15
__	___			___	___			___	___	___			___
 -3 |-1 | 0 | 2 | 4 | 5 | 7 | 9 |11 |12 |14 |16
____|___|___|___|___|___|___|___|___|___|___|____
 C D E F G A B C

Hence, to play the A above middle C for half a second, you would use:

231

500 9 beep

And to play a scale (for example, C major) a complete (albeit short) program is needed:

create scale
 0 c, 2 c, 4 c, 5 c, 7 c, 9 c, 11 c, 12 c,

8 constant /scale

: play-scale (--) /scale 0 ?do
 500 scale i + c@ beep
 loop ;

play-scale

See also: beep>bleep, bleep, beep>dhz.

Source file: <src/lib/sound.48.fs>.

beep>bleep

beep>bleep (duration1 pitch1 -- pitch2 duration2) "beep-to-bleep"

Convert duration1 and pitch1 of beep, which are equivalent to the parameters used by Sinclair
BASIC’s BEEP command, to pitch2 and duration2, which are the parameters required by bleep.

NOTE duration1 is in miliseconds (instead of seconds used by Sinclair BASIC).

pitch1 is identical to the Sinclair BASIC parameter: number of semitones from middle C (positive
number for notes above, negative number for notes below).

See also: beep>dhz, beep>note.

Source file: <src/lib/sound.48.fs>.

beep>dhz

beep>dhz (n -- u) "beep-to-decihertz"

Convert a pitch n of beep to its corresponding frequency in dHz (tenths of hertzs) u.

See also: beep>note, beep>bleep.

Source file: <src/lib/sound.48.fs>.

232

beep>note

beep>note (n1 -- n2 +n3) "beep-to-note"

Convert a pitch n1 of beep to its corresponding note +n3 (0..11) in octave n2, being zero the middle
octave.

See also: -beep>note, +beep>note, beep>dhz, beep>bleep, /octave.

Source file: <src/lib/sound.48.fs>.

begin

begin
 Compilation: (C: -- dest)
 Run-time: (--)

Mark the start of a sequence for repetitive execution, leaving dest to be resolved by the
corresponding until, again or repeat.

begin is an immediate and compile-only alias of <mark.

Definition:

' <mark alias begin immediate compile-only
 \ Compilation: (C: -- dest)
 \ Run-time: (--)

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: while, do.

Source file: <src/kernel.z80s>.

begin-stringtable

begin-stringtable ("name" -- a1 a2)

Start a named stringtable definition "name", returning a1 (containing the address of the strings
index) and a2 (the address of the compiled strings), to be consumed by end-stringtable.

Usage example:

233

begin-stringtable esperanto-number
 s" nulo" s,
 s" unu" s,
 s" du" s,
 s" tri" s,
end-stringtable

0 esperanto-number type
3 esperanto-number type

See also: sconstants.

Source file: <src/lib/data.begin-stringtable.fs>.

begin-structure

begin-structure ("name" -- struct-sys 0)

Parse name. Create a definition for name with the execution semantics defined below. Return a
struct-sys that will be used by end-structure and an initial offset of 0.

name execution: (-- +n)

+n is the size in memory expressed in bytes of the data structure.

Example usage:

begin-structure /record
 field: ~year
 cfield: ~month
 cfield: ~day
end-structure

10 #records
create records #records /record * allot

: record> (n -- a) /record * records + ;
 \ Address _a_ of record _n_.

1887 0 record> ~year ! \ store a year into record 0
 9 record> ~month c@ \ fetch the month from record 9

NOTE
begin-structure and end-structure are not necessary to create a structure. Only the
initial offset 0 is needed at the start, and saving the structure size at the end, e.g.
using a constant or a value:

234

0
 field: ~the-cell
 cfield: ~the-char
constant /record

Origin: Forth-2012 (FACILITY EXT).

See also: end-structure, field:, cfield:, 2field:, +field.

Source file: <src/lib/data.begin-structure.fs>.

bench.

bench. (d --) "bench-dot"

Display the timing result d, which is a number of clock ticks, in ticks and seconds.

See also: bench{, }bench, }bench..

Source file: <src/lib/time.fs>.

benched

benched (xt n -- d)

Execute n times the benchmark xt and return the timer result d.

See also: bench{, }bench, benched..

Source file: <src/lib/time.fs>.

benched.

benched. (xt n -- d) "benched-dot"

Execute n times the benchmark xt and display the result.

See also: bench{, }bench., benched.

Source file: <src/lib/time.fs>.

bench{

bench{ (--) "bench-curly-bracket"

235

Start timing, setting the clock ticks to zero.

See also: }bench, reset-dticks.

Source file: <src/lib/time.fs>.

between

between (n1|u1 n2|u2 n3|u3 -- f)

Perform a comparison of a test value n1|u1 with a lower limit n2|u2 and an upper limit n3|u3,
returning true if either (n2|u2 ⇐ n3|u3 and (n2|u2 ⇐ n1|u1 and n1|u1 ⇐ n3|u3)) or (n2|u2 >
n3|u3 and (n2|u2 < n1|u1 or n1|u1 < n3|u3)) is true, returning false otherwise.

See also: within, polarity.

Source file: <src/lib/math.operators.1-cell.fs>.

between-of

between-of
 Compilation: (C: -- of-sys)
 Run-time: (x1 x2 x3 -- | x1)

A variant of of.

Compilation:

Put of-sys onto the control flow stack. Append the run-time semantics given below to the current
definition. The semantics are incomplete until resolved by a consumer of of-sys, such as endof.

Run-time:

If x1 is not in range x2 x3, as calculated by between, discard x2 x3 and continue execution at the
location specified by the consumer of of-sys, e.g., following the next endof. Otherwise, consume also
x1 and continue execution in line.

between-of is an immediate and compile-only word.

Usage example:

: test (n --)
 case
 1 of ." one" endof
 2 5 between-of ." between two and five" endof
 6 of ." six" endof
 endcase ;

236

See also: case, within-of, (between-of.

Source file: <src/lib/flow.case.fs>.

bin.

bin. (n --) "bin-dot"

Display n as an unsigned binary number, followed by one space.

See also: dec., hex., u., ..

Source file: <src/lib/display.numbers.fs>.

bin>

bin> (--) "end-bin"

End a code zone where binary radix is the default, by restoring the value of base from base'. The
zone was started by <bin.

Source file: <src/lib/display.numbers.fs>.

binary

binary (--)

Set contents of base to two.

See also: decimal, hex.

Source file: <src/lib/display.numbers.fs>.

bit,

bit, (reg b --) "bit-comma"

Compile the Z80 assembler instruction BIT b,reg.

See also: res,, set,, cp#,.

Source file: <src/lib/assembler.fs>.

bit-array

237

bit-array (n "name" --)

Create a bit-array name to hold n bits, with the execution semantics defined below. The bits are
stored in order: array bit 0 is bit 7 of the first byte of the array; array bit 7 is bit 0 of the first byte of
the array; array bit 8 is bit 7 of the second byte of the array; array bit 15 is bit 0 of the second byte of
the array, etc.

name (n — b ca)

Return bitmak b and address ca of bit n of the array.

See also: @bit, !bit, bits>bytes, bitmasks.

Source file: <src/lib/data.array.bit.fs>.

bit>mask

bit>mask (n -- b) "bit-to-mask"

Convert bit number n to a bitmask b with bit n set.

See also: bit?, set-bit, reset-bit.

Source file: <src/lib/memory.MISC.fs>.

bit?

bit? (b n -- f) "bit-question"

Is bit n of b set?

See also: bit?, set-bit, bit>mask.

Source file: <src/lib/memory.MISC.fs>.

bitmasks

bitmasks (-- ca)

Address of an 8-byte table containing the bitmasks for bits 0..7 as used by bit-array.

Source file: <src/lib/data.array.bit.fs>.

bits

238

bits (ca len -- u)

Count the number u of bits that are set in memory zone ca len.

See also: pixels.

Source file: <src/lib/math.operators.1-cell.fs>.

bits>bytes

bits>bytes (n1 -- n2) "bits-to-bytes"

Return the number of bytes n2 needed to hold n1 bits. Used by bit-array.

Source file: <src/lib/data.array.bit.fs>.

bitx,

bitx, (disp regpi b --) "bit-x-comma"

Compile the Z80 assembler instruction BIT b,(regpi+disp).

See also: resx,, setx,, cpx,.

Source file: <src/lib/assembler.fs>.

bl

bl (-- c) "b-l"

A cconstant. c is the character value for a space.

Because space is used throughout Forth as the standard delimiter, bl is the only way a program has
to find and use the character value of a space.

See also: space, emit.

Source file: <src/kernel.z80s>.

black

black (-- b)

A cconstant that returns 0, the value that represents the black color.

239

See also: blue, red, magenta, green, cyan, yellow, white, contrast, papery, inversely.

Source file: <src/lib/display.attributes.fs>.

blackout

blackout (--)

Erase the screen (bitmap and the attributes) with zeros.

See also: fade-display, cls, attr-cls.

Source file: <src/lib/graphics.display.fs>.

blank

blank (ca len --)

If len is greater than zero, store the character value for space (bl) in len consecutive character
positions of memory beginning at ca.

Origin: Forth-94 (STRING), Forth-2012 (STRING).

Source file: <src/kernel.z80s>.

bleep

bleep (duration pitch --)

Produce a tone in the internal beeper.

bleep calls the BEEPER ROM routine with pitch in the HL register and duration in the DE register.

240

(…) but while there is greater flexibility than is directly available in BASIC
the system is more difficult to use. Precalculation is necessary to obtain
musical scales, on the following basis:

To generate a frequency of F Hz, pitch must be set to:

pitch = (437500/F)-30

Looking in the opposite direction:

F = 437500/(pitch+30)

The duration of the note is determined as a number of cycles, so duration
must be set to F x T, where T is the duration in seconds.

A point to note is that if a very low frequency is selected, with a high
duration, the system may appear to hang up, because the BEEPER ROM
routine goes on and on…; whithout the user being able to use BREAK.

— Don Thomasson, Spectrum Advanced Forth (Melbourne House, 1984), page 26

241

Output a square wave of given duration and frequency to the loudspeaker.

Enter with:

• DE = #cycles - 1

• HL = tone period as described next

The tone period is measured in T states and consists of three parts: a coarse
part (H register), a medium part (bits 7..2 of L) and a fine part (bits 1..0 of L)
which contribute to the waveform timing as follows:

 coarse medium fine
duration of low = 118 + 1024*H + 16*(L>>2) + 4*(L&$3)
duration of hi = 118 + 1024*H + 16*(L>>2) + 4*(L&$3)
Tp = tone period = 236 + 2048*H + 32*(L>>2) + 8*(L&$3)
 = 236 + 2048*H + 8*L = 236 + 8*HL

As an example, to output five seconds of middle C (261.624 Hz):

1. Tone period = 1/261.624 = 3.822ms

2. Tone period in T-States = 3.822ms*fCPU = 13378 (where fCPU = clock
frequency of the CPU = 3.5MHz)

3. Find H and L for desired tone period: HL = (Tp - 236) / 8 = (13378 - 236) / 8
= 1643 = $066B

4. Tone duration in cycles = 5s/3.822ms = 1308 cycles

5. DE = 1308 - 1 = $051B

The resulting waveform has a duty ratio of exactly 50%.

— Dr. Ian Logan, Dr. Frank O'Hara et al., ZX Spectrum disassembly

See also: hz>bleep, dhz>bleep, beep.

Source file: <src/lib/sound.48.fs>.

blk

blk (-- a) "b-l-k"

A user variable. a is the address of a cell containing zero or the number of the disk block being
interpreted. If blk contains zero, the input source is not a block and can be identified by source-id.

242

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (BLOCK),
Forth-2012 (BLOCK).

See also: load, loading?, ?loading.

Source file: <src/kernel.z80s>.

blk-line

blk-line (-- ca len)

Return the current line ca len of the block being interpreted. No check is done whether any block is
actually being interpreted.

See also: blk, block, >in/l, ->in/l, c/l.

Source file: <src/lib/tool.list.blocks.fs>.

block

block (u -- a)

If the block u is already in memory, leave the address a of the first cell in the disk buffer for data
storage.

If the block u is not already in memory, transfer it from disk to the buffer. If the block occupying
that buffer has been marked as updated, rewrite it to disk before block u is read into the buffer.
Finally leave the address a of the first cell in the disk buffer for data storage.

Definition:

: block (u -- a)
 dup buffer-block =
 if drop
 else save-buffers dup read-block disk-buffer !
 then buffer-data ;

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: buffer-block, save-buffers, read-block, disk-buffer, buffer-data.

Source file: <src/kernel.z80s>.

block-chars

243

block-chars (--)

A phoney word used only to do need block-chars. The loading of the correspondent source block
will define characters 128..143 as block characters, with the shape they have in Sinclair BASIC. The
current value of os-udg is used.

See also: make-block-chars, set-udg, udg!, default-udg-chars.

Source file: <src/lib/graphics.udg.fs>.

block-drive!

block-drive! (c n --) "block-drive-store"

Set drive c (DOS dependent) as block drive number n (0 index).

See also: block-drive@, set-block-drives.

Source file: <src/lib/dos.COMMON.fs>.

block-drive@

block-drive@ (n -- c) "block-drive-fetch"

Get drive c (DOS dependent) currently used as block drive number n (0 index).

See also: block-drive!, get-block-drives.

Source file: <src/lib/dos.COMMON.fs>.

block-drives

block-drives (-- ca)

ca is the address of a character table that holds the disk drives used as block drives. This table can
be configured manually or using set-block-drives.

The length of the table is max-drives. The first element of the table (offset 0) is the disk drive used
for blocks from number 0 to number blocks/disk 1-; the second element of the table (offset 1) the
disk drive used for blocks from number blocks/disk to number blocks/disk 2 * 1-; and so on.

The number of used block drives is hold in #block-drives.

The block ranges not associated to disk drives are marked with $FF (the not-block-drive optional
constant is provided for convenience), and all of them should be at the end of the table. In theory
it’s possible to define gaps in the whole range of blocks associated to disk drives, but this would

244

cause trouble with set-block-drives and get-block-drives, which use #block-drives as the drives
count from the start of block-drives.

The default configuration of block-drives is: use only the first disk drive for blocks.

Source file: <src/lib/dos.COMMON.fs>.

block-indexed

block-indexed (block --)

Mark block block as indexed.

See also: use-fly-index.

Source file: <src/lib/blocks.indexer.fly.fs>.

block-sector#>dos

block-sector#>dos (n -- x) "block-sector-number-sign-to-dos"

Convert the sequential disk sector n of a block disk to the disk sector id x, in the format required by
TR-DOS: The high byte of x is the track (0..79 for side 0; 80..159 for side 1); its low byte is the sector
(0..15).

In TR-DOS, the first track of a block disk cannot be used for blocks.

Definition:

: block-sector#>dos (n -- x) sectors/track + sector#>dos ;

See also: sectors/track, sector#>dos, transfer-block.

Source file: <src/kernel.trdos.z80s>.

block>source

block>source (u --) "block-to-source"

Set block u as the current source.

Definition:

: block>source (u --) blk ! >in off ;

245

See also: terminal>source, blk, >in, set-source, lineblock>source.

Source file: <src/kernel.z80s>.

block?

block? (u -- f) "block-question"

f is true if u is a valid block number.

Definition:

: block? (u -- f) max-blocks u< ;

Source file: <src/kernel.z80s>.

blocks/disk

blocks/disk (-- n) "blocks-slash-disk"

A constant. n is the number of blocks per disk.

See also: sectors/block, sectors/track.

Source file: <src/kernel.z80s>.

blue

blue (-- b)

A cconstant that returns 1, the value that represents the blue color.

See also: black, red, magenta, green, cyan, yellow, white, contrast, papery, inversely.

Source file: <src/lib/display.attributes.fs>.

body>

body> (dfa -- xt) "body-from"

Convert dfa into its correspoding xt.

See also: >body, body>name.

Source file: <src/lib/compilation.fs>.

246

body>name

body>name (dfa -- nt|0) "body-to-name"

Try to find the name token nt of the word represented by data field address dfa. Return 0 if it fails.

NOTE

body>name searches all word lists, from newest to oldest; and the searching of every
word list is done also from the newest to the oldest definition. The first header
whose execution token pointer contains the xt associated to dfa is a match.
Therefore, when a word has additional headers created by alias or synonym, the nt
of its latest alias or synonym is found first.

See also: name>body, link>name, >name.

Source file: <src/lib/compilation.fs>.

boot

boot (--)

A deferred word (see defer) executed by abort. By default it does nothing. It is changed by turnkey.

See also: cold.

Source file: <src/kernel.z80s>.

border

border (n --)

Set the border of the screen to color to n. Only the 3 lower bits of n are used (for colors 0 .. 7).

Source file: <src/kernel.z80s>.

bounds

bounds (ca len -- ca2 ca)

Convert the string identifier ca len to ca2 ca, being ca2 the address after the last character of the
string. ca2 ca are the parameters needed by do or ?do to traverse the string ca len.

bounds is written in Z80. Its equivalent definition in Forth is the following:

: bounds (ca len -- ca2 ca) over + swap ;

247

Origin: Comus.

See also: count.

Source file: <src/kernel.z80s>.

branch

branch (--)

The run-time procedure to branch unconditionally. The following in-line address is copied to IP to
branch forward or backward.

Origin: Forth-83 (System Extension Word Set).

See also: ?branch, 0branch, -branch, +branch.

Source file: <src/kernel.z80s>.

break-key?

break-key? (-- f) "break-key-question"

f is true if the break key is pressed. break-key? is a deferred word (see defer) whose default action is
default-break-key?.

See also: key?.

Source file: <src/kernel.z80s>.

bright-mask

bright-mask (-- b)

A cconstant. b is the bitmask of the bit used to indicate the bright status in an attribute byte.

See also: unbright-mask, brighty, set-bright, attr!, flash-mask, paper-mask, ink-mask.

Source file: <src/lib/display.attributes.fs>.

bright.

bright. (n --) "bright-dot"

Set bright n by printing the corresponding control characters. If n is zero, turn bright off; if n is one,
turn bright on; if n is eight, set transparent bright. Other values of n are converted as follows:

248

• 2, 4 and 6 are converted to 0.

• 3, 5 and 7 are converted to 1.

• Values greater than 8 or less than 0 are converted to 8.

bright. is much slower than set-bright or attr!, but it can handle pseudo-color 8 (transparent),
setting the corresponding system variables accordingly.

See also: flash., (0-1-8-color..

Source file: <src/lib/display.attributes.fs>.

brighty

brighty (b1 -- b2)

Convert attribute b1 to its brighty equivalent b2.

brighty is written in Z80. Its equivalent definition in Forth is the following:

: brighty (b1 -- b2) bright-mask or ;

See also: bright-mask, papery, flashy, inversely.

Source file: <src/lib/display.attributes.fs>.

buffer

buffer (u -- a)

Assign the block buffer to block u. If the contents of the buffer were marked as updated, it is written
to the disk. The block u is not read from the disk. The address a left on stack is the first cell in the
buffer for data storage.

Definition:

: buffer (u -- a)
 dup buffer-block =
 if drop else free-buffer then buffer-data ;

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: buffer-block, free-buffer, buffer-data.

Source file: <src/kernel.z80s>.

249

buffer-block

buffer-block (-- n)

Return the block n associated with the disk buffer.

: buffer-block ( — n) buffer-id $7FFF literal and ; ---

See also: buffer-id, buffer, block.

Source file: <src/kernel.z80s>.

buffer-data

buffer-data (-- ca)

A constant. ca is the address of the disk buffer data.

See also: disk-buffer, b/buf.

Source file: <src/kernel.z80s>.

buffer-id

buffer-id (-- x) "buffer-i-d"

x is the identifier of the disk buffer.

See also: disk-buffer.

Source file: <src/kernel.z80s>.

buffer:

buffer: (u "name" --) "buffer-colon"

Define a named uninitialized buffer as follows: Reserve u bytes of data space. Create a definition for
name that will return the address of the space reserved by buffer: when it defined name. The
program is responsible for initializing the contents.

Origin: Forth-2012 (CORE EXT).

See also: reserve, allotted, create, allot.

Source file: <src/lib/data.MISC.fs>.

250

bye

bye (--)

Return control to the host OS.

Definition:

: bye (--) save-mode default-mode (bye ;

Origin: Forth-94 (TOOLS EXT), Forth-2012 (TOOLS EXT).

See also: save-mode, default-mode, (bye, warm, cold.

Source file: <src/kernel.z80s>.

byte?

byte? (x -- f) "byte-question"

f is true if x is an 8-bit number. Used by xliteral.

Source file: <src/kernel.z80s>.

c

c

c (-- reg)

Return the identifier reg of the Z80 assembler register "C".

See also: a, b, d, e, h, l, m, ix, iy, sp.

Source file: <src/lib/assembler.fs>.

c

c (n --)

A command of gforth-editor: Move cursor by n chars.

See also: a, g, n, p, t.

251

Source file: <src/lib/prog.editor.gforth.fs>.

c

c ("ccc<eol>" --)

A command of specforth-editor: Copy in ccc to the cursor line at the cursor position.

See also: b, d, e, f, h, i, l, m, n, p, r, s, t, x, (c, text.

Source file: <src/lib/prog.editor.specforth.fs>.

c!

c! (c ca --) "c-store"

Store c at ca.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: !, 2!, c@.

Source file: <src/kernel.z80s>.

c!>

c!>
 Interpretation: (c "name" --)
 Compilation: ("name" --)
 Run-time: (c --)
"c-store-to"

A simpler and faster alternative to standard to and value.

c!> is an immediate word.

Interpretation:

Parse name, which is the name of a word created by cconstant or cconst, and make c its value.

Compilation:

Parse name, which is a word created by cconstant or cconst, and append the run-time semantics
given below to the current definition.

Run-time:

252

Make c the current value of the character constant name.

Origin: IsForth’s !>.

See also: !>, 2!>.

Source file: <src/lib/data.store-to.fs>.

c!a

c!a (c --) "c-fetch-a"

Store c at the address register.

See also: a, c@a.

Source file: <src/lib/memory.address_register.fs>.

c!a+

c!a+ (c --) "c-store-a-plus"

Store c at the address register and increment the address register by one address unit.

See also: a, c@a+.

Source file: <src/lib/memory.address_register.fs>.

c!bank

c!bank (c ca n --) "c-store-bank"

Store c into address ca ($C000..$FFFF) of bank n.

c!bank is written in Z80. Its equivalent definition in Forth is the following:

: c!bank (c ca n --) bank c! default-bank ;

See also: c@bank, !bank.

Source file: <src/lib/memory.far.fs>.

c!exchange

c!exchange (c1 ca -- c2) "c-store-exchange"

253

Store c1 into ca and return its previous contents c2.

c!exchange is written in Z80. An equivalent definition in Forth is the following:

: c!exchange (c1 ca -- c2) dup c@ rot rot c! ;

See also: !exchange, cexchange.

Source file: <src/lib/memory.MISC.fs>.

c"

c"
 Compilation: ("ccc<quote>" --)
 Run-time: (-- ca)
"c-quote"

Parse a string ccc delimited by double quotes and compile it into the current definition. At run-time
the string will be returned as a counted string ca.

c" is an immediate and compile-only word.

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: csliteral.

Source file: <src/lib/strings.c-quote.fs>.

c#

c# ("name" -- c) "c-number-sign"

Parse name and return the code c of the its first character.

c# is a short and state-smart alternative to the standard words char and [char].

c# is an immediate word.

WARNING c# is a state-smart word (see: state).

Source file: <src/lib/math.number.prefix.fs>.

c+!

c+! (c ca -) "c-plus-store"

254

Add c to the character stored at ca

See also: c-!, c1+!, +!.

Source file: <src/lib/memory.MISC.fs>.

c,

c, (c --) "c-comma"

Reserve space for one character in the data space and store c in the space.

Definition:

: c, (c --) here c! 1 allot ;

Origin: fig-Forth, Forth-79 (Reference Word Set), Forth-83 (Controlled Reference Words), Forth-94
(CORE), Forth-2012 (CORE).

See also: ,, 2,, here, c!, allot.

Source file: <src/kernel.z80s>.

c-!

c-! (c ca -) "c-minus-store"

Subtract c from the character stored at ca

See also: c+!, c1-!, -!.

Source file: <src/lib/memory.MISC.fs>.

c/l

c/l (-- b) "c-slash-l"

A cconstant. b is the number of characters per line in a block source: 64.

See also: l/scr.

Source file: <src/kernel.z80s>.

c1+!

255

c1+! (ca -) "c-one-plus-store"

Increment the character stored at ca.

See also: c1-!, c+!, 1+!.

Source file: <src/lib/memory.MISC.fs>.

c1-!

c1-! (ca -) "c-one-minus-store"

Decrement the character stored at ca.

See also: ?c1-!, c1+!, c-!, 1-!.

Source file: <src/lib/memory.MISC.fs>.

c?

c? (-- op) "c-question"

Return the opcode op of the Z80 assembler instruction jp c, to be used as condition and consumed
by ?ret,, ?jp,, ?call,, ?jr,, aif, rif, awhile, rwhile, auntil or runtil.

See also: z?, nz?, nc?, po?, pe?, p?, m?.

Source file: <src/lib/assembler.fs>.

c?

c? (ca --) "c-question"

Display the 1-byte unsigned integer stored at ca, using the format of ..

See also: ?, 2?, c@.

Source file: <src/lib/memory.MISC.fs>.

c@

c@ (ca -- c) "c-fetch"

Fetch the character c stored at ca.

256

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: @, 2@, c!, c@1+, c@1-, c@2+, c@2-.

Source file: <src/kernel.z80s>.

c@+

c@+ (ca -- ca' c) "c-fetch-plus"

Fetch the character c at ca. Return ca', which is ca incremented by one character. This is handy for
stepping through character arrays.

c@+ is an alias of count.

See also: c@, 2@+, @+.

Source file: <src/lib/memory.MISC.fs>.

c@1+

c@1+ (ca -- c) "c-fetch-one-plus"

Fetch the character stored at ca, add 1 to it, according to the operation of +, giving c.

c@1+ is a faster alternative to c@ 1+.

See also: c@1-, c@2+, c@, 1+.

Source file: <src/lib/memory.MISC.fs>.

c@1-

c@1- (ca -- c) "c-fetch-one-minus"

Fetch the character stored at ca, subtract 1 from it, according to the operation of -, giving c.

c@1- is a faster alternative to c@ 1-.

See also: c@1+, c@2-, c@, 1-.

Source file: <src/lib/memory.MISC.fs>.

c@2+

257

c@2+ (ca -- c) "c-fetch-two-plus"

Fetch the character stored at ca, add 2 to it, according to the operation of +, and return the result c.

c@2+ is a faster alternative to c@ 2+.

See also: c@2-, c@1+, c@, 2+.

Source file: <src/lib/memory.MISC.fs>.

c@2-

c@2- (ca -- c) "c-fetch-two-minus"

Fetch the character stored at ca, subtract 2 from it, according to the operation of -, and giving c.

c@2- is a faster alternative to c@ 2-.

See also: c@2+, c@1-, c@, 2-.

Source file: <src/lib/memory.MISC.fs>.

c@a

c@a (-- c) "c-fetch-a"

Fetch the character c stored at the address register.

See also: a, c!a.

Source file: <src/lib/memory.address_register.fs>.

c@a+

c@a+ (-- c) "c-fetch-a-plus"

Fetch character c stored at the address register and increment the address register by one address
unit.

See also: a, c!a+.

Source file: <src/lib/memory.address_register.fs>.

c@and

258

c@and (b1 ca -- b2) "c-fetch-and"

Fetch the caracter at ca and do a bit-by-bit logical and of it with b1, returning the result b2.

See also: c@and?, ctoggle, cset, creset.

Source file: <src/lib/memory.MISC.fs>.

c@and?

c@and? (b ca -- f) "c-fetch-and-question"

Fetch the caracter at ca and do a bit-by-bit logical "and" of it with b. Return false if the result is zero,
else true.

c@and is written in Z80. Its equivalent definition in Forth is the following:

: c@and? (b ca -- f) c@ and 0<> ;

See also: c@and.

Source file: <src/kernel.z80s>.

c@bank

c@bank (ca n -- c) "c-fetch-bank"

Fetch c from address ca ($C000..$FFFF) of bank n.

c@bank is written in Z80. Its equivalent definition in Forth is the following:

: c@bank (ca n -- c)
 bank c@ default-bank ;

See also: c!bank, @bank.

Source file: <src/lib/memory.far.fs>.

calculator

calculator (--)

Start compilation of ROM calculator commands: Add calculator-wordlist to the search order and

259

compile the following assembly instructions to start the ROM calculator:

push bc ; save the Forth IP
rst $28 ; call the ROM calculator

See also: end-calculator.

Source file: <src/lib/math.calculator.fs>.

calculator-command

calculator-command (b --)

Compile the assembly instructions needed to execute the b command of the ROM calculator.

See also: end-calculator-flag.

Source file: <src/lib/math.floating_point.rom.fs>.

calculator-command>flag

calculator-command>flag (b --) "calculator-command-to-flag"

Compile the assembly instructions needed to execute the b command of the ROM calculator and to
return the floating-point result as a flag on the data stack.

Source file: <src/lib/math.floating_point.rom.fs>.

calculator-wordlist

calculator-wordlist (-- wid)

The word list that contains the calculator commands.

Source file: <src/lib/math.calculator.fs>.

call

call (a --)

Call a machine code subroutine at a.

See also: execute-hl,, call-xt,.

Source file: <src/lib/flow.MISC.fs>.

260

call,

call, (a --) "call-comma"

Compile the Z80 opcode to call a.

Definition:

: call, (a --) $CD c, , ;

See also: jp,.

Source file: <src/kernel.z80s>.

call-xt,

call-xt, (xt --) "call-x-t-comma"

Compile a Z80 assembler call to xt, by compiling the Z80 instruction that loads the HL register with
xt, and then executing execute-hl, to compile the rest of the necessary code.

call-xt, is the low-level equivalent of execute: it’s used to call a colon word from a code word.

See also: call, call,.

Source file: <src/lib/assembler.fs>.

capslock

capslock (-- b ca)

Return address ca of system variable FLAGS2 and bitmask b of the bit that controls the status of
capslock.

See also: set-capslock, unset-capslock, capslock?, os-flags2.

Source file: <src/lib/keyboard.caps_lock.fs>.

capslock?

capslock? (-- f)

Is capslock set?

See also: set-capslock, unset-capslock, toggle-capslock, capslock, c@and?.

261

Source file: <src/lib/keyboard.caps_lock.fs>.

case

case
 Compilation: (C: -- case-sys)
 Run-time: (--)

Compilation: Mark the start of a case … endcase structure.

Run-time: Continue execution.

case is an immediate and compile-only word.

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: of, endof, default-of, less-of, greater-of, between-of, within-of, or-of, any-of, cond, thens.

Source file: <src/lib/flow.case.fs>.

case-sensitive

case-sensitive (-- a)

A variable. a is the address of a cell containing a flag that turns case-sensitive mode on and off.

When the contents of case-sensitive are zero, case-sensitive mode is off (this is the default): the
name of new words defined will be stored in lowercase into the dictionary; and any name searched
for in the dictionary will be converted to lowercase first (the conversion is done at low level, not
affecting the name string passed as parameter).

When the contents of case-sensitive are non-zero, case-sensitive mode is on: the name of new
words defined will be stored as they are parsed from the input stream, without modification; and
any name searched for in the dictionary will not be modified, therefore it will be found only if it’s
identical to the name stored in the definition header.

WARNING
Words that are defined when case-sensitive mode is on, and that have
uppercase characters in their names, will not be found when case-sensitive
mode is off.

Source file: <src/kernel.z80s>.

case-sensitive-esc-chars

case-sensitive-esc-chars (-- a)

262

A variable. a is the address of a cell containing a flag that turns case-sensitive mode on and off only
during the parsing of escaped strings, e.g. s\" and .\". The contents of this variable are temporarily
stored into case-sensitive by parse-esc-string. The current contents of case-sensitive are
preserved and restored at the end.

When the contents of case-sensitive are non-zero, escaped characters case-sensitive mode is on
(this is the default): any escaped character searched for in the configured word list will not be
modified, therefore it will be found only if it’s identical to the name stored in the definition header.

When the contents of case-sensitive-esc-chars are zero, escaped characters case-sensitive mode is
off: any escaped character searched for in the correspondent word list will be converted to
lowercase first (the conversion is done at low level, not affecting the name string passed as
parameter).

NOTE
In order to create upper-case case-sensitive escaped chars, their correspondent
words must be created when case-sensitive is on. See the words defined in esc-udg-
chars-wordlist.

Source file: <src/lib/strings.escaped.fs>.

case>

case> (orig counter selector "name" -- orig counter') "case-from"

Compile an option into a cases: structure. The given selector will cause the word name to be
executed.

See cases: for an usage example.

Source file: <src/lib/flow.cases-colon.fs>.

cases:

cases: ("name" -- orig 0) "cases-colon"

Define a cases: structure "name", built as an array of pairs (value and associated vector).

Usage example:

263

: say-10 ." dek" ;
: say-100 ." cent" ;
: say-1000 ." mil" ;
: say-other ." alia" ;

cases: say (n --)
 10 case> say-10
 100 case> say-100
 1000 case> say-1000
 othercase> say-other

10 say 100 say 1000 say 1001 say

Source file: <src/lib/flow.cases-colon.fs>.

cat

cat (--)

Show a disk catalogue of the current drive.

See also: acat, ?cat-fda, cat-fda, set-drive.

Source file: <src/lib/dos.trdos.fs>.

cat-fda

cat-fda (n --) "cat-f-d-a"

Display catalogue entry n of the current drive. The entry is already stored in fda.

cat-fda is a factor of ?cat-fda.

See also: .fda-filename, fda-basic?.

Source file: <src/lib/dos.trdos.fs>.

catch

catch (i*x xt -- j*x 0 | i*x n)

Push an exception frame on the exception stack and then execute xt (as with execute) in such a way
that control can be transferred to a point just after catch if throw is executed during the execution of
xt.

If the execution of xt completes normally (i.e., the exception frame pushed by this catch is not

264

popped by an execution of throw) pop the exception frame and return zero on top of the data stack,
above whatever stack items would have been returned by the execution of xt. Otherwise, the
remainder of the execution semantics are given by throw.

Solo Forth uses the return stack as exception stack. An exception frame includes the source
specification saved by nest-source, the stack pointer returned by sp@ and the contents of the
previous catcher, which item is pointed by catcher.

Origin: Forth-94 (EXCEPTION), Forth-2012 (EXCEPTION).

Source file: <src/lib/exception.fs>.

catcher

catcher (-- a)

A user variable. a is the address of a cell containing the return stack pointer for error handling.
Used by throw and catch.

Source file: <src/kernel.z80s>.

cato

cato (c n "name" --) "c-a-to"

Store c into element n of 1-dimension character values array name.

cato is an immediate word.

See also: cavalue, (cato.

Source file: <src/lib/data.array.value.fs>.

cavalue

cavalue (n "name" --) "c-a-value"

Create a 1-dimension character values array name with n elements and the execution semantics
defined below.

name execution:

name (n — c)

Return contents c of element n.

See also: cato, +cato.

265

Source file: <src/lib/data.array.value.fs>.

cavariable

cavariable (n "name" --) "c-a-variable"

Create a 1-dimension character variables array name with n elements and the execution semantics
defined below.

name execution:

name (n — ca)

Return address ca of element n.

See also: avariable, 2avariable, farcavariable.

Source file: <src/lib/data.array.variable.fs>.

ccase

ccase "c-case"
 Compilation: (C: -- orig1 orig2)
 Run-time: (c ca len --)

Start a ccase..endccase structure. If c is in the string ca len, execute the n-th word compiled after
ccase, where n is the position of the first c in the string (0..len-1) plus 1, then continue after endccase.
If c is not in ca len, execute the word compiled right before endccase, then continue after endccase.

ccase is an immediate and compile-only word.

Usage example:

: .a (--) ." Letter A" ;
: .b (--) ." Letter B" ;
: .c (--) ." Letter C" ;
: .nope (--) ." Nope!" ;

: letter (c --)
 s" abc" ccase .a .b .c .nope endccase
 ." The End" cr ;

See also: ccase0, ?ccase.

Source file: <src/lib/flow.ccase.fs>.

266

ccase0

ccase0 "c-case-zero"
 Compilation: (C: -- orig)
 Run-time: (c ca len --)

Start a ccase0..endccase structure. If c is in the string ca len, execute the n-th word compiled after
ccase0, where n is the position of the first c in the string (0..len-1) plus 1, then continue after
endccase0. If c is not in ca len, execute the word compiled right after ccase0, then continue after
endccase0.

ccase0 is an immediate and compile-only word.

Usage example:

: .a (--) ." Letter A" ;
: .b (--) ." Letter B" ;
: .c (--) ." Letter C" ;
: .nope (--) ." Nope!" ;

: letter (c --)
 s" abc" ccase0 .nope .a .b .c endccase0
 ." The End" cr ;

See also: ccase ?ccase.

Source file: <src/lib/flow.ccase.fs>.

ccf,

ccf, (--) "c-c-f-comma"

Compile the Z80 assembler instruction CCF.

See also: cpl,, scf,, neg,, bit,, set,, cp,.

Source file: <src/lib/assembler.fs>.

cconst

cconst (c "name" --) "c-const"

Create a character fast constant name, with value c.

A character fast constant works like an ordinary cconstant, except its value is compiled as a literal.

267

Origin: IsForth’s const.

See also: [cconst], const, 2const.

Source file: <src/lib/data.const.fs>.

cconstant

cconstant (c "name" --) "c-constant"

Parse name. Create a definition for name that will place c on the stack. name is referred to as a "c-
constant".

Origin: Comus.

See also: constant, 2constant, c!>, cconst, [cconst], cvalue, cvariable.

Source file: <src/kernel.z80s>.

cell

cell (-- n)

n is the size in bytes of one cell. cell returns 2 in Solo Forth.

Origin: Comus.

See also: cells, cell+, cell-, cell/, cell-bits.

Source file: <src/kernel.z80s>.

cell+

cell+ (a1 -- a2) "cell-plus"

Add the size in bytes of a cell to a1, giving a2.

Origin: Forth-94 (CORE), Forth-2012 (CORE).

See also: cell, cells, cell-, cell/.

Source file: <src/kernel.z80s>.

cell-

cell- (a1 -- a2) "cell-minus"

268

Subtract the size in bytes of a cell from a1, giving a2.

Origin: Comus.

See also: cell, cell+, cells, cell/.

Source file: <src/kernel.z80s>.

cell-bits

cell-bits (-- n)

A cconstant. n is the number of bits in a cell.

See also: cell, environment?.

Source file: <src/lib/math.number.conversion.fs>.

cell/

cell/ (n1 -- n2) "cell-slash"

Divide n1 by the size of a cell, returning the result n2.

See also: cell, cells, cell+, cell-.

Source file: <src/lib/math.operators.1-cell.fs>.

cells

cells (n1 -- n2)

n2 is the size in bytes of n1 cells.

Origin: Forth-94 (CORE), Forth-2012 (CORE).

See also: cell, cell+, cell-, cell/.

Source file: <src/kernel.z80s>.

centry:

centry: (c wid "name" --) "c-entry-colon"

Create a character entry name in the associative-list wid, with value c.

269

See also: entry:, 2entry:, sentry:, create-entry.

Source file: <src/lib/data.associative-list.fs>.

cenum

cenum (n "name" -- n+1) "c-enum"

Create a cconstant name with value n and return n+1.

Usage example:

0 cenum first
 cenum second
 cenum third
 cenum fourth
drop

See also: enum, enumcell.

Source file: <src/lib/data.MISC.fs>.

cexchange

cexchange (ca1 ca2 --) "c-exchange"

Exchange the characters stored in ca1 and ca2.

cexchange is written in Z80. An equivalent definition in Forth is the following:

: cexchange (ca1 ca2 --) 2dup c@ swap c@ rot c! swap c! ;

See also: exchange, c!exchange.

Source file: <src/lib/memory.MISC.fs>.

cfield:

cfield: (n1 "name" -- n2) "c-field-colon"

Parse name. offset is the first character aligned value greater than or equal to n1. n2 = offset + 1
character.

Create a definition for name with the execution semantics defined below.

270

name execution: (a1 -- a2)

Add the offset calculated during the compile-time action to a1 giving the address a2.

Origin: Forth-2012 (FACILITY EXT).

See also: begin-structure, +field.

Source file: <src/lib/data.begin-structure.fs>.

chan>

chan> (n -- a) "chan-to"

Convert channel offset n in os-chans, fetched from an element of os-strms, to its address a.

See also: chan>id, os-chans.

Source file: <src/lib/os.fs>.

chan>id

chan>id (n -- c) "chan-to-id"

Convert channel offset n in os-chans, fetched from an element of os-strms, to its character identifier
c.

See also: chan>, os-chans.

Source file: <src/lib/os.fs>.

change-octave

change-octave (u n -- u')

Change the note frequency u of the middle octave (octave zero) to its corresponding note frequency
u' in octave n. If n is zero, u' equals u.

See also: octave-changer, beep>dhz, middle-octave.

Source file: <src/lib/sound.48.fs>.

channel

channel (n --)

271

Open channel n for output. Store n into current-channel.

See also: terminal, printer, printing.

Source file: <src/kernel.z80s>.

char

char ("name" -- c)

Parse name and put the value of its first character on the stack.

Solo Forth recognizes the standard notation for characters, so char is not needed:

'x' emit .(equals) char x emit

Origin: Forth-94 (CORE), Forth-2012 (CORE).

See also: [char].

Source file: <src/lib/parsing.fs>.

char+

char+ (n1 -- n2) "char-plus"

Add the size in bytes of a character to n1, giving n2.

char+ is an alias of 1+.

Origin: Forth-94 (CORE), Forth-2012 (CORE).

See also: char-, chars.

Source file: <src/kernel.z80s>.

char-

char- (n1 -- n2) "char-minus"

Subtract the size in bytes of a character to n1, giving n2.

char- is an alias of 1-.

Origin: Comus.

See also: char+.

272

Source file: <src/kernel.z80s>.

char-in-string?

char-in-string? (c ca len -- f) "char-in-string-question"

Is char c in string ca len? char-in-string? is a factor of string-char?: Its only difference is the order
of the input parameters.

See also: char-position?, contains, compare, #chars.

Source file: <src/lib/strings.MISC.fs>.

char-position?

char-position? (ca len c -- +n true | false) "char-position-question"

If char c is in string ca len, return its first position +n and true; else return false.

See also: char-in-string?, contains, compare.

Source file: <src/lib/strings.MISC.fs>.

char>string

char>string (c -- ca len) "char-to-string"

Convert the char c to a string ca len in the stringer.

See also: chars>string, ruler, u>str, d>str, ud>str, >bstring, 2>bstring.

Source file: <src/lib/strings.MISC.fs>.

char?

char? (ca len -- c true | false) "char-question"

If the string ca len is the representation of a character, return the character c and true; else return
false.

Definition:

273

: char? (ca len -- c true | false)
 3 = if
 dup c@ ''' <> if
 dup [2 chars] cliteral + c@ ''' <>
 if char+ c@ true exit then
 then
 then
 drop false ;

Source file: <src/kernel.z80s>.

charlton-allocate

charlton-allocate (u -- a ior)

Allocate u bytes of contiguous data space. The data-space pointer is unaffected by this operation.
The initial content of the allocated space is undefined.

If the allocation succeeds, a is the starting address of the allocated space and ior is zero.

If the operation fails, a does not represent a valid address and the I/O resul code ior is #-59, the
throw code for allocate.

charlton-allocate is the action of allocate in the memory heap implementation adapted from code
written by Gordon Charlton, whose words are defined in charlton-heap-wordlist.

See also: charlton-resize, charlton-free.

Source file: <src/lib/memory.allocate.charlton.fs>.

charlton-empty-heap

charlton-empty-heap (--)

Empty the current heap, which was created by allot-heap, limit-heap, bank-heap or farlimit-heap.

charlton-empty-heap is the action of empty-heap in the memory heap implementation adapted from
code written by Gordon Charlton, whose words are defined in charlton-heap-wordlist.

See also: charlton-allocate, charlton-resize, charlton-free.

Source file: <src/lib/memory.allocate.charlton.fs>.

charlton-free

charlton-free (a -- ior)

274

Return the contiguous region of data space indicated by a to the system for later allocation. a shall
indicate a region of data space that was previously obtained by charlton-allocate or charlton-
resize.

As there is no compelling reason for this to fail, ior is zero.

charlton-free is the action of free in the memory heap implementation adapted from code written
by Gordon Charlton, whose words are defined in charlton-heap-wordlist.

Source file: <src/lib/memory.allocate.charlton.fs>.

charlton-heap-wordlist

charlton-heap-wordlist (-- wid)

wid is the word-list identifier of the word list that holds the words the memory heap implementation
adapted from code written by Gordon Charlton (1994-09-12).

need charlton-heap-wordlist is used to load the memory heap implementation and configure
allocate, resize, free and empty-heap accordingly.

An alternative, simpler and smaller implementation of the memory heap is provided by gil-heap-
wordlist.

The actual heap must be created with allot-heap, limit-heap, farlimit-heap or bank-heap, which are
independent from the heap implemention.

Source file: <src/lib/memory.allocate.charlton.fs>.

charlton-resize

charlton-resize (a1 u -- a2 ior)

Change the allocation of the contiguous data space starting at the address a1, previously allocated
by charlton-allocate or charlton-resize, to u bytes. u may be either larger or smaller than the
current size of the region. The data-space pointer is unaffected by this operation.

If the operation succeeds, a2 is the starting address of u bytes of allocated memory and ior is zero.
a2 may be, but need not be, the same as a1. If they are not the same, the values contained in the
region at a1 are copied to a2, up to the minimum size of either of the two regions. If they are the
same, the values contained in the region are preserved to the minimum of u or the original size. If
a2 is not the same as a1, the region of memory at a1 is returned to the system according to the
operation of free.

If the operation fails, a2 equals a1, the region of memory at a1 is unaffected, and the I/O result code
ior is #-61, the throw code for resize.

charlton-resize is the action of resize in the memory heap implementation adapted from code

275

written by Gordon Charlton, whose words are defined in charlton-heap-wordlist.

Source file: <src/lib/memory.allocate.charlton.fs>.

chars

chars (n1 -- n2)

n2 is the size in bytes of n1 characters. In Solo Forth chars does nothing, therefore n1 equals n2.

chars is an immediate word.

Origin: Forth-94 (CORE), Forth-2012 (CORE).

Source file: <src/kernel.z80s>.

chars>string

chars>string (c#1..c#n n -- ca len) "chars-to-string"

Convert n chars to a string ca len in the stringer, being c#1 the last character of the string and c#n
the first one.

See also: char>string, 2>bstring, >bstring, ruler, s+.

Source file: <src/lib/strings.MISC.fs>.

chop

chop (ca len -- ca' len')

Remove the last character from string ca len.

See also: -suffix, /string, string/.

Source file: <src/lib/strings.MISC.fs>.

circle

circle (gx gy b --)

Draw a circle at center coordinates gx gy and with radius b.

circle does not use the ROM routine and it’s much faster.

circle does no error checking: the whole circle must fit the screen. Otherwise, strange things will

276

happen when other parts of the screen bitmap, the screen attributes or even the system variables
will be altered.

NOTE

By default circle does nothing. Its factor routine circle-pixel must be configured
first with set-circle-pixel, in order to choose the routine that creates the pixels of
the circle: uncolored-circle-pixel, colored-circle-pixel or a routine provided by
the application.

Source file: <src/lib/graphics.circle.fs>.

circle-pixel

circle-pixel (-- a)

a is the address of a subroutine used by circle to set its pixels. This routine does a jump to the
actual routine, which by default does nothing. The desired routine must be set by set-circle-pixel.

Also any routine provided by the application can be used as the action of circle-pixel, provided the
following requirements:

• HL, DE and BC must be preserved.

• Input parameters: B=gy and C=gx.

Source file: <src/lib/graphics.circle.fs>.

class

class (class -- class methods vars)

Start the definition of a class.

Source file: <src/lib/objects.mini-oof.fs>.

classic-number-point?

classic-number-point? (c -- f)
"classic-number-point-question"

Is character c a classic number point? Allowed points are: comma, hyphen, period, slash and colon.

classic-number-point? is an alternative action for the deferred word number-point? (see defer),
which is used in number?, and whose default action is standard-number-point?.

See also: extended-number-point?.

Source file: <src/lib/math.number.point.fs>.

277

clear

clear (n --)

A command of specforth-editor: Clear block n with blanks and select for editing.

See also: e, l/scr.

Source file: <src/lib/prog.editor.specforth.fs>.

clear-rectangle

clear-rectangle (column row width height color --)

Clear a screen rectangle at the given character coordinates and of the given size in characters. The
bitmap is erased and the color attributes are changed with the given color attribute.

clear-rectangle is written in Z80 and it combines the functions of wipe-rectangle and color-
rectangle. It may be defined also this way (with slower but much smaller code):

: clear-rectangle (column row width height color --)
 >r 2over 2over wipe-rectangle r> color-rectangle ;

See also: attr-wcls.

Source file: <src/lib/graphics.rectangle.fs>.

clit

clit (-- b) "c-lit"

Return b, which was compiled by cliteral after clit.

clit is a compile-only word.

See also: lit, 2lit.

Source file: <src/kernel.z80s>.

cliteral

cliteral (b --) "c-literal"

Compile b in the current definition.

278

cliteral does the same as literal but saves one byte of data space and b is put on the stack a bit
faster (0.97 of execution speed).

cliteral is an immediate and compile-only word.

Definition:

: cliteral (b --) postpone clit c, ; immediate compile-only

Origin: Comus.

See also: clit, 2literal, xliteral,]cl.

Source file: <src/kernel.z80s>.

clocal

clocal (ca --) "c-local"

Save the value of the character variable ca, which will be restored at the end of the current
definition.

clocal is a compile-only word.

Usage example:

cvariable v
1 v c! v c? \ default value

: test (--)
 v clocal
 v c? 1887 v c! v c? ;

v c? \ default value

See also: local, 2local, arguments, anon.

Source file: <src/lib/locals.local.fs>.

clr,

clr, (reg --) "c-l-r-comma"

Compile the Z80 assembler instruction LD reg,0.

See also: clrp,, ld#,.

279

Source file: <src/lib/assembler.fs>.

clrp,

clrp, (regp --) "c-l-r-p-comma"

Compile the Z80 assembler instruction LD regp,0.

See also: clr,, ldp#,.

Source file: <src/lib/assembler.fs>.

cls

cls (--) "c-l-s"

Clear the screen with the current attribute, reset the graphic coordinates at the lower left corner (gx
0, gy 0) and reset the cursor position at the upper left corner (column 0, row 0).

See also: attr!, attr-cls, page, wcls.

Source file: <src/kernel.z80s>.

cls-chars1

cls-chars1 (--) "c-l-s-chars-one"

Clear the screen by rotating all bytes of the bitmap.

Source file: <src/lib/graphics.cls.fs>.

clshift

clshift (b1 u -- b2) "c-l-shift"

Perform a logical left shift of u bit-places on b1, giving b2. Put zeroes into the least significant bits
vacated by the shift.

See also: lshift.

Source file: <src/lib/math.operators.1-cell.fs>.

cmove

280

cmove (ca1 ca2 u --) "c-move"

If u is greater than zero, copy u consecutive characters from the data space starting at ca1 to that
starting at ca2, proceeding character-by-character from lower addresses to higher addresses.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (STRING),
Forth-2012 (STRING).

See also: cmove>, move.

Source file: <src/kernel.z80s>.

cmove<far

cmove<far (ca1 ca2 len --) "c-move-from-far"

If len is greater than zero, copy len consecutive characters from far-memory address ca1 to main-
memory address ca2.

Source file: <src/lib/memory.far.fs>.

cmove>

cmove> (ca1 ca2 u --) "c-move-up"

If u is greater than zero, copy u consecutive characters from the data space starting at ca1 to that
starting at ca2, proceeding character-by-character from higher addresses to lower addresses.

Origin: Forth-83 (Required Word Set), Forth-94 (STRING), Forth-2012 (STRING).

See also: cmove, move.

Source file: <src/kernel.z80s>.

cmove>far

cmove>far (ca1 ca2 len --) "c-move-to-far"

If len is greater than zero, copy len consecutive characters from main-memory address ca1 to far-
memory address ca2.

Source file: <src/lib/memory.far.fs>.

281

code

code ("name --)

Parse name. Create a definition for name, called a code definition, and execute asm to enter
assembler mode.

Definition:

: code ("name --) header asm ;

Origin: Forth-79 (Assembler Word Set), Forth-83 (Assembler Extension Word Set), Forth-94 (TOOLS
EXT), Forth-2012 (TOOLS EXT).

Source file: <src/kernel.z80s>.

coff

coff (ca --) "c-off"

Store false at ca.

coff is written in Z80. Its equivalent definition in Forth is the following:

: coff (ca --) false swap c! ;

See also: off.

Source file: <src/lib/memory.MISC.fs>.

cold

cold (--)

Restore the Forth system to its default status, i.e. as if it were just booted the first time, except the
background picture is not displayed.

Origin: fig-Forth.

See also: warm, greeting.

Source file: <src/kernel.z80s>.

282

color-rectangle

color-rectangle (column row width height color --)

Color a screen rectangle at the given character coordinates and of the given size in characters with
the given color attribute. Only the color attributes are changed; the bitmap remains unchanged.

See also: wcolor, wipe-rectangle, clear-rectangle.

Source file: <src/lib/graphics.rectangle.fs>.

colored-circle-pixel

colored-circle-pixel (-- a)

a is the address of a subroutine that circle can use to draw its pixels. This routine sets a pixel,
changing its color attributes on the screen (like plot). Therefore it’s slower than its alternative
uncolored-circle-pixel (1.64 its execution speed).

set-circle-pixel sets the routine used by circle. See the requirements of such routine in the
documentation of circle-pixel.

Source file: <src/lib/graphics.circle.fs>.

column

column (-- col)

Current column (x coordinate).

See also: row, last-column, columns.

Source file: <src/lib/display.cursor.fs>.

columns

columns (-- n)

Return the number of columns in the current screen mode. The default value is 32.

See also: rows, last-column`, column.

Source file: <src/lib/display.mode.COMMON.fs>.

283

comp'

comp' ("name" -- x xt) "comp-tick"

Compilation token x xt represents the compilation semantics of name.

Origin: Gforth.

See also: [comp'], name>compile, ['].

Source file: <src/lib/compilation.fs>.

compare

compare (ca1 len1 ca2 len2 -- n)

Compare the string ca1 len1 to the string ca2 len2. The strings are compared, beginning at the given
addresses ca1 and ca2, character by character, up to the length of the shorter string or until a
difference is found. If the two strings are identical, n is zero. If the two strings are identical up to
the length of the shorter string, n is minus-one (-1) if len1 is less than len2 and one (1) otherwise. If
the two strings are not identical up to the length of the shorter string, n is minus-one (-1) if the first
non-matching character in the string ca1 len1 has a lesser numeric value than the corresponding
character in the string ca2 len2 and one (1) otherwise.

Origin: Forth-94 (STRING), Forth-2012 (STRING).

See also: str=, str<, str>.

Source file: <src/kernel.z80s>.

compilation-only

compilation-only (--)

throw exception code #-14 ("interpreting a compile-only word").

compilation-only is used in interpret-table.

See also: not-understood, ?compiling.

Source file: <src/kernel.z80s>.

compile

compile (--)

284

Compile the cell following the compilation address of compile into the dictionary.

compile allows specific compilation situations to be handled in addition to simply compiling an
execution token (which the interpreter already does).

compile is a compile-only word.

Definition:

: compile (--) r> dup cell+ >r @ compile, ;

Typically used in the form:

: name compile namex ;

When name is executed, the execution token of namex is compiled, not executed. name is tipically
an immediate word and namex is typically not an immediate word.

compile has been superseded by postpone.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set).

See also: [compile], compile,.

Source file: <src/kernel.z80s>.

compile,

compile, (xt --) "compile-comma"

Append the execution semantics of the definition represented by xt to the execution semantics of
the current definition.

compile, is the compilation equivalent of execute.

Since Solo Forth is a threaded-code implementation, compile, is an alias of ,.

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

Source file: <src/kernel.z80s>.

compile-only

compile-only (--)

Make the most recent definition a compile-only word.

285

Definition:

: compile-only (--) compile-only-mask latest lex! ;

See also: compile-only?, compile-only-mask, ?compiling, lex!, latest, immediate.

Source file: <src/kernel.z80s>.

compile-only-mask

compile-only-mask (-- b)

A cconstant. b is the bitmask of the compile-only bit, set by compile-only.

See also: immediate-mask, smudge-mask, word-length-mask.

Source file: <src/kernel.z80s>.

compile-only?

compile-only? (nt -- f) "compile-only-question"

f is true if the word nt is compile-only.

Definition:

: compile-only? (nt -- f) compile-only-mask lex? ;

See also: compile-only, immediate?.

Source file: <src/kernel.z80s>.

compiling?

compiling? (-- f) "compiling-question"

f is true if state is not zero, i.e. the Forth system is in compilation state.

Definition:

: compiling? (-- f) state @ 0<> ;

Source file: <src/kernel.z80s>.

286

con

con (ca --) "c-on"

Store true at ca.

con is written in Z80. Its equivalent definition in Forth is the following:

: con (ca --) true swap c! ;

NOTE The value actually stored is not true, which is a cell, but its 8-bit equivalent $FF.

See also: coff, on.

Source file: <src/lib/memory.MISC.fs>.

cond

cond
 Compilation: (C: -- cs-mark)
 Run-time: (--)

Compilation: Mark the start of a cond … thens structure. Leave cs-mark on the control-flow stack, to
be checked by thens.

Run-time: Continue execution.

cond is an immediate and compile-only word.

Generic usage example:

: test (x --)
 cond
 test1 if action1 else
 test2 if action2 else
 test3 if action3 else
 default-action
 thens ;

NOTE The tested value must be preserved and discarded by the application. Example:

287

: test (ca len --)
 cond
 2dup s" first" str= if 2drop ." unua" else
 2dup s" second" str= if 2drop ." dua" else
 2dup s" third" str= if 2drop ." tria" else
 2dup s" fourth" str= if 2drop ." kvara" else
 type ." ?"
 thens ;

See also: case, cs-mark, andif, orif.

Source file: <src/lib/flow.MISC.fs>.

const

const (x "name" --)

Create a fast constant name, with value x.

A fast constant works like an ordinary constant, except its value is compiled as a literal.

Origin: IsForth.

See also: [const], cconst, 2const.

Source file: <src/lib/data.const.fs>.

constant

constant (x "name" --)

Parse name. create a definition for name that will place x on the stack. name is referred to as a
"constant".

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: 2constant, cconstant, fconstant, !>, const, [const], value, variable.

Source file: <src/kernel.z80s>.

contains

contains (ca1 len1 ca2 len2 -- f)

Does string ca1 len1 contain string ca2 len2?

288

See also: char-position?, char-in-string?, compare, #chars,

Source file: <src/lib/strings.MISC.fs>.

context

context (-- a)

A user variable. a is the address of an array of cells that represents the search order; its maximum
length is hold in the max-order constant, and its current length is hold in the #order variable. a holds
the word list at the top of the search order.

See also: >order, get-order, set-order.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (System Extension Word Set).

Source file: <src/kernel.z80s>.

continued

continued (u --)

Continue interpretation at block u.

Origin: Forth-79 (Reference Word Set), Forth-83 (Appendix B. Uncontrolled Reference Words).

See also: -->, load.

Source file: <src/lib/blocks.fs>.

contrast

contrast (b1 -- b2)

Convert color b1 to its contrast color b2. b2 is white (7) if b1 is a dark color (black, blue, red or
magenta); b2 is black (0) if b1 is a light colour (green, cyan, yellow or white).

See also: papery, inversely.

Source file: <src/lib/display.attributes.fs>.

control-char?

control-char? (c -- f) "control-char-question"

Is character c a control character, i.e. in the range 0..31?

289

See also: ascii-char?.

Source file: <src/lib/chars.fs>.

copy

copy (n1 n2 --)

A command of specforth-editor: Copy block n1 to block n2.

See also: update, save-buffers.

Source file: <src/lib/prog.editor.specforth.fs>.

count

count (ca1 -- ca2 len2)

Return the character string specification for the counted string stored at ca1. ca2 is the address of
the first character after ca1. len is the contents of the character at c1, which is the length in
characters of the string at c2.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: farcount.

Source file: <src/kernel.z80s>.

counted>stringer

counted>stringer (ca1 len1 -- ca2) "counted-to-stringer"

Copy string ca1 len1 to the stringer as a counted string and return it as ca2.

See also: >stringer, allocate-stringer.

Source file: <src/lib/strings.MISC.fs>.

cp#,

cp#, (b --) "c-p-number-sign-comma"

Compile the Z80 assembler instruction CP b.

Source file: <src/lib/assembler.fs>.

290

cp,

cp, (reg --) "c-p-comma"

Compile the Z80 assembler instruction CP reg.

See also: tstp,, cpl,.

Source file: <src/lib/assembler.fs>.

cpir,

cpir, (--) "c-p-i-r-comma"

Compile the Z80 assembler instruction CPIR.

See also: cp,, ldir,, djnz,.

Source file: <src/lib/assembler.fs>.

cpl,

cpl, (--) "c-p-l-comma"

Compile the Z80 assembler instruction CPL.

See also: scf,, ccf,, neg,, and,, cp,.

Source file: <src/lib/assembler.fs>.

cpx,

cpx, (disp regpi --) "c-p-x-comma"

Compile the Z80 assembler instruction CP (regpi+disp).

See also: addx,, adcx,, subx,, sbcx,, andx,, xorx,, orx,, incx,, decx,.

Source file: <src/lib/assembler.fs>.

cr

cr (--) "c-r"

Transmit a carriage return to the selected output device.

291

cr is a deferred word (see defer) whose default action is (cr.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

Source file: <src/kernel.z80s>.

create

create ("name" --)

Parse name. Create a definition for name. After name is created, the data-space pointer (returned by
here), points to the first byte of name's data field. When name is subsequently executed, the address
of the first byte of name's data field is left on the stack.

create does not allocate data space in name's data field. Reservation of data field space is tipically
done with allot.

The execution semantics of name may be expanded by using does>.

Origin: Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE), Forth-2012
(CORE).

See also: ,, c,, 2,.

Source file: <src/kernel.z80s>.

create-entry

create-entry (i*x wid xt "name" --)

Create an entry name in the associative-list wid, using xt to store its value i*x.

create-entry is a factor of entry:, centry:, 2entry: and sentry:.

Source file: <src/lib/data.associative-list.fs>.

create:

create: ("name" --) "create-colon"

Create a word name which is compiled as a colon word but, when executed, will return the address
of its data field address.

Source file: <src/lib/define.MISC.fs>.

292

creset

creset (b ca --) "c-reset"

Reset the bits at ca specified by the bitmask b.

creset is written in Z80. Its equivalent definition in Forth is the following.

: creset (b ca --) tuck c@ swap invert and swap c! ;

See also: cset, ctoggle, c@and.

Source file: <src/kernel.z80s>.

crnd

crnd (-- b) "c-r-n-d"

Return a random 8-bit number b (0..255).

See also: rnd.

Source file: <src/lib/random.fs>.

crs

crs (n --) "c-r-s"

Emit n number of cr characters (character code 13).

See also: cr, 'cr'.

Source file: <src/lib/display.control.fs>.

cs-drop

cs-drop (C: x --) "c-s-drop"

Remove x from the control-flow stack.

cs-drop is a compile-only word.

NOTE In Solo Forth the control-flow stack is implemented using the data stack.

See also: cs-pick, cs-roll, cs-swap, cs-dup, cs-mark, cs-test.

293

Source file: <src/lib/flow.stack.fs>.

cs-dup

cs-dup (C: x -- x x) "c-s-dup"

Duplicate x on the control-flow stack.

cs-dup is a compile-only word.

NOTE In Solo Forth the control-flow stack is implemented using the data stack.

See also: cs-pick, cs-roll, cs-swap, cs-drop, cs-mark, cs-test.

Source file: <src/lib/flow.stack.fs>.

cs-mark

cs-mark (C: -- cs-mark) "c-s-mark"

Place a marker cs-mark on the control-flow stack. The marker ocuppies the same width as an
orig|dest but is distinguishable using cs-test.

See also: cs-pick, cs-roll, cs-swap, cs-dup, cs-drop.

Source file: <src/lib/flow.stack.fs>.

cs-pick

cs-pick "c-s-pick"
 (S: u --)
 (C: x#u ... x#1 x#0 -- x#u ... x#1 x#0 x#u)

Remove u. Copy x#u to the top of the control-flow stack.

cs-pick is a compile-only word.

NOTE In Solo Forth the control-flow stack is implemented using the data stack.

Origin: Forth-94 (TOOLS EXT), Forth-2012 (TOOLS EXT).

See also: cs-roll, cs-swap, cs-drop, cs-dup, cs-mark, cs-test.

Source file: <src/lib/flow.stack.fs>.

294

cs-roll

cs-roll "c-s-roll"
 (S: u --)
 (C: x#u x#u-1 ... x#0 -- x#u-1 ... x#0 x#u)

Remove u. Rotate u+1 items on top of the control-flow stack so that x#u is on top of the control-flow
stack.

cs-roll is a compile-only word.

NOTE
In Solo Forth the control-flow stack is implemented using the data stack. Therefore
cs-roll is an alias of roll.

Origin: Forth-94 (TOOLS EXT), Forth-2012 (TOOLS EXT).

See also: cs-pick, cs-swap, cs-drop, cs-dup, cs-mark, cs-test.

Source file: <src/lib/flow.stack.fs>.

cs-swap

cs-swap "c-s-swap"
 (C: orig#1|dest#1 orig#2|dest#2 -- orig#2|dest#2 orig#1|dest#1)

Exchange the top two control-flow stack items.

cs-swap is a compile-only word.

NOTE
In Solo Forth the control-flow stack is implemented using the data stack. Therefore
cs-swap is an alias of swap.

See also: cs-pick, cs-roll, cs-drop.

Source file: <src/kernel.z80s>.

cs-test

cs-test "c-s-test"
 Compilation: (-- f) (C: x -- x)

Return a true flag if x is an orig|dest, and false if a marker placed by cs-mark.

See also: cs-pick, cs-roll, cs-swap, cs-dup, cs-drop.

Source file: <src/lib/flow.stack.fs>.

295

cset

cset (b ca --) "c-set"

Set the bits at ca specified by the bitmask b.

cset is written in Z80. Its equivalent definition in Forth is the following.

: cset (b ca --) tuck c@ or swap c! ;

See also: creset, ctoggle, c@and.

Source file: <src/kernel.z80s>.

cslit

cslit (-- ca) "c-s-lit"

Return a string that is compiled after the calling word, and adjust the instruction pointer to step
over the inline string.

cslit is compiled by csliteral.

See also: slit.

Source file: <src/lib/strings.c-quote.fs>.

csliteral

csliteral
 Compilation: (ca1 len1 --)
 Run-time: (-- ca2)
"c-s-literal"

Compile cslit and string ca1 len1 in the current definition. At run-time cslit will return string ca1
len1 as a counted string ca2.

csliteral is an immediate and compile-only word.

See also: sliteral.

Source file: <src/lib/strings.c-quote.fs>.

csp

296

csp (-- a) "c-s-p"

A user variable. a is the address of a cell containing the current data stack position saved by !csp.

Origin: fig-Forth.

Source file: <src/kernel.z80s>.

csprite

csprite (width height a "name..." --) "c-sprite"

Parse a character sprite and store it at a. width and height are in characters. The maximum width is
7 (imposed by the size of Forth source blocks). height has no maximum, as the UDG block can
ocuppy more than one Forth block (provided the Forth block has no index line, i.e. load-program is
used to load the source).

The scans can be formed by binary digits, by the characters hold in udg-blank and udg-dot, or any
combination of both notations.

The difference with udg-block and ,udg-block is csprite stores the graphic by whole scans, not by
characters.

Usage example:

create ship-sprite 3 2 * /udg* allot
3 2 ship-sprite csprite

..XX.X.X........X.X.XX..

..XXX.X.X......X.X.XXX..

..XX.....X....X.....XX..

...XX.....XXXX.....XX...

....XX.....XX.....XX....

.....XXX........XXX.....

......XX........XX......

.......XX......XX.......

.......XX......XX.......

........XX....XX........

........XX....XX........
X.........XXXX.........X
X........XXXXXX........X
.XXXXXXXXXXXXXXXXXXXXXX.
..........XXXX..........
...........XX...........

Source file: <src/lib/graphics.udg.fs>.

297

cstorer

cstorer (c ca "name" --) "c-storer"

Define a word name which, when executed, will cause that c be stored at ca.

Origin: variant of the word set found in Forth-79 (Reference Word Set) and Forth-83 (Appendix B.
Uncontrolled Reference Words).

Source file: <src/lib/data.storer.fs>.

cswitch

cswitch (c switch --) "c-switch"

Execute the switch switch for the key c.

See also: switch:, :cclause.

Source file: <src/lib/flow.switch-colon.fs>.

ctoggle

ctoggle (b ca --) "c-toggle"

Invert the bits at ca specified by the bitmask b.

See also: cset, creset, c@and.

Source file: <src/lib/memory.MISC.fs>.

ctoval

ctoval (--) "c-to-val"

Change the default behaviour of words created by cval: make them store a new value instead of
returning its actual one.

See also: toval, 2toval.

Source file: <src/lib/data.val.fs>.

current

298

current (-- a)

A user variable. a is the address of a cell containing the word list identifier of the compilation word
list.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (System Extension Word Set).

See also: get-current.

Source file: <src/kernel.z80s>.

current-channel

current-channel (-- ca)

A cvariable. ca is the address of a byte containing the number of the latest output channel set by
channel.

Source file: <src/kernel.z80s>.

current-latest

current-latest (-- nt)

nt is the name token of the topmost word in the current compilation word list.

Definition:

: current-latest (-- nt) get-current @ ;

Origin: fig-Forth’s latest.

See also: latest, fyi.

Source file: <src/kernel.z80s>.

current-mode

current-mode (-- a)

A variable. a is the address of a cell containing the execution token of the word that activates the
current screen mode (e.g. mode-32, mode-32iso, mode-42pw, mode-42rs, mode-64es, mode-64ao). It’s set to
noop until the first mode change is done.

See also: save-mode, restore-mode.

299

Source file: <src/kernel.z80s>.

current-window

current-window (-- a)

A variable. a is the address of a cell containing the address of the current-window.

See also: wx, wy, wx0, wy0, wcolumns, wrows.

Source file: <src/lib/display.window.fs>.

cursor-char

cursor-char (-- ca)

A cvariable. ca is the address of a byte containing the character code of the cursor used by xkey.
Note this is a character variable, thus it has to be fetched with c@ and modified with c!.

Source file: <src/kernel.z80s>.

cval

cval (c "name" --) "c-val"

Create a definition for name that will place c on the stack (unless ctoval is used first) and then will
execute init-cval.

See also: val, 2val, cvariable, cconstant.

Source file: <src/lib/data.val.fs>.

cvalue

cvalue (c "name" --) "c-value"

Create a definition name with initial value c. When name is later executed, c will be placed on the
stack. to can be used to assign a new value to name.

See also: value, 2value, cconstant, cvariable, cval.

Source file: <src/lib/data.value.fs>.

300

cvariable

cvariable ("name" --) "c-variable"

Create a character variable name and reserve one character of data space. When name is executed,
it returns the address of the reserved space.

See also: c!, c@, variable.

Source file: <src/lib/data.MISC.fs>.

cyan

cyan (-- b)

A cconstant that returns 5, the value that represents the cyan color.

See also: black, blue, red, magenta, green, yellow, white, contrast, papery, inversely.

Source file: <src/lib/display.attributes.fs>.

d

d

d (-- reg)

Return the identifier reg of the Z80 assembler register "D", which is interpreted as register pair "DE"
by assembler words that use register pairs (for example ldp,).

See also: a, b, c, e, h, l, m, ix, iy, sp.

Source file: <src/lib/assembler.fs>.

d

d (--)

A command of gforth-editor: delete marked area.

See also: dl, m a, h, f, r, y, l.

Source file: <src/lib/prog.editor.gforth.fs>.

301

d

d (n --)

A command of specforth-editor: Delete line n but hold it in pad. Line 15 becomes free as all
statements move up one line.

See also: b, c, e, f, h, i, l, m, n, p, r, s, t, x.

Source file: <src/lib/prog.editor.specforth.fs>.

d*

d* (d|ud1 d|ud2 -- d|ud3) "d-star"

Multiply d1|ud1 by d2|ud2 giving the product d3|ud3.

See also: ud*, um*, m*, *.

Source file: <src/lib/math.operators.2-cell.fs>.

d+

d+ (d1|ud1 d2|ud2 -- d3|ud3) "d-plus"

Add d2|ud2 to d1|ud1, giving the sum d3|ud3.

Origin: Forth-79 (Double Number Word Set), Forth-83 (Double Number Extension Word Set), Forth-
94 (DOUBLE), Forth-2012 (DOUBLE).

See also: d-, +, dmax.

Source file: <src/kernel.z80s>.

d-

d- (d1|ud1 d2|ud2 -- d3|ud3) "d-minus"

Subtract d2|ud2 from d1|ud1, giving the difference d3|ud3.

Origin: Forth-79 (Double Number Word Set), Forth-83 (Double Number Extension Word Set), Forth-
94 (DOUBLE), Forth-2012 (DOUBLE).

See also: d+, -, dmin.

Source file: <src/lib/math.operators.2-cell.fs>.

302

d.

d. (d --) "d-dot"

Display d according to current base, followed by one blank.

Origin: fig-Forth, Forth-79 (Double Number Word Set), Forth-83 (Double Number Extension Word
Set), Forth-94 (DOUBLE), Forth-2012 (DOUBLE).

See also: ud., ., f..

Source file: <src/kernel.z80s>.

d.r

d.r (d n --) "d-dot-r"

Display d right aligned in a field n characters wide. If the number of characters required to display
d is greater than n, all digits are displayed with no leading spaces in a field as wide as necessary.

Definition:

: d.r (d n --) >r d>str r> over - spaces type ;

Origin: fig-Forth, Forth-79 (Double Number Word Set), Forth-83 (Double Number Extension Word
Set)[10], Forth-94 (DOUBLE), Forth-2012 (DOUBLE).

See also: d>str, ud.r, .r, 0d.r, <#.

Source file: <src/kernel.z80s>.

d0<

d0< (d -- f) "d-zero-less"

f is true if and only if d is less than zero.

See also: 0<.

Source file: <src/lib/math.operators.2-cell.fs>.

d0=

d0= (d -- f) "d-zero-equals"

303

f is true if and only if d is equal to zero.

d0= is written in Z80. Its equivalent definition in Forth is the following:

: d0= (d -- f) + 0= ;

See also: 0=.

Source file: <src/lib/math.operators.2-cell.fs>.

d10*

d10* (ud1 -- ud2) "d-ten-star"

Multiply ud1 per 10, resulting ud2.

See also: d2*, d*, 2*, 8*.

Source file: <src/lib/math.operators.2-cell.fs>.

d2*

d2* (xd1 -- xd2) "d-two-star"

xd2 is the result of shifting xd1 one bit toward the most-significant bit, filling the vacated bit with
zero.

Origin: Forth-94 (DOUBLE), Forth-2012 (DOUBLE).

See also: d2/, 2*, lshift.

Source file: <src/lib/math.operators.2-cell.fs>.

d2/

d2/ (xd1 -- xd2) "d-two-slash"

xd2 is the result of shifting xd1 one bit toward the least-significant bit, leaving the most-significant
bit unchanged.

Origin: Forth-94 (DOUBLE), Forth-2012 (DOUBLE).

See also: d2*, 2/, rshift.

Source file: <src/lib/math.operators.2-cell.fs>.

304

d<

d< (d1 d2 -- f) "d-less"

f is true only if and only if d1 is less than d2.

Origin: Forth-79 (Double Number Word Set), Forth-83 (Double Number Extension Word Set), Forth-
94 (DOUBLE EXT), Forth-2012 (DOUBLE EXT).

See also: du<, <, dmin.

Source file: <src/lib/math.operators.2-cell.fs>.

d<>

d<> (xd1 xd2 -- f) "d-not-equals"

f is true if and only if xd1 is not bit-for-bit the same as xd2.

See also: <>.

Source file: <src/lib/math.operators.2-cell.fs>.

d=

d= (xd1 xd2 -- f) "d-equals"

f is true if and only if xd1 is equal to xd2.

See also: =.

Source file: <src/lib/math.operators.2-cell.fs>.

d>s

d>s (d -- n) "d-to-s"

n is the equivalent of d. The high cell of d is discarded.

Origin: Forth-94 (DOUBLE), Forth-2012 (DOUBLE).

See also: s>d, u>ud.

Source file: <src/kernel.z80s>.

305

d>str

d>str (d>str -- ca len) "d-to-s-t-r"

Convert d to string ca len in the pictured numeric output string buffer.

d>str is a factor of d.r.

Definition:

: d>str (d -- ca len) tuck dabs <# #s rot sign #> ;

WARNING

The pictured numeric output string buffer is a transient region (with
maximum size /hold bytes below pad, and start pointed by hld). Therefore the
string ca len must be used or preserved before the buffer is moved or
overwritten.

See also: <#, #s, sign ,#>, >stringer, s,, cmove.

Source file: <src/kernel.z80s>.

d>str

d>str (d -- ca len) "d-to-s-t-r"

Convert d to string ca len.

See also: n>str, ud>str, char>string.

Source file: <src/lib/strings.MISC.fs>.

daa,

daa, (--) "d-a-a-comma"

Compile the Z80 assembler instruction DAA.

Source file: <src/lib/assembler.fs>.

dabs

dabs (d -- ud) "d-abs"

Leave the absolute value ud of a double number d.

306

Definition:

: dabs (d -- ud) dup ?dnegate ;

Source file: <src/kernel.z80s>.

dand

dand (xd1 xd2 -- xd3) "d-and"

xd3 is the bit-by-bit logical "and" of xd1 and xd2.

See also: and, dor, dxor.

Source file: <src/lib/math.operators.2-cell.fs>.

data

data (n "name" -- n orig)

Create a definition for name, in order to compile data items of n bytes each, finished by end-data.
Leave n and orig to be consumed by end-data. When name is executed, it will leave the start address
of the data and the number of items, which depends on n.

Usage example:

cell data my-cells (-- a u)
 1 , 2 , 3 , 4 , 5 , end-data

2 cells data my-double-cells (-- a u)
 0. 2, 1. 2, 2. 2, end-data

1 chars data my-characters (-- a u)
 'a' c, 'b' c, 'c' c, end-data

Source file: <src/lib/data.data.fs>.

date

date (-- a)

a is the address of a 3-cell table containing the date used by set-date and get-date, with the
following structure:

307

+0 day (1 byte)
+1 month (1 byte)
+2 year (1 cell)

See also: set-date, get-date.

Source file: <src/lib/time.fs>.

dec,

dec, (reg --) "dec-comma"

Compile the Z80 assembler instruction DEC reg.

See also: decp,, inc,.

Source file: <src/lib/assembler.fs>.

dec.

dec. (n --) "dec-dot"

Display n as a signed decimal number, followed by a space.

Origin: Gforth.

See also: hex., bin., ..

Source file: <src/kernel.z80s>.

decimal

decimal (--)

Set contents of base to ten.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: hex, binary.

Source file: <src/kernel.z80s>.

decp,

308

decp, (regp --) "dec-p-comma"

Compile the Z80 assembler instruction DEC regp.

See also: incp,, dec,.

Source file: <src/lib/assembler.fs>.

decx,

decx, (disp regpi --) "dec-x-comma"

Compile the Z80 assembler instruction DEC (regp+disp).

See also: addx,, subx,, sbcx,.

Source file: <src/lib/assembler.fs>.

default-bank

default-bank (--)

Page in the default memory bank, wich can be configured with default-bank#, at $C000 .. $FFFF.

See also: banks.

Source file: <src/kernel.z80s>.

default-bank#

default-bank# (-- ca) "default-bank-number-sign"

A constant. ca is the address of a byte containing the value of the default bank paged in at $C000 ..
$FFFF. Its default value is zero.

See also: banks, far-banks.

Source file: <src/kernel.z80s>.

default-bank_

default-bank_ (-- a) "default-bank-underscore"

Return address a of a routine that pages in the default bank. This is the routine default-bank runs
into, after pushing IX on the return stack to force a final return to next.

309

Output of the routine: A and E corrupted.

See also: e-bank_.

Source file: <src/lib/memory.far.fs>.

default-break-key?

default-break-key? (-- f) "default-break-key-question"

f is true if the default break key (Shift+Space) is pressed. default-break-key? is the default action of
the deferred word break-key? (see defer).

Source file: <src/kernel.z80s>.

default-colors

default-colors (--)

Set the screen colors to the default values.

See also: default-display, default-mode, default-font.

Source file: <src/kernel.z80s>.

default-display

default-display (--)

Set the default values of the display: mode, font and colors. default-display is executed by cold.

Definition:

: default-display (--)
 default-mode default-font default-colors ;

See also: default-mode, default-font, default-colors.

Source file: <src/kernel.z80s>.

default-first-locatable

default-first-locatable (-- a)

A variable. a is the address of a cell containing the default number of the first block to be searched

310

by located and its descendants.

See also: first-locatable.

Source file: <src/lib/002.need.fs>.

default-font

default-font (--)

Set the default font, which is the ROM font, by setting the system variable os-chars to 15360 ($3C00).

See also: set-font, rom-font, default-display, default-mode, default-colors.

Source file: <src/kernel.z80s>.

default-graphic-ascii-char

default-graphic-ascii-char (-- c)

A character constant. c is the default ASCII graphic character used by >graphic-ascii-char. The
value can be changed with c!>.

Source file: <src/lib/chars.fs>.

default-header

default-header (--)

Set header to its default action: input-stream-header.

Definition:

: default-header (--)
 ['] input-stream-header ['] header defer! ;

Source file: <src/kernel.z80s>.

default-mode

default-mode (--)

A deferred word (see defer) that activates the default screen mode. It’s set to noop until the first
mode change is done. Then it’s vectored to mode-32. It’s used by bye and cold.

311

See also: reset-default-mode, defer, default-display, default-font, default-colors.

Source file: <src/kernel.z80s>.

default-of

default-of
 Compilation: (C: -- of-sys)
 Run-time: (x --)

An alternative to mark the default clause of a case structure.

Compilation:

Put of-sys onto the control flow stack. Append the run-time semantics given below to the current
definition. The semantics are incomplete until resolved by a consumer of of-sys, such as endof.

Run-time:

Discard x and continue execution.

default-of is an immediate and compile-only word.

Usage example:

: test (x --)
 case
 1 of ." one" endof
 2 of ." two" endof
 default-of ." other" endof
 endcase ;

Source file: <src/lib/flow.case.fs>.

default-option

default-option ("name" --)

Set the default option name of an options[…]options structure. It can be anywhere inside the
structure.

See options[for a usage example.

Source file: <src/lib/flow.options-bracket.fs>.

312

default-stringer

default-stringer (--)

Set the default values of stringer and /stringer. default-stringer is executed by cold.

Source file: <src/kernel.z80s>.

default-udg-chars

default-udg-chars (--) "default-u-d-g-chars"

A phoney word used only to do need default-udg-chars in order to define UDG 144..164 as letters
'A'..'U', copied from the ROM font, the shape they have in Sinclair BASIC by default. The current
value of os-udg is used.

WARNING
In Solo Forth os-udg points to bitmap of UDG 0, while in Sinclair BASIC it points
to bitmap of UDG 144.

See also: block-chars, set-udg, rom-font.

Source file: <src/lib/graphics.udg.fs>.

defer

defer ("name" --)

Create a deferred word name, whose action can be configured with defer! or is. The default action
of name is (defer.

Origin: Forth-2012 (CORE EXT).

See also: defer@, action-of, >action.

Source file: <src/kernel.z80s>.

defer!

defer! (xt1 xt2 --) "defer-store"

Set the deferred word xt2 to execute xt1.

Origin: Forth-2012 (CORE EXT).

See also: defer@, defer, >action.

313

Source file: <src/kernel.z80s>.

defer@

defer@ (xt1 -- xt2) "defer-fetch"

Return the word xt2 currently associated to the deferred word xt1.

Origin: Forth-2012 (CORE EXT).

See also: defer!, defer, >action.

Source file: <src/lib/define.deferred.fs>.

deferred

deferred (xt "name" --)

Create a deferred word name that will execute xt. Therefore xt deferred name is equivalent to defer
name xt ' name defer!.

See also: defer, defer!.

Source file: <src/lib/define.deferred.fs>.

deferred?

deferred? (xt -- f) "deferred-question"

Is xt a deferred word?

NOTE
The code of a deferred word starts with a Z80 jump ($C3) to the word it’s associated
to. This is what deferred? checks.

See also: defer, defer@, action-of.

Source file: <src/lib/define.deferred.fs>.

defers

defers
 Interpretation: ("name" --)
 Compilation: ("name" --)
 Run-time: (--)

314

Compile the present contents of the deferred word name into the current definition. I.e. this
produces static binding as if name was not deferred.

defers is an immediate word.

Origin: Gforth.

See also: defer, defer@, action-of, compile,.

Source file: <src/lib/define.deferred.fs>.

defined

defined ("name" -- nt | 0)

Parse name and find its definition. If the definition is not found after searching all the word lists in
the search order, return zero. If the definition is found, return its nt.

Definition:

: defined ("name" -- nt | 0) parse-name find-name ;

See also: undefined?, [defined], parse-name, find-name.

Source file: <src/kernel.z80s>.

defined?

defined? (ca len -- f) "defined-question"

Find name ca len. If the definition is found after searching the active search order, return true, else
return false.

See also: undefined?, defined, find-name.

Source file: <src/lib/parsing.fs>.

defines

defines (xt class "name" --)

Bind xt to the selector name in class class.

Source file: <src/lib/objects.mini-oof.fs>.

315

definitions

definitions (--)

Make the compilation word list the same as the first word list in the search order. The names of
subsequent definitions will be placed in the compilation word list. Subsequent changes in the
search order will not affect the compilation word list.

Definition:

: definitions (--) context @ set-current ;

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (SEARCH),
Forth-2012 (SEARCH).

See also: context, set-current, wordlist, vocabulary.

Source file: <src/kernel.z80s>.

delapsed

delapsed (d1 -- d2) "d-elapsed"

For the time d1 in dticks return the elapsed time d2 since then, also in dticks.

See also: dtimer, elapsed, dticks>seconds, dticks>cs, dticks>ms.

Source file: <src/lib/time.fs>.

delete

delete (n --)

A command of specforth-editor: Delete n characters prior to the cursor.

See also: #lag, r#, #lead.

Source file: <src/lib/prog.editor.specforth.fs>.

delete

delete (ca1 len1 len2 --)

Delete len2 characters at the start of string ca1 len1, moving the rest of the string to the left (ca1)
and filling the end with blanks.

316

See also: insert, replace.

Source file: <src/lib/strings.MISC.fs>.

delete-file

delete-file (ca len -- ior)

Delete the disk file named in the string ca len, returning the I/O result code ior.

Origin: Forth-94 (FILE), Forth-2012 (FILE).

See also: undelete-file, (delete-file, rename-file, file-status.

Source file: <src/lib/dos.trdos.fs>.

delimited

delimited (ca1 len1 -- ca2 len2)

Add one leading space and one trailing space to string ca1 len1, returning the result ca2 len2 in the
stringer.

Source file: <src/lib/002.need.fs>.

depth

depth (-- +n)

+n is the number of single-cell values contained in the data stack before +n was placed on the stack.

Origin: Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE), Forth-2012
(CORE).

See also: sp@, sp0`, cell, rdepth, fdepth, .depth.

Source file: <src/lib/tool.list.stack.fs>.

dfalign

dfalign (--) "d-f-align"

If the data space is not double-float aligned, reserve enough space to make it so.

In Solo Forth, dfalign does nothing: it’s an immediate alias of noop.

317

Origin: Forth-94 (FLOATING EXT), Forth-2012 (FLOATING EXT).

See also: dfaligned, falign, sfalign, float.

Source file: <src/lib/math.floating_point.rom.fs>.

dfaligned

dfaligned (a -- fa) "d-f-aligned"

fa is the first double-float-aligned address greater than or equal to a

In Solo Forth, dfaligned does nothing: it’s an immediate alias of noop.

Origin: Forth-94 (FLOATING EXT), Forth-2012 (FLOATING EXT).

See also: dfalign, faligned, sfaligned, float.

Source file: <src/lib/math.floating_point.rom.fs>.

dfor

dfor "d-for"
 Compilation: (R: -- dest)
 Run-time: (ud --)

Start of a dfor..dstep loop, that will iterate ud+1 times, starting with du and ending with 0.

dfor is an immediate and compile-only word.

The current value of the index can be retrieved with dfor-i.

See also: for, dtimes, ?do, executions.

Source file: <src/lib/flow.dfor.fs>.

dfor-i

dfor-i (-- d) "d-for-i"

Return the current index d of a dfor loop.

Source file: <src/lib/flow.dfor.fs>.

dhz>bleep

318

dhz>bleep (frequency duration1 -- duration2 pitch) "decihertz-to-bleep"

Convert frequency (in dHz, i.e. tenths of hertzs) and duration1 (in ms) to the parameters duration2
pitch needed by bleep.

See also: hz>bleep.

Source file: <src/lib/sound.48.fs>.

di,

di, (--) "d-i-comma"

Compile the Z80 assembler instruction DI.

See also: ei,, im1,, im2,, halt,.

Source file: <src/lib/assembler.fs>.

digit?

digit? (c n -- u true | false) "digit-question"

Convert the ascii character c (using base n) to its binary equivalent u, accompanied by a true flag. If
the conversion is invalid, leave only a false flag.

Origin: fig-Forth’s digit.

Source file: <src/kernel.z80s>.

dip

dip (x1 x2 -- x2 x2)

This word is defined in Z80. Its equivalent definition in Forth is the following:

: dip (x1 x2 -- x2 x2) nip dup ;

See also: nip, dup, tuck, drup.

Source file: <src/lib/data_stack.fs>.

319

discard-key

discard-key (--)

Wait for a valid key and discard it.

Source file: <src/kernel.z80s>.

disk-buffer

disk-buffer (-- a)

A constant. a is the address of the disk buffer. The cell stored at a is the disk buffer identifier.

See also: buffer-data.

Source file: <src/kernel.z80s>.

display-char-bitmap_

display-char-bitmap_ (-- a) "display-char-bitmap-underscore"

Return address a of a Z80 routine that displays the bitmap of a character at given cursor
coordinates.

Input registers:

• HL = address of the character bitmap

• B = y coordinate (0..23)

• C = x coordinate (0..31)

Source file: <src/lib/graphics.udg.fs>.

display>tape-file

display>tape-file (ca len --) "display-to-tape-file"

Write the display memory into a tape file ca len.

See also: tape-file>display, >tape-file.

Source file: <src/lib/tape.fs>.

320

djnz,

djnz, (a --) "d-j-n-z-comma"

Compile the Z80 assembler instruction DJNZ n, being n an offset from the current address to address
a.

See also: ?jr,, dec,.

Source file: <src/lib/assembler.fs>.

dl

dl (--)

A command of gforth-editor: delete a line at the cursor position.

See also: d c m r, y, l.

Source file: <src/lib/prog.editor.gforth.fs>.

dmax

dmax (d1 d2 -- d3) "d-max"

d3 is the lesser of d1 and d2.

Origin: Forth-79 (Double Number Word Set), Forth-83 (Double Number Extension Word Set), Forth-
94 (DOUBLE), Forth-2012 (DOUBLE).

See also: dmin, max, umax.

Source file: <src/lib/math.operators.2-cell.fs>.

dmin

dmin (d1 d2 -- d3) "d-min"

d3 is the greater of d1 and d2.

Origin: Forth-79 (Double Number Word Set), Forth-83 (Double Number Extension Word Set), Forth-
94 (DOUBLE), Forth-2012 (DOUBLE).

See also: dmax, min, umin.

Source file: <src/lib/math.operators.2-cell.fs>.

321

dnegate

dnegate (d1 -- d2) "d-negate"

Negate d1, giving its arithmetic inverse d2.

Origin: Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE), Forth-2012
(CORE).

See also: negate, ?dnegate.

Source file: <src/kernel.z80s>.

do

do
 Compilation: (-- do-sys)

Compile (do and leave do-sys to be consumed by loop or +loop.

do is an immediate and compile-only word.

Origin: Forth-94 (CORE), Forth-2012 (CORE).

See also: ?do, -do.

Source file: <src/lib/flow.do.fs>.

do>

do> "do-from"
 Compilation: (C: dest -- orig dest)

Part of the {do control structure.

Source file: <src/lib/flow.dijkstra.fs>.

docolon

docolon (-- a) "do-colon"

A constant. a is the address of the colon interpreter.

dolocon is used by does>.

Source file: <src/kernel.z80s>.

322

doer

doer ("name" --)

Define a word name whose action is configurable. By default name executes doer-noop, which does
nothing.

The action of name can be changed by make.

NOTE doer is superseded by the standard word defer.

Source file: <src/lib/flow.doer.fs>.

doer-noop

doer-noop (--)

Do nothing. does-noop is an empty colon definition which is the default action of words created by
doer.

Source file: <src/lib/flow.doer.fs>.

does>

does> "does"
 Compilation: (--)
 Run-time: (--) (R: nest-sys --)

Define the execution-time action of a word created by a high-level defining word. Used in the form:

: namex ... create ... does> ... ;

namex name

where create could be also any user defined word which executes create.

does> marks the termination of the defining part of the defining word namex and then begins the
definition of the execution-time action for words that will later be defined by namex. When name is
later executed, the address of name's parameter field is placed on the stack and then the sequence
of words between does> and ; are executed.

does> is an immediate and compile-only word.

Definition:

323

: does> \ Compilation: (--)
 \ Run-time: (--) (R: nest-sys --)
 postpone (;code docolon call, ; immediate compile-only

Detailed description:

Compilation:

Append the run-time semantics below to the current definition. Append the initiation semantics
given below to the current definition.

Run-time:

Replace the execution semantics of the most recent definition, referred to as name, with the name
execution semantics given below. Return control to the calling definition specified by nest-sys1.

Initiation: (i*x -- i*x dfa) (R: -- nest-sys2)

Save information nest-sys2 about the calling definition. Place name's data field address dfa on the
stack. The stack effects i*x represent arguments to name.

name execution: (i*x -- j*x)

Execute the portion of the definition that begins with the initiation semantics appended by the
does> which modified name. The stack effects i*x and j*x represent arguments to and results from
name, respectively.

Origin: Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE), Forth-2012
(CORE).

See also: ;, ;code, create, (;code, call,.

Source file: <src/kernel.z80s>.

don’t

don't (n1 n2 -- | n1 n2)

If n1 equals n2, remove them and exit the definition that called don’t, else leave n1 n2 on the stack.

don’t is a compile-only word.

don’t is intended to be used before do, as an alternative to ?do, when the do-loop structure is
factored in its own word.

Usage example:

324

: (.range (n1 n2 --) don't do i . loop ;
: .range (n1 n2 --) (.range ;

don’t is superseded by the standard word ?do.

Source file: <src/lib/flow.MISC.fs>.

dor

dor (xd1 xd2 -- xd3) "d-or"

xd3 is the bit-by-bit inclusive-or of xd1 and xd2.

See also: or, dxor, dand.

Source file: <src/lib/math.operators.2-cell.fs>.

dos

dos (-- ca len)

Return the name of the DOS in string ca len. It can be "+3DOS", "G+DOS" or "TR-DOS".

See also: g+dos, tr-dos, +3dos.

Source file: <src/kernel.z80s>.

dos-alt-a-preserve-ip_

dos-alt-a-preserve-ip_ (-- a) "dos-alt-A-preserve-I-P-underscore"

Address of a routine that executes the TR-DOS command hold in the A' register, preserving the
Forth IP (the BC register). This routine used when the B register is not a parameter of the DOS
routine.

Input:
 A' =TR-DOS command code ($00..$18)
 A, DE, HL = possible parameters, depending on the command
Output (no error):
 A = 0
 Fz = 1
Output (error):
 A = TR-DOS error code (1..12)
 Fz = 0

325

See also: dos-c_, dos-hl_, dos-alt-a_, dos-alt-a-restore-ip_.

Source file: <src/kernel.trdos.z80s>.

dos-alt-a-restore-ip_

dos-alt-a-restore-ip_ (-- a) "dos-alt-A-restore-I-P-underscore"

Address of a routine that executes the TR-DOS command hold in the A' register, restoring the Forth
IP at the end, which must be pushed on the stack before calling this routine.

This routine must be used when the B register is a parameter of the TR-DOS command.

Input:
 A' = TR-DOS command code ($00..$18)
 (SP) = Forth IP
 A, B DE, HL = possible parameters, depending on the command
Output (no error):
 A = 0
 BC = Forth IP
 Fz = 1
Output (error):
 A = TR-DOS error code (1..12)
 BC = Forth IP
 Fz = 0

See also: dos-c_, dos-hl_, dos-alt-a-preserve-ip_, dos-alt-a_.

Source file: <src/kernel.trdos.z80s>.

dos-alt-a_

dos-alt-a_ (-- a) "dos-alt-A-underscore"

Address of a routine that executes the TR-DOS command hold in the A' register.

Input:
 A' = TR-DOS command code ($00..$18)
 A, B, DE, HL = possible parameters, depending on the command
Output (no error):
 A = 0
 Fz = 1
Output (error):
 A = TR-DOS error code (1..12)
 Fz = 0

326

See also: dos-c_, dos-hl_, dos-alt-a-preserve-ip_, dos-alt-a-restore-ip_.

Source file: <src/kernel.trdos.z80s>.

dos-c_

dos-c_ (-- a) "dos-C-underscore"

Address of a routine that executes the TR-DOS command hold in the C register.

Input:
 C = TR-DOS command code ($00..$18)
 A, B, DE, HL = possible parameters, depending on the command
Output (no error):
 A = 0
 Fz = 1
Output (error):
 A = TR-DOS error code (1..12)
 Fz = 0

See also: dos-hl_, dos-alt-a_, dos-alt-a-preserve-ip_, dos-alt-a-restore-ip_.

Source file: <src/kernel.trdos.z80s>.

dos-hl_

dos-hl_ (-- a) "dos-H-L-underscore"

Address of a routine that executes the TR-DOS routine hold in the HL register.

Input:
 HL = TR-DOS routine address
Output (no error):
 A = 0
 Fz = 1
Output (error):
 A = TR-DOS error code (1..12)
 Fz = 0

See also: dos-c_, dos-alt-a_, dos-alt-a-preserve-ip_, dos-alt-a-restore-ip_.

Source file: <src/kernel.trdos.z80s>.

dosior>ior

327

dosior>ior (dosior -- ior) "dos-I-O-R-to-I-O-R"

Convert a DOS ior to a Forth ior.

dosior>ior is written in Z80. Its equivalent definition in Forth is the following:

: dosior>ior (dosior -- ior)
 dup if 1000 + negate then ;

See also: pushdosior.

Source file: <src/kernel.trdos.z80s>.

dovocabulary

dovocabulary (--) "do-vocabulary"

Change the behaviour of the latest word defined: Replace the first word list in the search order with
the wid stored in its body.

Definition:

: dovocabulary (--) does> (--) (dfa) @ context ! ;

See also: vocabulary, wordlist>vocabulary, wordlist.

Source file: <src/kernel.z80s>.

do}

do} "do-curly-bracket"
 Compilation: (C: orig dest --)
 Run-time: (--)

Terminate a {do control structure.

Source file: <src/lib/flow.dijkstra.fs>.

dp

dp (-- a) "d-p"

A user variable. a is the address of a cell containing the data-space pointer. The value may be read

328

by here and altered by there and allot.

Origin: fig-Forth.

Source file: <src/kernel.z80s>.

dpast?

dpast? (ud -- f) "d-past-question"

Return true if the dticks clock has passed ud.

Usage example: The following word will execute the hypothetical word test for ud clock dticks:

: dtry (ud --)
 dticks + begin test 2dup dpast? until 2drop ;

Origin: lina’s past?.

See also: past?, delapsed, dtimer.

Source file: <src/lib/time.fs>.

dpl

dpl (-- a) "d-p-l"

A user variable. a is the address of a cell containing the number of places after the decimal point on
double-integer input conversion.

If dpl contains zero, the decimal point is the last character. The default value of dpl on single-
number input is -1.

Origin: fig-Forth, Forth-83 (Uncontrolled Reference Words).

See also: number-point?, >number, number?.

Source file: <src/kernel.z80s>.

drive

drive (c1 -- c2)

Convert drive number c1 (0 index) to actual drive identifier c2 (DOS dependent).

drive is used in order to make the code portable, abstracting the DOS drive identifiers.

329

Usage example:

\ Set the second disk drive as default:

2 set-drive \ on G+DOS only
1 set-drive \ on TR-DOS only
'B' set-drive \ on +3DOS only

1 drive set-drive \ on any DOS -- portable code

See also: set-drive, first-drive, max-drives.

Source file: <src/lib/dos.COMMON.fs>.

drop

drop (x --)

Remove x from the stack.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: 2drop, nip.

Source file: <src/kernel.z80s>.

drop-type

drop-type (ca len x --)

Remove x from the stack and display the string ca len.

drop-type is one of the possible actions of type-right-field and type-center-field.

Source file: <src/lib/display.type.fs>.

drup

drup (x1 x2 -- x1 x1)

This word is defined in Z80. Its equivalent definition in Forth is the following:

: drup (x1 x2 -- x1 x1) drop dup ;

330

See also: dup, tuck, nup, dip.

Source file: <src/lib/data_stack.fs>.

dstep

dstep "d-step"
 Compilation: (dest --)
 Run-time: (R: ud -- ud' |)

dstep is an immediate and compile-only word.

Compilation:

Append the run-time semantics given below to the current definition. Resolve the destination dest
of dfor.

Run-time:

If the loop index ud is zero, discard the loop parameters and continue execution after the loop.
Otherwise decrement the loop index and continue execution at the beginning of the loop.

Source file: <src/lib/flow.dfor.fs>.

dticks

dticks (-- ud) "d-ticks"

Return the current count of clock ticks ud, which is updated by the OS.

NOTE
dticksreturns the OS frames counter, which is increased by the OS interrupts
routine every 20th ms. The counter is a 24-bit value.

See also: ticks, set-dticks, reset-dticks, ticks/second, dticks>seconds, bench{.

Source file: <src/lib/time.fs>.

dticks>cs

dticks>cs (d1 -- d2) "d-ticks-to-cs"

Convert clock ticks d1 to centiseconds d2.

See also: ticks>cs, dticks>seconds, dticks>ms, ticks/second, ticks.

Source file: <src/lib/time.fs>.

331

dticks>ms

dticks>ms (d1 -- d2) "d-ticks-to-ms"

Convert clock ticks d1 to milliseconds d2.

See also: ticks>ms, dticks>seconds, dticks>cs, ticks/second, ticks.

Source file: <src/lib/time.fs>.

dticks>seconds

dticks>seconds (d -- n) "d-ticks-to-seconds"

Convert clock ticks d to seconds n.

See also: ticks>seconds, dticks>cs, dticks>ms, ticks/second, ticks.

Source file: <src/lib/time.fs>.

dtimer

dtimer (d --) "d-timer"

For the time d in dticks display the elapsed time since then, also in dticks.

See also: timer, delapsed.

Source file: <src/lib/time.fs>.

dtimes

dtimes (d --) "d-times"

Repeat the next compiled instruction d times. If d is zero, continue executing the following
instruction.

This structure is not nestable.

Usage example:

: blink (--) 7 0 ?do i border loop 0 border ;
: blinking (--) 100000. dtimes blink ." Done" cr ;

See also: times, executions, dfor, ?do.

332

Source file: <src/lib/flow.times.fs>.

du/mod

du/mod (ud1 ud2 -- ud3 ud4) "d-u-slash-mod"

Divide ud1 by ud2, giving the remainder ud3 and the quotient ud4.

See also: um/mod, /mod ,*/mod.

Source file: <src/lib/math.operators.2-cell.fs>.

du<

du< (ud1 ud2 -- f) "d-u-less"

f is true only if and only if du1 is less than du2.

Origin: Forth-79 (Double Number Word Set), Forth-83 (Double Number Extension Word Set), Forth-
94 (DOUBLE EXT), Forth-2012 (DOUBLE EXT).

See also: d<, <, dmin.

Source file: <src/lib/math.operators.2-cell.fs>.

dump

dump (ca len --)

Show the contents of len bytes from ca.

Source file: <src/lib/tool.dump.fs>.

dump-fs

dump-fs (F: i*r -- i*r)

See also: .fs.

Source file: <src/lib/math.floating_point.rom.fs>.

dump-wordlist

dump-wordlist (wid --)

333

Dump the data of the wordlist identified by wid, with labels: its associated name (or, if none, just
the wid) and the name of the latest definition created in the word list.

See also: .wordlist, dump-wordlists, wordlist>last, .name.

Source file: <src/lib/tool.list.word_lists.fs>.

dump-wordlists

dump-wordlists (--)

Dump the data of all the word lists defined in the system, starting from the wordlist pointed by
last-wordlist.

See also: dump-wordlist, dump-wordlists>, wordlists.

Source file: <src/lib/tool.list.word_lists.fs>.

dump-wordlists>

dump-wordlists> (wid --) "dump-wordlists-from"

Dump the data of all the word lists defined in the system, starting from the wordlist identified by
wid.

dump-wordlists> is a useful factor of dump-wordlists.

See also: dump-wordlist, wordlists, wordlist>link.

Source file: <src/lib/tool.list.word_lists.fs>.

dup

dup (x -- x x)

Duplicate x.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: ?dup, 2dup, tuck, over, 0dup, -dup, nup, 3dup, dup>r.

Source file: <src/kernel.z80s>.

dup>r

334

dup>r (x -- x) (R: -- x) "dup-to-r"

Move a copy of x to the return stack. dup>r is a faster alternative to the idiom dup >r.

Origin: IsForth.

See also: dup, >r`.

Source file: <src/lib/return_stack.fs>.

dxor

dxor (xd1 xd2 -- xd3) "d-x-or"

xd3 is the bit-by-bit exclusive-or of xd1 and xd2.

See also: xor, dor, dand.

Source file: <src/lib/math.operators.2-cell.fs>.

dzx7m

dzx7m (a1 a2 --) "d-z-x-seven-m"

Decompress data, which has been compressed by ZX7, from a1 and copy the result to a2.

dzx7m is the port of the ZX7 decompressor, "Mega" version, written by Einar Saukas.

dzx7m is the fastest (30% faster than dzx7s) but biggest (251 bytes) version of the decompressor. dzx7s
and dzx7t are smaller but slower. See a comparation table in dzx7s.

For more information, see ZX7 in World of Spectrum.

Source file: <src/lib/decompressor.zx7.fs>.

dzx7s

dzx7s (a1 a2 --) "d-z-x-seven-s"

Decompress data, which has been compressed by ZX7, from a1 and copy the result to a2.

dzx7s is the port of the ZX7 decompressor, "Standard" version, written by Einar Saukas, Antonio
Villena & Metalbrain.

dzx7s is the smallest but slowest version of the decompressor. dzx7t and dzx7m are bigger but faster:

Table 19. Comparation of ZX7 decompressors.

335

http://www.worldofspectrum.org/infoseekid.cgi?id=0027996

Decompressor

Size in bytes

Relative speed

dzx7s

87

100

dzx7t

97

125

dzx7m

251

130

For more information, see ZX7 in World of Spectrum.

Source file: <src/lib/decompressor.zx7.fs>.

dzx7t

dzx7t (a1 a2 --) "d-z-x-seven-t"

Decompress data, which has been compressed by ZX7, from a1 and copy the result to a2.

dzx7t is the port of the ZX7 decompressor, "Turbo" version, written by Einar Saukas & Urusergi.

dzx7t is 25% faster than dzx7s, and needs only 10 more bytes (97 bytes in total). dzx7m is bigger but
faster. See a comparation table in dzx7s.

For more information, see ZX7 in World of Spectrum.

Source file: <src/lib/decompressor.zx7.fs>.

e

e

e (-- reg)

Return the identifier reg of the Z80 assembler register "E".

See also: a, b, c, d, h, l, m, ix, iy, sp.

336

http://www.worldofspectrum.org/infoseekid.cgi?id=0027996
http://www.worldofspectrum.org/infoseekid.cgi?id=0027996

Source file: <src/lib/assembler.fs>.

e

e (n --)

A command of specforth-editor: Erase line n with blanks.

See also: b, c, d, f, h, i, l, m, n, p, r, s, t, x, c/l, blank, update.

Source file: <src/lib/prog.editor.specforth.fs>.

e-bank_

e-bank_ (-- a) "e-bank-underscore"

Return address a of a routine that pages in the bank hold in the E register. This routine is a
secondary entry point of default-bank.

• Input: E = bank

• Output: A corrupted

See also: default-bank_.

Source file: <src/lib/memory.far.fs>.

e>

e> (a -- x) "e-from"

Move x from the extra stack a defined with estack to the data stack.

See also: >e, e@.

Source file: <src/lib/data.estack.fs>.

e@

e@ (a -- x) "e-fetch"

Copy x from the estack a to the data stack.

See also: e>, >e.

Source file: <src/lib/data.estack.fs>.

337

edepth

edepth (a -- n) "e-depth"

Return size n in cells of an estack a.

Source file: <src/lib/data.estack.fs>.

edit-sound

edit-sound (ca --)

Start a simple editor to edit the 14-byte 128K-sound definition stored at ca. Instructions are
displayed.

Usage example:

need train-sound need >body
' train-sound >body edit-sound

See also: sound, play.

Source file: <src/lib/prog.app.edit-sound.fs>.

editor

editor (--)

Replace the first entry in the search order with the word list associated to the block editor.

editor is a deferred word (see defer). Its action can be gforth-editor or specforth-editor. When any
of these editors is loaded, editor is updated accordingly.

Source file: <src/lib/prog.editor.COMMON.fs>.

ei,

ei, (--) "e-i-comma"

Compile the Z80 assembler instruction EI.

See also: di,, im1,, im2,, halt,.

Source file: <src/lib/assembler.fs>.

338

either

either (x1 x2 x3 -- f)

Return true if x1 equals either x2 or x3; else return false.

Origin: IsForth.

See also: neither, ifelse, any?.

Source file: <src/lib/math.operators.1-cell.fs>.

elapsed

elapsed (u1 -- u2)

For the time u1 in ticks return the elapsed time u2 since then, also in ticks.

See also: timer, delapsed, ticks>seconds, ticks>cs, ticks>ms.

Source file: <src/lib/time.fs>.

else

else
 Compilation: (C: orig1 -- orig2)
 Run-time: (--)

Compilation: Resolve the forward reference orig1, usually left by if. Put the location of a new
unresolved forward reference orig2 onto the control-flow stack, usually to be resolved by then.

Run-time: Continue execution at the location specified by the resolution of orig2.

else is an immediate and compile-only word.

Definition:

: else \ Compilation: (C: orig1 -- orig2)
 \ Run-time: (--)
 ahead cs-swap then ; immediate compile-only

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: ahead, cs-swap.

Source file: <src/kernel.z80s>.

339

emit

emit (x --)

If x is a graphic character in the character set used by the current display mode, display it. If x is a
control character used by the current display mode, manage it.

emit is a deferred word (see defer) whose default action is mode-32-emit.

Origin: Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE), Forth-2012
(CORE).

See also: current-mode, emit-udg, g-emit-udg.

Source file: <src/kernel.z80s>.

emit-ascii

emit-ascii (c --)

Convert character c with >graphic-ascii-char, then emit it.

See also: type-ascii, fartype-ascii.

Source file: <src/lib/display.type.fs>.

emit-udg

emit-udg (c|n --) "emit-u-d-g"

Display the UDG c|n from the current UDG set, which is pointed by os-udg.

NOTE
The usual parameter is c (0 .. 255), but no check is done: If a 16-bit value n is
received instead, it will be used to calculate the address of the corresponding
character bitmap in the UDG set.

WARNING
emit-udg gets the cursor position and the current screen address from the OS
variables. Therefore, it works only in display modes that use the ROM printing
routines and keep those variables updated, like mode-32 and mode-32iso.

See also: set-udg, emit-udga, emit, mode-32-emit, g-emit-udg, last-font-char.

Source file: <src/kernel.z80s>.

340

emit-udga

emit-udga (ca --) "emit-u-d-g-a"

Display the UDG defined at ca, i.e, the 8 bytes of the UDG are stored at ca, in the usual ZX Spectrum
font/UDG format: the first byte is the top scan.

WARNING
emit-udga gets the cursor position and the current screen address from the OS
variables. Therefore, it works only in display modes that use the ROM printing
routines and keep those variables updated, like mode-32 and mode-32iso.

See also: emit-udg, emit, mode-32-emit.

Source file: <src/kernel.z80s>.

emits

emits (c n --)

If n is greater than zero, display n characters c.

Definition:

: emits (c n --) 0 max 0 ?do dup emit loop drop ;

Source file: <src/kernel.z80s>.

empty-buffers

empty-buffers (--)

Unassign all block buffers. Do not transfer the contents of any updated block to mass storage.

Definition:

: empty-buffers (--) $7FFF disk-buffer ! ;

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Controlled Reference Words), Forth-94
(BLOCK EXT), Forth-2012 (BLOCK EXT).

See also: update, flush, disk-buffer.

Source file: <src/kernel.z80s>.

341

empty-fs

empty-fs (--) "empty-f-s"

Empty the floating-point stack, by storing the content of fp0 into fp.

Source file: <src/lib/math.floating_point.rom.fs>.

empty-heap

empty-heap (--)

Empty the current heap, which was created by allot-heap, limit-heap, bank-heap or farlimit-heap.

empty-heap is a deferred word (see defer) whose action can be charlton-empty-heap or gil-empty-
heap, depending on the heap implementation used by the application.

Source file: <src/lib/memory.allocate.COMMON.fs>.

empty-stack

empty-stack (--)

Empty the data stack.

Definition:

: empty-stack (--) sp0 @ sp! ;

See also: sp0, sp!, (abort.

Source file: <src/kernel.z80s>.

empty-stringer

empty-stringer (--)

Empty the stringer, by initializing +stringer with /stringer. The contents of the stringer are not
modified.

Definition:

: empty-stringer (--) /stringer +stringer ! ;

342

See also: default-stringer.

Source file: <src/kernel.z80s>.

end-asm

end-asm (--)

Exit the assembler mode started by asm.

Definition:

: end-asm (--) ?csp previous abase @ base ! ;

See also: end-code, ?csp, previous, abase, base.

Source file: <src/kernel.z80s>.

end-calc

end-calc (--)

Compile the end-calc ROM calculator command:

db $38 ; exit the ROM calculator

See also: end-calculator.

Source file: <src/lib/math.calculator.fs>.

end-calculator

end-calculator (--)

Stop compiling ROM calculator commands: Restore the search order and compile the following
assembly instructions to exit the ROM calculator:

db $38 ; ``end-calc`` ROM calculator command
pop bc ; restore the Forth IP

See also: end-calc.

Source file: <src/lib/math.calculator.fs>.

343

end-calculator-flag

end-calculator-flag (-- f) (F: 1|0 --)

A Z80 macro that compiles code to exit the ROM calculator and convert a flag calculated by it (1|0) to
a well-formed flag on the data stack.

end-calculator-flag is a common factor of all floating-point logical operators.

See also: calculator-command.

Source file: <src/lib/math.floating_point.rom.fs>.

end-class

end-class (class methods vars "name" --)

End the definition of a class.

Source file: <src/lib/objects.mini-oof.fs>.

end-code

end-code (--)

Terminate a code definition started by code or ;code.

Definition:

: end-code (--) end-asm reveal ;

Origin: Forth-83 (Assembler Extension Word Set).

See also: end-asm, reveal.

Source file: <src/kernel.z80s>.

end-data

end-data (n orig --)

Finish the definition started by data, calculating the number of data items of n bytes that were
compiled and store it at orig.

Source file: <src/lib/data.data.fs>.

344

end-internal

end-internal (-- a)

End internal (private) definitions. Return the current value of the headers pointer, which is the xtp
(execution token pointer) of the next word defined.

The start of the internal definitions was marked by internal. The internal definitions can be
unlinked by unlink-internal or hidden by hide-internal.

Source file: <src/lib/modules.internal.fs>.

end-module

end-module (parent-wid --)

End a module definition. All module internal words are no longer accessible. Only words that have
been exported with export are still available.

Source file: <src/lib/modules.module.fs>.

end-package

end-package (wid0 wid1 --)

End the current package, which was started by package.

wid1 is the word list of the current package; wid0 is the word list in which the current package was
created.

Origin: SwiftForth.

See also: public, private.

Source file: <src/lib/modules.package.fs>.

end-program

end-program (--)

Mark the end of a program that is being loaded by load-program.

See also: loading-program.

Source file: <src/lib/blocks.fs>.

345

end-seclusion

end-seclusion (wid1 wid2 --)

End a seclusion module.

See also: -seclusion, +seclusion.

Source file: <src/lib/modules.MISC.fs>.

end-stringtable

end-stringtable (a1 a2 --)

End a named stringtable, consuming a1 (containing the address of the strings index) and a2 (the
address of the compiled strings), which were left by begin-stringtable. Create the strings index by
traversing the compiled strings and update its address in a1.

See begin-stringtable for a usage example.

Source file: <src/lib/data.begin-stringtable.fs>.

end-structure

end-structure (struct-sys +n --)

Terminate definition of a structure started by begin-structure.

Origin: Forth-2012 (FACILITY EXT).

Source file: <src/lib/data.begin-structure.fs>.

end-transient

end-transient (--)

End the transient code started by transient. end-transient must be used after compiling the
transient code.

The inner operation is: Restore the old values of dp, np, limit and farlimit.

See also: forget-transient.

Source file: <src/lib/modules.transient.fs>.

346

end?ccase

end?ccase "end-question-case"
 Compilation: (C: orig --)
 Run-time: (--)

End of a ?ccase control structure. See ?ccase for a usage example.

end?ccase is an immediate and compile-only word.

Source file: <src/lib/flow.ccase.fs>.

endcase

endcase
 Compilation: (C: 0 orig#1 ... orig#n --)
 Run-time: (x --)

endcase is an immediate and compile-only word.

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: thens.

Source file: <src/lib/flow.case.fs>.

endccase

endccase "end-c-case"
 Compilation: (C: orig1 orig2 --)
 Run-time: (--)

End of a ccase control structure. See ccase for a usage example.

endccase is an immediate and compile-only word.

Source file: <src/lib/flow.ccase.fs>.

endccase0

endccase0 "end-c-case-zero"
 Compilation: (C: orig --)
 Run-time: (--)

End of a ccase0 control structure. See ccase0 for a usage example.

347

endcase0 is an immediate and compile-only word.

Source file: <src/lib/flow.ccase.fs>.

endm

endm (--) "end-m"

Finish the definition of an assembler macro.

endm is an immediate word.

See also: end-asm, code.

Source file: <src/lib/assembler.macro.fs>.

endof

endof
 Compilation: (C: orig1 -- orig2)
 Run-time: (--)

Compilation: Mark the end of an of clause (or any of its variants) of the case structure. Resolve the
forward reference orig1, usually left by of. Put the location of a new unresolved forward reference
orig2 onto the control-flow stack, usually to be resolved by endcase.

Run-time: Continue execution at the location specified by the consumer of orig2.

endof is equivalent to else.

endof is an immediate and compile-only word.

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

Source file: <src/lib/flow.case.fs>.

entry:

entry: (x wid "name" --) "entry-colon"

Create a cell entry name in the associative-list wid, with value x.

See also: centry:, 2entry:, sentry:, create-entry.

Source file: <src/lib/data.associative-list.fs>.

348

enum

enum (n "name" -- n+1)

Create a constant name with value n and return n+1.

Usage example:

0 enum first
 enum second
 enum third
 enum fourth
drop

See also: cenum, enumcell.

Source file: <src/lib/data.MISC.fs>.

enumcell

enumcell (n "name" -- n+cell) "enum-cell"

Create a constant name with value n and return n+cell.

Usage example:

0 enumcell first
 enumcell second
 enumcell third
 enumcell fourth
drop

See also: enum.

Source file: <src/lib/data.MISC.fs>.

environment-wordlist

environment-wordlist (-- wid)

A constant. wid is the identifier of the word list where the environmental queries are defined.

See also: environment?.

Source file: <src/lib/environment-question.fs>.

349

environment?

environment? (ca len -- false | i*x true) "environment-question"

The string ca len is the identifier of an environmental query. If the string is not recognized, return a
false flag. Otherwise return a true flag and some information about the query.

Table 20. Environmental Query String

String Value data
type

Constant? Meaning

/COUNTED-STRING n yes maximum size of a counted string, in characters

/HOLD n yes size of the pictured numeric output string
buffer, in characters

/PAD n yes size of the scratch area pointed to by PAD, in
characters

ADDRESS-UNIT-BITS n yes size of one address unit (one byte), in bits

FLOORED flag yes true if floored division is the default

MAX-CHAR u yes maximum value of any character in the
implementation-defined character set

MAX-D d yes largest usable signed double number

MAX-N n yes largest usable signed integer

MAX-U u yes largest usable unsigned integer

MAX-UD ud yes largest usable unsigned double number

RETURN-STACK-CELLS n yes maximum size of the return stack, in cells

STACK-CELLS n yes maximum size of the data stack, in cells

Notes:

1. Forth-2012 designates the Forth-94 practice of using environment? to inquire whether a given
word set is present as obsolescent. The Forth-94 environmental strings are not supported in Solo
Forth.

2. In Solo Forth environment queries are also independent ordinary constants accessible by need.

Origin: Forth-2012 (CORE).

See also: environment-wordlist. /counted-string, /pad, address-unit-bits, floored, max-char, max-d,
max-n, max-u, max-ud, return-stack-cells, stack-cells.

Source file: <src/lib/environment-question.fs>.

eol?

350

eol? (c -- f) "e-o-l-question"

If c is one of the characters of newline return true; otherwise return false.

Source file: <src/lib/display.control.fs>.

erase

erase (ca len --)

If len is greater than zero, clear all bits in each ol len consecutive bytes of memory beginning at ca.

Origin: fig-Forth, Forth-83 (Controlled Reference Words), Forth-94 (CORE EXT), Forth-2012 (CORE
EXT).

See also: fill, move.

Source file: <src/kernel.z80s>.

error

error (n --)

Save the throw code n into error#, and the current block and line into error-pos, to be used by where.
Then perform the action required by throw code n as follows:

If n is minus-one (-1), execute (abort.

If n is minus-two (-2), perform the function abort", displaying the message associated with the
abort" that generated the throw.

Otherwise, execute .error-word and .throw to give information about the condition associated with
the throw code n. Subsequently, execute (abort.

error is a factor of throw.

Definition:

: error (n --)
 dup error# !
 >in @ blk @ error-pos 2!
 dup -1 = if (abort then
 dup -2 = if space abort-message 2@ type (abort then
 .error-word .throw (abort ;

See also: abort-message.

351

Source file: <src/kernel.z80s>.

error#

error# (-- a) "error-number-sign"

A variable. a is the address of a cell containing the number of the last error issued by error.

See also: error-pos, where.

Source file: <src/kernel.z80s>.

error-code-warn

error-code-warn (ca len -- ca len) "warn-dot-throw"

If the contents of the user variable warnings is not zero and the word name ca len is already defined
in the current compilation word list, display a throw exception #-257 ("warning: is not unique")
without actually throwing an exception.

error-code-warn is an alternative action of the deferred word warn (see defer).

See also: warnings, error-warn, message-warn, ?warn.

Source file: <src/lib/compilation.fs>.

error-pos

error-pos (-- a)

A 2variable. a is the address of a double cell containing the position of the last error issued by error,
as follows:

• First cell = value of blk

• Second cell = value of >in

See also: error#, where.

Source file: <src/kernel.z80s>.

error-warn

error-warn (ca len -- ca len)

If the contents of the user variable warnings is not zero and the word name ca len is already defined

352

in the current compilation word list, throw an exception #-257 instead of printing a warning
message.

error-warn is an alternative action of the deferred word warn (see defer).

See also: warnings, error-code-warn, message-warn, ?warn.

Source file: <src/lib/compilation.fs>.

error>line

error>line (-n1 -- n2) "error-to-line"

Convert error code -n1 to line n2 relative to the block that contains the error messages.

See also: error>ordinal.

Source file: <src/lib/exception.fs>.

error>ordinal

error>ordinal (-n1 -- +n2) "error-to-ordinal"

Convert an error code n1 to its ordinal position +n2 in the library.

-n1 = -90 ... -1 \ Standard error codes
 -300 ... -256 \ Solo Forth error codes
 -1024 ... -1000 \ DOS error codes
+n2 = 1 ... 146

See also: error>line.

Source file: <src/lib/exception.fs>.

errors-block

errors-block (-- a)

A variable. a is the address of a cell containing the block that holds the error messages.

The variable is initialized during compilation with the first block that contains "Standard error
codes" in its first line.

See also: .throw-message.

Source file: <src/lib/exception.fs>.

353

esc-block-chars-wordlist

esc-block-chars-wordlist (-- wid)

Identifier of the word list that contains the escaped block characters used by the BASin IDE and
other ZX Spectrum tools:

Table 21. Escaped characters defined in esc-block-chars-wordlist.

Escaped notation Default character code

\<space><space> 128

\<space>' 129

\'<space> 130

\'' 131

\<space>. 132

\<space>: 133

\'. 134

\': 135

\.<space> 136

\.' 137

\:<space> 138

\:' 139

\.. 140

\.: 141

\:. 142

\:: 143

In order to make s\", .\" and their common factor parse-esc-string recognize the escaped block
characters, esc-block-chars-wordlist must be pushed to the escaped strings search order. Example:

need set-esc-order
esc-standard-chars-wordlist
esc-block-chars-wordlist 2 set-esc-order

s\" \::\:.\ '\. \nNew line:\.'\:'\'.\: ..." type

The code of the first block character can be modified with the character variable first-esc-block-
char.

See also: first-esc-block-char, set-esc-order, >esc-order, esc-standard-chars-wordlist, esc-udg-
chars-wordlist, parse-esc-string, s\", .\".

354

Source file: <src/lib/strings.escaped.graphics.fs>.

esc-context

esc-context (-- a)

A variable that holds the escaped strings search order: a is the address of an array of cells, whose
maximum length is hold in the max-esc-order constant, and whose current length is hold in the
#esc-order variable. a holds the word list at the top of the search order.

See also: max-esc-order, >esc-order, get-esc-order, set-esc-order.

Source file: <src/lib/strings.escaped.fs>.

esc-previous

esc-previous (--)

Remove the top word list (the word list that is searched first) from the escaped strings search order.

Source file: <src/lib/strings.escaped.fs>.

esc-standard-chars-wordlist

esc-standard-chars-wordlist (-- wid)

Identifier of the word list that contains the words whose names are the standard characters that
must be escaped after a backslash in strings parsed by s\", .\" and other words.

The execution of the words defined in the word list identified by esc-standard-chars-wordlist
returns the new character(s) on the stack (the last one at the bottom) and the count. Example of the
stack effect of a escaped character that returns two characters:

 (-- c[1] c[0] 2)

Most of the escaped characters are translated to one character, so they are defined as double-cell
constants.

Conversion rules:

Table 22. Escaped characters defined in esc-standard-chars-wordlist.

Escaped Name ASCII characters

\a BEL (alert) 7

\b BS (backspace) 8

355

Escaped Name ASCII characters

\e ESC (escape) 27

\f FF (form feed) 12

\l LF (line feed) 10

\m CR/LF 13, 10

\n newline 13

\q double-quote 34

\r CR (carriage return) 13

\t HT (horizontal tab) 9

\v VT (vertical tab) 11

\z NUL (no character) 0

\" double-quote 34

\x<hexdigit><hexdigit> Conversion of the two hexadecimal digits

See also: parse-esc-string, set-esc-order, esc-standard-chars-wordlist, esc-block-chars-wordlist,
esc-udg-chars-wordlist.

Source file: <src/lib/strings.escaped.fs>.

esc-udg-chars-wordlist

esc-udg-chars-wordlist (-- wid)

Identifier of the word list that contains the words whose names are the UDG characters ('A'..'U'), in
upper case, that must be escaped after a backslash in strings parsed by s\", .\" and other words.

The execution of the words defined in the word list identified by esc-udg-chars-wordlist returns the
correspondent UDG character (144..164) and a 1.

In order to make s\", .\" and their common factor parse-esc-string recognize the escaped UDG
characters, esc-udg-chars-wordlist must be pushed on the escaped strings search order. Example:

need set-esc-order
esc-standard-chars-wordlist
esc-udg-chars-wordlist 2 set-esc-order

s\" \A\B\C\D\nNew line:\A\B\C\D..." type

See also: set-esc-order, >esc-order, esc-standard-chars-wordlist, esc-block-chars-wordlist.

Source file: <src/lib/strings.escaped.graphics.fs>.

356

estack

estack (a --) "e-stack"

Init extra stack a. The extra stack will grow towards high memory and the required memory must
be already reserved. No check is done by estack or the other words used to manipulate the extra
stack.

Usage example:

create my-stack 10 cells allot
my-stack estack
100 my-stack >e
my-stack edepth .
my-stack e@ .
my-stack e> .
my-stack edepth .

See also: >e, e@, e>, edepth, xstack.

Source file: <src/lib/data.estack.fs>.

eval

eval (i*x "name" -- j*x)

Parse and evaluate name.

eval is a common factor of [const], [2const] and [cconst].

See also: parse-name.

Source file: <src/lib/compilation.fs>.

evaluate

evaluate (i*x ca len -- j*x)

Save the current input source specification. Store minus-one (-1) in source-id. Make the string
described by ca len both the input source and input buffer, set >in to zero, and interpret. When the
parse area is empty, restore the prior input source specification.

Origin: Forth-94 (CORE), Forth-2012 (CORE).

See also: interpret, execute-parsing.

357

Source file: <src/lib/parsing.fs>.

even?

even? (n -- f) "even-question"

Is n an even number?

even? is written in Z80. Its equivalent definition in Forth is the following:

: even? (n -- f) 1 and 0= ;

See also: odd?.

Source file: <src/lib/math.operators.1-cell.fs>.

exaf,

exaf, (--) "ex-a-f-comma"

Compile the Z80 assembler instruction EX AF, AF'.

See also: exx,, exde,.

Source file: <src/lib/assembler.fs>.

exchange

exchange (a1 a2 --)

Exchange the cells stored at a1 and a2.

See also: cexchange, !exchange.

Source file: <src/lib/memory.MISC.fs>.

exde,

exde, (--) "ex-de-comma"

Compile the Z80 assembler instruction EX DE,HL.

See also: exaf,, exx,.

Source file: <src/lib/assembler.fs>.

358

exec

exec ("name" -- i*x)

Parse name. If name is the name of a word in the current search order, execute it; else throw an
exception #-13 ("undefined word").

See also: possibly, defined, name>, ?throw, execute.

Source file: <src/lib/compilation.fs>.

execute

execute (i*x xt -- j*x)

Execute execution token xt.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: perform.

Source file: <src/kernel.z80s>.

execute-hl,

execute-hl, (--) "execute-h-l-comma"

Compile an execute with the xt hold in the HL register. execute-hl, is used to call Forth words from
code words.

See also: call-xt,, call, call,, assembler.

Source file: <src/lib/assembler.fs>.

execute-parsing

execute-parsing (ca len xt --)

Make ca len the current input source (using string>source), execute xt, and then restore the
previous input source.

See also: evaluate, interpret, nest-source.

Origin: Gforth.

359

Source file: <src/lib/parsing.fs>.

executing?

executing? (-- f) "executing-question"

f is true if state is zero, i.e. the Forth system is not in compilation state.

Definition:

: executing? (-- f) state @ 0= ;

See also: ?executing.

Source file: <src/kernel.z80s>.

executions

executions (xt n --)

Execute xt n times.

See also: times, dtimes.

Source file: <src/lib/flow.MISC.fs>.

exit

exit (--) (R: nest-sys --)

Return control to the calling definition, specified by nest-sys.

Before executing exit within a loop, a program shall discard the loop-control parameters by
executing unloop.

exit is compiled by ;. When words contain and endless loop, the space used by exit can be
recovered using no-exit.

In Solo Forth exit can be used in interpretation mode to stop the interpretation of a block, like fig-
Forth’s ;s.

Origin: fig-Forth’s ;s, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: ?exit, 0exit, -exit, +exit.

360

Source file: <src/kernel.z80s>.

exitcase

exitcase
 Compilation: (C: orig --)
 Run-time: (--)

Part of a thiscase structure.

Compilation: Resolve the forward reference orig, which was left by ifcase.

Run-time: exit the current definition.

exitcase is an immediate and compile-only word.

See also: ifcase, othercase.

Source file: <src/lib/flow.thiscase.fs>.

export

export (parent-wid "name" -- parent-wid)

Make the word named name accessible outside the module currently defined. name will be still
available after end-module.

Source file: <src/lib/modules.module.fs>.

exsp,

exsp, (--) "ex-s-p-comma"

Compile the Z80 assembler instruction EX (SP),HL.

Source file: <src/lib/assembler.fs>.

extend

extend (--)

Change the cold start parameters to extend the system to its current state.

WARNING This word is experimental. See the source code for details.

See also: system-zone, system-size, turnkey.

361

Source file: <src/lib/tool.turnkey.fs>.

extended-number-point?

extended-number-point? (c -- f)
"extended-number-point-question"

Is character c an extended number point? Allowed points are: plus sign, comma, hyphen, period,
slash and colon, after Forth Programmer’s Handbook.

extended-number-point? is an alternative action for the deferred word number-point?, (see defer)
which is used in number?, and whose default action is standard-number-point?.

See also: classic-number-point?.

Source file: <src/lib/math.number.point.fs>.

exx,

exx, (--) "ex-x-comma"

Compile the Z80 assembler instruction EXX.

See also: exde,, exaf,.

Source file: <src/lib/assembler.fs>.

f

f

f ("ccc<eol>" | --)

A command of gforth-editor: Parse ccc, search it and mark it.

See also: m, l, fbuf.

Source file: <src/lib/prog.editor.gforth.fs>.

f

f ("ccc<eol>" --)

A command of specforth-editor: Search forward from the current cursor position until string ccc is
found. The cursor is left at the end of the string and the cursor line is printed. If the string is not

362

found and error message is given and the cursor repositioned to the top of the block.

See also: b, c, d, e, h, i, l, m, n, p, r, s, t, x, text.

Source file: <src/lib/prog.editor.specforth.fs>.

f!

f! (fa --) (F: r --) "f-store"

Store r at fa.

Origin: Forth-94 (FLOATING), Forth-2012 (FLOATING).

See also: f@, f,, !, 2!, c!.

Source file: <src/lib/math.floating_point.rom.fs>.

f,

f, (--) (F: r --) "f-comma"

Reserve data space for one floating-point number and store r in that space.

Origin: Gforth.

See also: f!.

Source file: <src/lib/math.floating_point.rom.fs>.

f.

f. (F: r --)

See also: ., d., .fs.

Source file: <src/lib/math.floating_point.rom.fs>.

f==

f== (-- f) (F: r1 r2 --) "f-equals-equals"

Exact bitwise equality.

Are r1 and r2 exactly identical? Flag f is true if the bitwise comparison of r1 and r2 is succesful.

363

See also: f~.

Source file: <src/lib/math.floating_point.rom.fs>.

f>flag

f>flag (-- f) (F: rf --) "f-to-flag"

Convert a floating-poing flag rf (1|0) to an actual flag f in the data stack.

Source file: <src/lib/math.floating_point.rom.fs>.

f@

f@ (fa --) (F: -- r)

r is the value stored at fa.

Origin: Forth-94 (FLOATING), Forth-2012 (FLOATING).

See also: f!, @, 2@, c@.

Source file: <src/lib/math.floating_point.rom.fs>.

facos

facos (F: r1 -- r2)

See also: fasin, fatan, fcos.

Source file: <src/lib/math.floating_point.rom.fs>.

fade-display

fade-display (--)

Do a screen fade to black, by decrementing the values of paper and ink in a loop.

See also: blackout, attr-cls.

Source file: <src/lib/graphics.display.fs>.

falign

364

falign (--) "f-align"

If the data space is not float aligned, reserve enough space to make it so.

In Solo Forth, falign does nothing: it’s an immediate alias of noop.

Origin: Forth-94 (FLOATING), Forth-2012 (FLOATING).

See also: faligned, sfalign, dfalign, float.

Source file: <src/lib/math.floating_point.rom.fs>.

faligned

faligned (a -- fa) "f-aligned"

fa is the first float-aligned address greater than or equal to a

In Solo Forth, faligned does nothing: it’s an immediate alias of noop.

Origin: Forth-94 (FLOATING), Forth-2012 (FLOATING).

See also: falign, sfaligned, dfaligned, float.

Source file: <src/lib/math.floating_point.rom.fs>.

false

false (-- false)

Return a false flag, a single-cell value with all bits clear.

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: true, 0.

Source file: <src/kernel.z80s>.

far

far (a1 -- a2)

Convert a far-memory address a1 ($0000 .. $FFFF) to its actual equivalent a2 ($C000 .. $FFFF) and
page in the corresponding memory bank, using the configuration at far-banks.

far is written in Z80. Its equivalent definition in Forth is the following:

365

: far (a1 -- a2)
 u>ud /bank um/mod far-banks + c@ bank bank-start + ;

See also: far-hl_, bank.

Source file: <src/kernel.z80s>.

far!

far! (x a --) "far-store"

Store x into far-memory address a.

far! is written in Z80. Its equivalent definition in Forth is the following:

: far! (x a --)
 >r split r@ 1+ far c! r> farc! ;

Faster but larger definition:

: far! (x a --)
 >r split r@ 1+ far c! r> far c! default-bank ;

See also: far-banks.

Source file: <src/kernel.z80s>.

far+!

far+! (n|u a --) "far-plus-store"

Add n|u to the single-cell number at far-memory address a.

See also: farc+!, +!, farc!, far-banks.

Source file: <src/lib/memory.far.fs>.

far,

far, (x --) "far-comma"

Compile x in far-memory headers space.

See also: far-n,, ,, farallot.

366

Source file: <src/lib/memory.far.fs>.

far,"

far," ("ccc<quote>" --) "far-comma-quote"

Parse "ccc" delimited by a double-quote and compile the string in far memory.

See also: fars,, parse, ,". s,, far-banks.

Source file: <src/lib/strings.far.fs>.

far-banks

far-banks (-- ca)

ca is the address of an array of four bytes. It holds the four memory banks used as a virtual 64-KiB
continuous space, called "far memory". Every byte holds the bank number used for a 16-KiB range
of addresses, as follows:

Table 23. Far-memory banks.

Offset Address range Bank

+0 $0000 .. $3FFF 1

+1 $4000 .. $7999 3

+2 $8000 .. $BFFF 4

+3 $C000 .. $FFFF 6

See also: bank, banks, bank-index, far, far@, farc@, far!, farc!, farcount, farplace, fartype, faruppers,
farlimit.

Source file: <src/kernel.z80s>.

far-hl_

far-hl_ (-- a) "far-h-l-underscore"

Address of the far.hl routine of the kernel, which converts the far-memory address ($0000..$FFFF)
hold in the HL register to its actual equivalent ($C000..$FFFF) and page in the corresponding
memory bank.

This is the routine called by far. far-hl_ is used in code words.

Input:

367

• HL = far-memory address ($0000..$FFFF)

Output:

• HL = actual memory address ($C000..$FFFF)

• A DE corrupted

Source file: <src/lib/memory.far.fs>.

far-localized,

far-localized, (x[langs]..x[1] --)

Store a langs number of cells, from x[1] to x[langs] in the far-memory name space, updating np.

far-localized, is an unused alternative to localized,.

Source file: <src/lib/translation.fs>.

far-localized-string

far-localized-string (ca[langs]..ca[1] "name" --)

Create a word name that will return a counted string from ca[langs]..ca[1], depending on lang.

ca[langs]..ca[1], are the far-memory addresses where the strings have been compiled.
ca[langs]..ca[1], are ordered by ISO language code, being TOS the first one.

Note the string returned by name is in far memory, where it’s compiled. Therefore the application
needs fartype or far>stringer to use it. far>localized-string is a variant of far-localized-string
that returns the strings already copied in the stringer.

See also: far>localized-string, localized-string, localized-word, localized-character, langs,
farcount.

Source file: <src/lib/translation.fs>.

far-n,

far-n, (x[u]..x[1] u --) "far-n-comma"

If u is not zero, store u cells x[u]..x[1] into far-memory headers space, being x[1] the first one stored
and x[u] the last one.

See also: far,, n,, farallot.

Source file: <src/lib/memory.far.fs>.

368

far2!

far2! (d a --) "far-two-store"

Store d into far-memory address a.

See also: far2@, far!, farc!, far-banks, 2!.

Source file: <src/lib/memory.far.fs>.

far2@

far2@ (a -- d) "far-two-fetch"

Fetch d from far-memory address a.

See also: far2!, far2@+, far@, farc@, far-banks, 2@.

Source file: <src/lib/memory.far.fs>.

far2@+

far2@+ (a -- a' xd) "far-two-fetch-plus"

Fetch xd from a. Return a', which is a incremented by two cells. This is handy for stepping through
double-cell arrays.

See also: far@+, farc@+, far2@, 2@+. far-banks.

Source file: <src/lib/memory.far.fs>.

far2avariable

far2avariable (n "name" --) "far-two-a-variable"

Create, in far memory, a 1-dimension double-cell variables array name with n elements and the
execution semantics defined below.

name execution:

name (n — a)

Return far-memory address a of element n.

See also: faravariable, farcavariable, 2avariable.

369

Source file: <src/lib/data.array.variable.far.fs>.

far>localized-string

far>localized-string (ca[langs]..ca[1] "name" --)

Create a word name that will return a counted string from ca[langs]..ca[1], depending on lang, and
copied in the stringer.

ca[langs]..ca[1], are the far-memory addresses where the strings have been compiled.
ca[langs]..ca[1], are ordered by ISO language code, being TOS the first one.

See also: far-localized-string, localized-string, localized-word, localized-character, langs,
farcount, far>stringer.

Source file: <src/lib/translation.fs>.

far>sconstant

far>sconstant (ca len "name" --) "far-to-s-constant"

Create a string constant name in far memory with value ca len.

When name is executed, it returns the string ca len in the stringer as ca2 len.

See also: farsconstant.

Source file: <src/lib/strings.far.fs>.

far>sconstants

far>sconstants (0 ca[n]..ca[1] "name" -- n) "far-to-s-constants"

Create a table of string constants name in far memory, using counted strings ca[n]..ca[1], being 0 a
mark for the last string on the stack, and return the number n of compiled strings.

When name is executed, it converts the index on the stack (0..n-1) to the correspondent string ca len
in far memory, and return a copy in the stringer.

Usage example:

370

0 \ end of strings
 np@ far," kvar" \ string 4
 np@ far," tri" \ string 3
 np@ far," du" \ string 2
 np@ far," unu" \ string 1
 np@ far," nul" \ string 0
far>sconstants digitname constant digitnames

cr .(There are) digitnames . .(digit names:)
0 digitname cr type
1 digitname cr type
2 digitname cr type
3 digitname cr type cr

See also: sconstants, farsconstants.

Source file: <src/lib/strings.far.fs>.

far>stringer

far>stringer (ca1 len1 -- ca2 len1) "far-to-stringer"

Save the string ca1 len1, which is in far memory, to the stringer and return it as ca2 len1.

See also: >stringer.

Source file: <src/lib/strings.far.fs>.

far@

far@ (a -- x) "far-fetch"

Fetch x from far-memory address a.

far@ is written in Z80. Its equivalent definition in Forth is the following:

: far@ (a -- x)
 dup 1+ far c@ >r farc@ r> join ;

Faster but larger definition:

: far@ (a -- x)
 dup 1+ far c@ >r far c@ r> join default-bank ;

See also: far-banks.

371

Source file: <src/kernel.z80s>.

far@+

far@+ (a -- a' x) "far-fetch-plus"

Fetch x from far-memory address a. Return a', which is a incremented by one cell. This is handy for
stepping through cell arrays.

See also: farc@+, far@+, far2@+, @+, far-banks.

Source file: <src/lib/memory.far.fs>.

farallot

farallot (n --) "far-allot"

If n is greater than zero, reserve n bytes of headers space. If n is less than zero, release n bytes of
headers space. If n is zero, leave the headers-space pointer unchanged.

See also: farfill, far-banks.

Source file: <src/lib/memory.far.fs>.

faravariable

faravariable (n "name" --) "far-a-variable"

Create, in far memory, a 1-dimension single-cell variables array name with n elements and the
execution semantics defined below.

name execution:

name (n — a)

Return far-memory address a of element n.

See also: far2avariable, farcavariable, avariable.

Source file: <src/lib/data.array.variable.far.fs>.

farc!

farc! (c ca --) "far-c-store"

Store c into far-memory address ca.

372

See also: far-banks.

Source file: <src/kernel.z80s>.

farc+!

farc+! (c ca -) "far-c-plus-store"

Add c to the char at far-memory address ca.

See also: far+!, c+!, farc!, far-banks.

Source file: <src/lib/memory.far.fs>.

farc@

farc@ (ca -- c) "far-c-fetch"

Fetch c from far-memory address ca.

See also: far-banks.

Source file: <src/kernel.z80s>.

farc@+

farc@+ (ca -- ca' c) "far-c-fetch-plus"

Fetch the character c at far-memory address ca. Return ca', which is ca incremented by one
character. This is handy for stepping through character arrays.

See also: far@+, far-banks.

Source file: <src/lib/memory.far.fs>.

farcavariable

farcavariable (n "name" --) "far-c-a-variable"

Create, in far memory, a 1-dimension character variables array name with n elements and the
execution semantics defined below.

name execution:

name (n — ca)

373

Return far-memory address ca of element n.

See also: faravariable, far2avariable, cavariable.

Source file: <src/lib/data.array.variable.far.fs>.

farcount

farcount (ca1 -- ca2 len2)

A variant of count that works with far-memory addresses.

See also: far-banks.

Source file: <src/kernel.z80s>.

fardump

fardump (ca len --) "far-dump"

Show the contents of len bytes from far-memory address ca.

See also: farwdump, dump.

Source file: <src/lib/tool.dump.fs>.

farerase

farerase (ca len --) "far-erase"

If len is greater than zero, clear all bits in each of len consecutive address units of far memory
beginning at ca.

See also: farfill, farallot, far-n,, farc!, far-banks.

Source file: <src/lib/memory.far.fs>.

farfill

farfill (ca len b --) "far-fill"

If len is not zero, store b in each of len consecutive characters of far memory beginning at a.

See also: farerase, farallot, far-n,, farc!, far-banks, fill.

Source file: <src/lib/memory.far.fs>.

374

farlimit

farlimit (-- a)

A variable. a is the address of a cell containing the address above the highest address usable by the
name space (the region addressed by np). Its default value, which is restored by cold, is $0000 on
G+DOS and TR-DOS, and $C000 on +3DOS.

farlimit can be modified by a program in order to reserve a far-memory zone for special purposes.

Origin: Fig-Forth’s limit constant.

See also: farunused, limit, far-banks, fyi, greeting.

Source file: <src/kernel.z80s>.

farlimit-heap

farlimit-heap (n -- a)

Create a heap of n bytes right above farlimit and return its address a. farlimit is moved down n
bytes, and heap-bank is updated with the corresponding bank.

allocate, resize and free page in the corresponding bank at the start and restore the default bank
at the end.

WARNING
The heap must be in one memory bank. Therefore, before executing farlimit-
heap, the application must check that the n bytes below farlimit belong to one
memory bank.

See also: allot-heap, bank-heap, limit-heap, empty-heap.

Source file: <src/lib/memory.allocate.COMMON.fs>.

farlowers

farlowers (ca len --)

A variant of lowers that works in far memory.

See also: far-banks.

Source file: <src/kernel.z80s>.

farplace

375

farplace (ca1 len1 ca2 --)

Store the string ca1 len1 (which must be below memory address $C000) as a counted string at far-
memory address ca2.

See also: far-banks, place.

Source file: <src/kernel.z80s>.

fars,

fars, (ca len --) "fars-comma"

Compile a string in far memory.

See also: farplace, farallot, np@, s,.

Source file: <src/lib/strings.far.fs>.

farsconstant

farsconstant (ca len "name" --) "far-s-constant"

Create a string constant name in far memory with value ca len.

When name is executed, it returns the string ca len in far memory as ca2 len.

See also: far>sconstant.

Source file: <src/lib/strings.far.fs>.

farsconstants

farsconstants (0 ca[n]..ca[1] "name" --) "far-s-constants"

Create a table of string constants name in far memory, using counted strings ca[n]..ca[1], being 0 a
mark for the last string on the stack, and return the number n of compiled strings.

When name is executed, it converts the index on the stack (0..n-1) to the correspondent string ca len
in far memory.

Usage example:

376

0 \ end of strings
 np@ far," kvar" \ string 4
 np@ far," tri" \ string 3
 np@ far," du" \ string 2
 np@ far," unu" \ string 1
 np@ far," nul" \ string 0
farsconstants digitname constant digitnames

cr .(There are) digitnames . .(digit names:)
0 digitname cr fartype
1 digitname cr fartype
2 digitname cr fartype
3 digitname cr fartype cr

See also: sconstants, far>sconstants.

Source file: <src/lib/strings.far.fs>.

farsconstants,

farsconstants, (0 ca[n]..ca[1] "name" -- n) "far-s-constants-comma"

Create a table of string constants name in far memory, using counted strings ca[n]..ca[1], being 0 a
mark for the last string on the stack, and return the number n of compiled strings.

When name is executed, it returns an address that holds the address of the table in far memory.

farconstants, is a common factor of farsconstants and far>sconstants.

Source file: <src/lib/strings.far.fs>.

farsconstants>

farsconstants> (n a -- ca len) "far-s-constants-from"

Return the far-memory string ca len whose address is stored at the n cell of the table a in data
space.

farsconstants> is a factor of farsconstants and far>sconstants.

Source file: <src/lib/strings.far.fs>.

fartype

fartype (ca len --)

377

If len is greater than zero, display the character string ca len, which is stored in the far memory.

See also: far-banks, type, fartype-ascii.

Source file: <src/lib/display.type.fs>.

fartype-ascii

fartype-ascii (ca len --)

If len is greater than zero, display the string ca len, which is stored in far memory, using emit-ascii
to make sure the characters are graphic ASCII characters.

See also: fartype, type-ascii.

Source file: <src/lib/display.type.fs>.

farunused

farunused (-- u)

Return the amount of far-memory space remaining in the region addressed by np, in bytes.

Definition:

: farunused (-- u) farlimit @ np @ - ;

See also: farlimit, unused, os-unused, fyi, greeting.

Source file: <src/kernel.z80s>.

faruppers

faruppers (ca len --) "far-uppers"

Convert string ca len, which is stored in far memory, to uppercase.

See also: uppers, far-banks.

Source file: <src/lib/strings.far.fs>.

farwdump

farwdump (a len --) "far-w-dump"

378

Show the contents of len cells from far-memory address a.

See also: fardump, wdump.

Source file: <src/lib/tool.dump.fs>.

fasin

fasin (F: r1 -- r2)

See also: facos, fatan, fsin.

Source file: <src/lib/math.floating_point.rom.fs>.

fast-get-key?

fast-get-key? (-- f) "fast-get-key-question"

An alternative to key?. It works also when the system interrupts are off. Faster variant with
absolute jumps.

See also: get-key?.

Source file: <src/lib/keyboard.get-key-question.fs>.

fast-gxy>scra_

fast-gxy>scra_ (-- a) "fast-g-x-y-to-s-c-r-a-underscore"

Return address a of a a modified copy of the PIXEL-ADD ROM routine ($22AA), to let the range of
the y coordinate be 0..191 instead of 0..175.

This code is a bit faster than slow-gxy>scra_ because the necessary jump to the ROM is saved and a
useless and a has been removed. But in most cases the speed gain is so small (only 0.01: see set-
pixel-bench, defined in <src/lib/meta.benchmark.MISC.fs>) that it’s not worth the extra space,
including the assembler.

When fast-gxy>scra_ is loaded, it is set as the current action of gxy>scra_.

Input registers:

• C = x cordinate (0..255)

• B = y coordinate (0..191)

Output registers:

• HL = address of the pixel byte in the screen bitmap

379

• A = position of the pixel in the byte address (0..7), note: position 0=bit 7, position 7=bit 0.

See also: gxy176>scra_.

Source file: <src/lib/graphics.pixels.fs>.

fast-pixels

fast-pixels (-- n)

Return the number n of pixels set on the screen. fast-pixels is the default action of pixels.

See also: slow-pixels, bits.

Source file: <src/lib/graphics.pixels.fs>.

fast-random

fast-random (n1 -- n2)

Return a random number n2 from 0 to n1 minus 1.

See also: fast-rnd, random.

Source file: <src/lib/random.fs>.

fast-rnd

fast-rnd (-- u) "fast-r-n-d"

Return a random number u.

fast-rnd generates a sequence of pseudo-random values that has a cycle of 65536 (so it will hit
every single number): f(n+1)=241f(n)+257.

See also: fast-random, rnd.

Source file: <src/lib/random.fs>.

fatan

fatan (F: r1 -- r2)

See also: facos, fasin, ftan.

Source file: <src/lib/math.floating_point.rom.fs>.

380

fbuf

fbuf (-- ca)

Return the address ca of the 100-byte search buffer used by the gforth-editor.

See also: rbuf, ibuf, f.

Source file: <src/lib/prog.editor.gforth.fs>.

fconstant

fconstant ("name" --) (F: r --) "f-constant"

Create a floating-point constant called name with value r.

Origin: Forth-94 (FLOATING), Forth-2012 (FLOATING).

See also: constant, 2constant, cconstant, fvariable.

Source file: <src/lib/math.floating_point.rom.fs>.

fcos

fcos (F: r1 -- r2)

See also: fsin, ftan, facos.

Source file: <src/lib/math.floating_point.rom.fs>.

fda

fda (-- ca) "f-d-a"

Return the address ca of TR-DOS File Descriptor Area, which has the following structure:

Table 24. Structure of the File Descriptor Area.

Offset Bytes Address returned by Contents

+0x0 8 fda-filename File name

+0x8 1 fda-filetype File type ('B, 'C', 'D', '#'…)

+0x9 2 fda-filestart Address (or length of a BASIC program)

+0xB 2 fda-filelength Length in bytes

+0xD 1 fda-filesectors Length in sectors

381

Offset Bytes Address returned by Contents

+0xE 1 fda-filesector First sector of the file on its first track

+0xF 1 fda-filetrack First track of the file

See also: /fda, read-file-descriptor, write-file-descriptor.

Source file: <src/lib/dos.trdos.fs>.

fda-basic?

fda-basic? (-- f) "f-d-a-basic-question"

f is true if fda contains a BASIC program file.

See also: fda-empty?, fda-deleted?.

Source file: <src/lib/dos.trdos.fs>.

fda-deleted?

fda-deleted? (-- f) "f-d-a-deleted-question"

f is true if fda contains a deleted file.

See also: fda-empty?, fda-basic?.

Source file: <src/lib/dos.trdos.fs>.

fda-empty?

fda-empty? (-- f) "f-d-a-empty-question"

f is true if fda is empty, i.e. it’s unused, it does not contain a file descriptor.

See also: fda-deleted?, fda-basic?.

Source file: <src/lib/dos.trdos.fs>.

fda-filedir#

fda-filedir# (-- n ior) "f-d-a-file-dir-slash"

Return the file directory number of the file whose filename is stored at fda (File Descriptor Area). If
the file was successfully found, ior is zero and n is the file directory number. Otherwise ior is the I/O
result code and n is undefined.

382

See also: file-dir#, fda-filestatus.

Source file: <src/lib/dos.trdos.fs>.

fda-filelength

fda-filelength (-- a) "f-d-a-file-length"

Fourth field of fda (File Descriptor Area). a is the address of a cell containing the file length in bytes.

See also: fda-filestart, fda-filesectors.

Source file: <src/lib/dos.trdos.fs>.

fda-filename

fda-filename (-- ca) "f-d-a-filename"

First field of fda (File Descriptor Area). ca is the address of an 8-byte area that holds the filename.

WARNING
The actual filename is a 9-character string formed by the filename stored at
fda-filename and the character stored at fda-filetype.

See also: /filename.

Source file: <src/lib/dos.trdos.fs>.

fda-filesector

fda-filesector (-- ca) "f-d-a-file-sector"

Sixth field of fda (File Descriptor Area). ca is the address of a byte containing the first sector of the
file.

See also: fda-filetrack, fda-filesectors.

Source file: <src/lib/dos.trdos.fs>.

fda-filesectors

fda-filesectors (-- ca) "f-d-a-file-sectors"

Fifth field of fda (File Descriptor Area). ca is the address of a byte containing the file length in
sectors.

383

See also: fda-filetrack, fda-filesector, fda-filelength.

Source file: <src/lib/dos.trdos.fs>.

fda-filestart

fda-filestart (-- a) "f-d-a-file-start"

Third field of fda (File Descriptor Area). a is the address of a cell containing the file start address. If
fda-filetype is 'B' (BASIC program), this cell contains the length of the BASIC program, including its
variables.

See also: fda-filelength.

Source file: <src/lib/dos.trdos.fs>.

fda-filestatus

fda-filestatus (-- a ior) "f-d-a-file-status"

Return the status of the file whose filename is stored at fda. If the file exists, ior is zero and a is fda,
the TR-DOS File Descriptor Area. Otherwise ior is the I/O result code and a is undefined.

See also: file-status.

Source file: <src/lib/dos.trdos.fs>.

fda-filetrack

fda-filetrack (-- ca) "f-d-a-file-track"

Seventh field of fda (File Descriptor Area). ca is the address of a byte containing the first track of the
file.

See also: fda-filesector, fda-filesectors.

Source file: <src/lib/dos.trdos.fs>.

fda-filetype

fda-filetype (-- ca) "f-d-a-file-type"

Second field of fda (File Descriptor Area). ca is the address of a byte containing the filetype
identifier character.

Filetypes recognized by TR-DOS are 'B' for a BASIC program, 'C' for a code file (the default on Solo

384

Forth); 'D' for a BASIC data array; '#' for sequential or random access data files. Only 'C' is in files
created by Solo Forth. The programmer can use any character as filetype identifier.

WARNING

TR-DOS uses the filetype character as the last character (the 9th character) of
fda-filename, i.e. a filename always has 9 characters, and the last one is the
filetype identifier. That’s why fda-filename and fda-filetype are contiguous in
fda. This is important in some cases, e.g. rename-file and delete-file. In Solo
Forth, when a filename does not include the filetype, 'C' (code file) is used as
default filetype.

Source file: <src/lib/dos.trdos.fs>.

fdepth

fdepth (-- +n) "f-depth"

+n is the number of values contained on the floating-point stack.

Origin: Forth-94 (FLOATING), Forth-2012 (FLOATING).

See also: fp0, (fp@ ,float, depth, rdepth.

Source file: <src/lib/math.floating_point.rom.fs>.

fetchhl

fetchhl (-- a) "fetch-h-l"

A constant. a is the address of a secondary entry point in the code of @. The code at a fetches the cell
pointed by the HL register, pushes it onto the stack and then continues at the address returned by
next.

See also: pushhl.

Source file: <src/kernel.z80s>.

field:

field: (n1 "name" -- n2) "field-colon"

Parse name. offset is the first cell aligned value greater than or equal to n1. n2 = offset + 1 cell.

Create a definition for name with the execution semantics defined below.

name execution: (a1 -- a2)

Add the offset calculated during the compile-time action to a1 giving the address a2.

385

Origin: Forth-2012 (FACILITY EXT).

See also: begin-structure, +field.

Source file: <src/lib/data.begin-structure.fs>.

file-dir#

file-dir# (ca len -- n ior) "file-dir-slash"

Return the file directory number of the file named in the character string ca len. If the file was
successfully found, ior is zero and n is the file directory number. Otherwise ior is the I/O result code
and n is undefined.

See also: file-status, fda-filedir#.

Source file: <src/lib/dos.trdos.fs>.

file-exists?

file-exists? (ca len -- f) "file-exists-question"

If the file named in the character string ca len is found, f is true. Otherwise f is false.

See also: file-status.

Source file: <src/lib/dos.trdos.fs>.

file-length

file-length (ca1 len1 -- len2 ior)

Return the file length of the file named in the character string ca1 len1. If the file was successfully
found, ior is zero and len2 is the file length. Otherwise len2 is undefined and ior is the I/O result
code.

See also: file-status, fda-filelength.

Source file: <src/lib/dos.trdos.fs>.

file-sector

file-sector (ca len -- n ior)

Return the first sector of the first track of the file named in the character string ca len. If the file was
successfully found, ior is zero and n is the sector. Otherwise ior is the I/O result code and n is

386

undefined.

See also: file-status, fda-filesector.

Source file: <src/lib/dos.trdos.fs>.

file-sectors

file-sectors (ca len -- n ior)

Return the sectors occupied by the file named in the character string ca len. If the file was
successfully found, ior is zero and n is the length in sectors. Otherwise ior is the I/O result code and
n is undefined.

See also: file-status, fda-filesectors.

Source file: <src/lib/dos.trdos.fs>.

file-start

file-start (ca1 len1 -- ca2 ior)

Return the file start address of the file named in the character string ca1 len1. If the file was
successfully found, ior is zero and ca2 is the start address. Otherwise ior is the I/O result code. and
ca2 is undefined.

See also: file-status, fda-filestart.

Source file: <src/lib/dos.trdos.fs>.

file-status

file-status (ca len -- a ior)

Return the status of the file identified by the character string ca len. If the file exists, ior is zero and
a is fda, the TR-DOS File Descriptor Area. Otherwise ior is the I/O result code and a is undefined.

Origin: Forth-94 (FILE-EXT), Forth-2012 (FILE-EXT).

See also: file-exists?, file-start, file-length, file-type, find-file, file-dir#, file-sectors, file-
sector, file-track, delete-file, rename-file.

Source file: <src/lib/dos.trdos.fs>.

file-track

387

file-track (ca len -- n ior)

Return the first track of the file named in the character string ca len. If the file was successfully
found, ior is zero and n is the track. Otherwise ior is the I/O result code and n is undefined.

See also: file-status, fda-filetrack.

Source file: <src/lib/dos.trdos.fs>.

file-type

file-type (ca len -- c ior)

Return the TR-DOS file-type indentifier of the file named in the character string ca len. If the file
was successfully found, ior is zero and c is its file-type identifier. Otherwise ior is the I/O result code
and c is undefined.

NOTE

In TR-DOS the file type is the 9th character of the filename. When a filetype is not
included in a filename, i.e. when the specified filename is shorter than 9 characters,
filetype 'C' (code file) is assumed by default. Therefore file-type is almost useless on
TR-DOS.

See also: file-status, fda-filetype.

Source file: <src/lib/dos.trdos.fs>.

file>

file> (ca1 len1 ca2 len2 -- ior) "file-from"

Read the contents of a disk file, whose filename is defined by the string ca1 len1, to memory zone
ca2 len2 (i.e. read len2 bytes and store them starting at address ca2), or use the original address and
length of the file instead, depending on the following rules:

1. If len2 is not zero, use ca2 len2.

2. If len2 is zero, use the original file length instead and then check also ca2: If ca2 is zero, use the
original file address instead.

Return I/O result code ior.

Example:

The screen memory (start address 16384 and size 6912 bytes) is saved to a disk file with >file:

16384 6912 s" pic.scr" >file

388

Now there are several ways to load that file from disk:

Table 25. Usage examples of file>.

Example Result

s" pic.scr" 16384 6912 file> Load the file using its original known values

s" pic.scr" 16384 6144 file> Load only the bitmap to the original known
address

s" pic.scr" 0 0 file> Load the file using its original unknown values

s" pic.scr" 32768 0 file> Load the whole file to address 32768

s" pic.scr" 32768 256 file> Load only 256 bytes to address 32768

Source file: <src/lib/dos.trdos.fs>.

filename>filetype

filename>filetype (ca len -- c) "filename-to-file-type"

Return the filetype c of filename ca len. Note len is assumed to be /filename, i.e., ca len is a complete
filename.

See also: set-filename, get-filename.

Source file: <src/lib/dos.trdos.fs>.

files/disk

files/disk (-- n) "files-slash-disk"

Return the maximum number n of files on a disk, including the deleted files, which is 128.

Source file: <src/lib/dos.trdos.fs>.

fill

fill (ca len b --)

If len is greater than zero, store b in each of len consecutive bytes of memory beginning at ca.

Origin: fig-Forth, Forth-83 (Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: erase, farfill, move.

Source file: <src/kernel.z80s>.

389

find

find (--)

A command of specforth-editor: Search for a match to the string at pad, from the cursor position
until the end of block. If no match found issue an error message and reposition the cursor at the top
of the block.

See also: 1line.

Source file: <src/lib/prog.editor.specforth.fs>.

find

find (ca -- ca 0 | xt 1 | xt -1)

Find the definition named in the counted string at ca. If the definition is not found, return ca and
zero. If the definition is found, return its execution token xt. If the definition is immediate, also
return one (1), otherwise also return minus-one (-1).

Origin: Forth-83 (Required Word Set), Forth-94 (CORE, SEARCH), Forth-2012 (CORE, SEARCH).

See also: find-name, find-name-from, find-name-in.

Source file: <src/lib/word_lists.fs>.

find-file

find-file (ca len -- a | 0)

If the file named in the character string ca len is found, return address a of the updated fda (File
Descriptor Area). Otherwise return zero.

See also: file-status.

Source file: <src/lib/dos.trdos.fs>.

find-name

find-name (ca len -- nt | 0)

Find the definition identified by the string ca len in the current search order. If the definition is not
found after searching all the vocabularies in the search order, return zero. If the definition is
found, return its nt.

Definition:

390

: find-name (ca len -- nt | 0)
 #order @ 0 ?do
 2dup context i cells + @ @ find-name-from ?dup
 (ca len nt nt | ca len 0)
 if nip nip unloop exit then (ca len)
 loop 2drop false ;

Origin: Gforth.

See also: find-name-in, find-name-from, find.

Source file: <src/kernel.z80s>.

find-name-from

find-name-from (ca len nt1 -- nt2 | 0)

Find the definition named in the string ca len, starting at nt1. If the definition is found, return its
nt2, else return zero.

String ca len must be below memory address $C000.

See also: find-name, find-name-in, find.

Source file: <src/kernel.z80s>.

find-name-in

find-name-in (ca len wid -- nt | 0)

Find the definition named in the string at ca len, in the word list identified by wid. If the definition
is found, return its nt, else return zero.

See also: search-wordlist, find-name-from, find-name, find.

Source file: <src/lib/word_lists.fs>.

find-substitution

find-substitution (ca len -- xt f | 0)

Given a string ca len, find its substitution. Return xt and f if found, or just zero if not found.

See also: replaces.

Source file: <src/lib/strings.replaces.fs>.

391

finish-code

finish-code (--)

End the current definition, allow it to be found in the dictionary and enter interpretation state.

finish-code is a factor of ; and ;code.

Definition:

: finish-code (--)
 ?csp postpone [noname? @ noname? off ?exit reveal ;

Origin: Gforth.

See also: reveal, noname?, ?csp, [, no-exit.

Source file: <src/kernel.z80s>.

first-drive

first-drive (-- c)

A cconstant. c is the identifier of the first drive available in the DOS.

See also: max-drives, drive.

Source file: <src/kernel.z80s>.

first-esc-block-char

first-esc-block-char (-- a)

A variable. a is the address of a cell containing the code of the first block graphic. Its default value is
128, like in the ZX Spectrum charset. This variable can be modified in order to make the escaped
block characters produce a different range of codes.

See also: esc-block-chars-wordlist.

Source file: <src/lib/strings.escaped.graphics.fs>.

first-locatable

first-locatable (-- a)

392

A variable. a is the address of a cell containing the number of the first block to be searched by
located and its descendants.

See also: last-locatable, need-from.

Source file: <src/lib/002.need.fs>.

first-name

first-name (ca1 len1 -- ca2 len2)

Return the first name ca2 len2 from string ca1 len1. A name is a substring separated by spaces.

See also: /first-name, last-name, /name, -prefix, /string.

Source file: <src/lib/strings.MISC.fs>.

first-stream

first-stream (-- n)

n is the number of the first stream.

See also: last-stream, os-strms, stream>, stream?.

Source file: <src/lib/os.fs>.

fit-stringer

fit-stringer (len --)

Make sure there’s room in the stringer for len characters.

Definition:

: fit-stringer (len --)
 dup unused-stringer > if empty-stringer then
 negate +stringer +! ;

See also: unused-stringer, empty-stringer, +stringer.

Source file: <src/kernel.z80s>.

flash-mask

393

flash-mask (-- b)

A cconstant. b is the bitmask of the bit used to indicate the flash status in an attribute byte.

See also: unflash-mask, flashy, set-flash, attr!, bright-mask, paper-mask, ink-mask.

Source file: <src/lib/display.attributes.fs>.

flash.

flash. (n --) "flash-dot"

Set flash n by printing the corresponding control characters. If n is zero, turn flash off; if n is one,
turn flash on; if n is eight, set transparent flash. Other values of n are converted as follows:

• 2, 4 and 6 are converted to 0.

• 3, 5 and 7 are converted to 1.

• Values greater than 8 or less than 0 are converted to 8.

flash. is much slower than set-flash or attr!, but it can handle pseudo-color 8 (transparent),
setting the corresponding system variables accordingly.

See also: bright., (0-1-8-color..

Source file: <src/lib/display.attributes.fs>.

flashy

flashy (b1 -- b2)

Convert attribute b1 to its flashy equivalent b2.

flashy is written in Z80. Its equivalent definition in Forth is the following:

: flashy (b1 -- b2) flash-mask or ;

See also: flash-mask, papery, brighty, inversely.

Source file: <src/lib/display.attributes.fs>.

flip

flip (x1 -- x2)

394

Exchange the low and high bytes within x1, resulting x2.

Origin: eForth.

NOTE
flip is called >< in Forth-79 (Word Reference Set) and Forth-83 (Uncontrolled
Reference Words), swab in LaForth (c. 1980) and cswap in other Forth systems.

See also: split, join.

Source file: <src/kernel.z80s>.

float

float (-- n)

n is the size in bytes of a floating-point number.

See also: floats, float+, float-.

Source file: <src/lib/math.floating_point.rom.fs>.

float+

float+ (fa1 -- fa2) "float-plus"

Add the size in bytes of a floating-point number to fa1, giving fa2.

See also: float-, float, floats.

Source file: <src/lib/math.floating_point.rom.fs>.

float-

float- (fa1 -- fa2) "float-minus"

Subtract the size in bytes of a floating-point number from fa1, giving fa2.

See also: float+, float, floats.

Source file: <src/lib/math.floating_point.rom.fs>.

floats

floats (n1 -- n2)

n2 is the size in bytes of n1 floating-point numbers.

395

See also: float, float+, float-.

Source file: <src/lib/math.floating_point.rom.fs>.

floor

floor (F: r1 -- r2)

Round r1 to an integral value using the "round toward negative infinity" rule, giving r2.

Origin: Forth-94 (FLOATING), Forth-2012 (FLOATING).

See also: ftrunc, fround.

Source file: <src/lib/math.floating_point.rom.fs>.

floored

floored (-- f)

f is true if floored division is the default.

See also: environment?.

Source file: <src/lib/environment-question.fs>.

flush

flush (--)

Perform the function of save-buffers, then unassign all block buffers.

Origin: Forth-83 (Required Word Set), Forth-94 (BLOCK), Forth-2012 (BLOCK).

See also: empty-buffers.

Source file: <src/lib/blocks.fs>.

fly-located

fly-located (ca len -- block | 0)

Locate the first block whose header contains the string ca len (surrounded by spaces), and return its
number. If not found, return zero. The search is case-sensitive. Index all searched blocks on the fly.

See also: use-fly-index.

396

Source file: <src/lib/blocks.indexer.fly.fs>.

fm/mod

fm/mod (d1 n1 -- n2 n3) "f-m-slash-mod"

Floored division:

 d1 = n3*n1+n2
 n1>n2>=0 or 0>=n2>n1

Divide d1 by n1, giving the floored quotient n3 and the remainder n2. Input and output stack
arguments are signed.

Table 26. Floored Division Example

Dividend Divisor Remainder Quotient

10 7 3 1

-10 7 4 -2

10 -7 -4 -2

-10 -7 -3 1

Origin: Forth-94 (CORE), Forth-2012 (CORE).

See also: sm/rem, m/.

Source file: <src/lib/math.operators.1-cell.fs>.

for

for
 Compilation: (R: -- dest)
 Run-time: (u --)

Start of a for..step loop, that will iterate u+1 times, starting with u and ending with 0.

The current value of the index can be retrieved with for-i.

for is an immediate and compile-only word.

See also: dfor, times, ?do, executions.

Source file: <src/lib/flow.for.fs>.

397

for-i

for-i (-- n)

Return the current index n of a for loop.

Source file: <src/lib/flow.for.fs>.

forget-transient

forget-transient (--)

Forget the transient code compiled between transient and end-transient, by unlinking the header
space that was reserved and used for it. forget-transient must be used when the transient code is
not going to be used any more.

The inner operation is: Restore the old value of last-wordlist; store the nt of the latest word created
before compiling the transient code, into the lfa of the first word created after the transient code
was finished by end-transient.

Source file: <src/lib/modules.transient.fs>.

form

form (-- cols rows)

Number of columns and rows in the terminal in the current display mode (e.g. mode-32, mode-64ao).

Origin: Gforth.

Source file: <src/lib/display.mode.COMMON.fs>.

form>xy

form>xy (cols rows -- col row) "form-to-x-y"

col row is the new cursor position corresponding to a display mode whose form is cols rows. col row
are calculated with the values returned by xy, columns and rows in the current mode.

form>xy is a factor of >form.

Source file: <src/lib/display.mode.COMMON.fs>.

398

forth

forth (--)

Transform the search order consisting of wid#n .. wid#2 wid#1 (where wid#1 is searched first) into
wid#n .. wid#2 wid#f, where wid#f is the word-list identifier returned by forth-wordlist. I.e., replace
the top word list of the search order with forth-wordlist.

forth is the vocabulary corresponding to forth-wordlist.

Origin: Forth-83 (Required Word Set), Forth-94 (SEARCH EXT), Forth-2012 (SEARCH EXT).

See also: root, wordlist.

Source file: <src/kernel.z80s>.

forth-wordlist

forth-wordlist (-- wid)

Return wid, the identifier of the word list that includes all standard words provided by the
implementation. forth-wordlist is initially the compilation word list and is part of the initial search
order.

Origin: Forth-94 (SEARCH), Forth-2012 (SEARCH).

See also: wordlist, set-order, root-wordlist, assembler-wordlist.

Source file: <src/kernel.z80s>.

forth2012-block-test

forth2012-block-test (--)

Do nothing. This word is used just for doing need forth2012-block-test in order to run only the core
test of forth2012-test-suite.

Source file: <src/lib/meta.test.forth2012-test-suite.fs>.

forth2012-core-test

forth2012-core-test (--)

Do nothing. This word is used just for doing need forth2012-core-test in order to run only the core
test of forth2012-test-suite.

399

Source file: <src/lib/meta.test.forth2012-test-suite.fs>.

forth2012-coreext-test

forth2012-coreext-test (--)

Do nothing. This word is used just for doing need forth2012-coreext-test in order to run only the
core test of forth2012-test-suite.

Source file: <src/lib/meta.test.forth2012-test-suite.fs>.

forth2012-coreplus-test

forth2012-coreplus-test (--)

Do nothing. This word is used just for doing need forth2012-coreplus-test in order to run only the
core test of forth2012-test-suite.

Source file: <src/lib/meta.test.forth2012-test-suite.fs>.

forth2012-double-test

forth2012-double-test (--)

Do nothing. This word is used just for doing need forth2012-double-test in order to run only the
core test of forth2012-test-suite.

Source file: <src/lib/meta.test.forth2012-test-suite.fs>.

forth2012-exception-test

forth2012-exception-test (--)

Do nothing. This word is used just for doing need forth2012-exception-test in order to run only the
core test of forth2012-test-suite.

Source file: <src/lib/meta.test.forth2012-test-suite.fs>.

forth2012-facility-test

forth2012-facility-test (--)

Do nothing. This word is used just for doing need forth2012-facility-test in order to run only the
core test of forth2012-test-suite.

400

Source file: <src/lib/meta.test.forth2012-test-suite.fs>.

forth2012-file-test

forth2012-file-test (--)

Do nothing. This word is used just for doing need forth2012-file-test in order to run only the core
test of forth2012-test-suite.

Source file: <src/lib/meta.test.forth2012-test-suite.fs>.

forth2012-locals-test

forth2012-locals-test (--)

Do nothing. This word is used just for doing need forth2012-locals-test in order to run only the
core test of forth2012-test-suite.

Source file: <src/lib/meta.test.forth2012-test-suite.fs>.

forth2012-memory-test

forth2012-memory-test (--)

Do nothing. This word is used just for doing need forth2012-memory-test in order to run only the
core test of forth2012-test-suite.

Source file: <src/lib/meta.test.forth2012-test-suite.fs>.

forth2012-report-errors

forth2012-report-errors (--)

Report the errors found during the latest execution of forth2012-test-suite.

Source file: <src/lib/meta.test.forth2012-test-suite.fs>.

forth2012-searchorder-test

forth2012-searchorder-test (--)

Do nothing. This word is used just for doing need forth2012-searchorder-test in order to run only
the core test of forth2012-test-suite.

401

Source file: <src/lib/meta.test.forth2012-test-suite.fs>.

forth2012-string-test

forth2012-string-test (--)

Do nothing. This word is used just for doing need forth2012-string-test in order to run only the
core test of forth2012-test-suite.

Source file: <src/lib/meta.test.forth2012-test-suite.fs>.

forth2012-test-suite

forth2012-test-suite (--)

An unexistent word. This word is used just for doing need forth2012-test-suite in order to run the
Forth-2012 Test Suite.

The following partial tests are available: forth2012-file-test, forth2012-block-test, forth2012-core-
test, forth2012-coreext-test, forth2012-coreplus-test, forth2012-double-test, forth2012-exception-
test, forth2012-facility-test, forth2012-locals-test, forth2012-memory-test, forth2012-
searchorder-test, forth2012-string-test, forth2012-tools-test, forth2012-utilities-test.

See also: forth2012-report-errors, ttester, hayes-test.

Source file: <src/lib/meta.test.forth2012-test-suite.fs>.

forth2012-tools-test

forth2012-tools-test (--)

Do nothing. This word is used just for doing need forth2012-tools-test in order to run only the core
test of forth2012-test-suite.

Source file: <src/lib/meta.test.forth2012-test-suite.fs>.

forth2012-utilities-test

forth2012-utilities-test (--)

Do nothing. This word is used just for doing need forth2012-utilities-test in order to run only the
core test of forth2012-test-suite.

Source file: <src/lib/meta.test.forth2012-test-suite.fs>.

402

fp

fp (-- a) "f-p"

Return the address a of a cell containing the floating-point stack pointer. a is the STKEND variable
of the OS.

NOTE
The floating-point stack (which is the OS calculator stack) grows towards higher
memory, and fp points to the first free position, therefore above top of stack.

See also: fp@, fp0.

Source file: <src/lib/math.floating_point.rom.fs>.

fp0

fp0 (-- a) "f-p-zero"

Return address a of a cell containing the bottom address of the floating-point stack. a is the STKBOT
variable of the OS.

NOTE
The floating-point stack (which is the OS calculator stack) grows towards higher
memory.

See also: fp.

Source file: <src/lib/math.floating_point.rom.fs>.

fp@

fp@ (-- fa) "f-p-fetch"

Return the address fa of the top of the floating-point stack.

See also: fp.

Source file: <src/lib/math.floating_point.rom.fs>.

free

free (a -- ior)

Return the contiguous region of data space indicated by a to the system for later allocation. a shall
indicate a region of data space that was previously obtained by allocate or resize.

403

If the operation succeeds, ior is zero. If the operation fails, ior is the I/O result code.

free is a deferred word (see defer) whose action can be charlton-free or gil-free, depending on the
heap implementation used by the application.

Origin: Forth-94 (MEMORY), Forth-2012 (MEMORY).

See also: allocate, resize, empty-heap.

Source file: <src/lib/memory.allocate.COMMON.fs>.

free-buffer

free-buffer (n --)

If the current disk buffer has been updated, write its block to the disk. Assign block number n to the
disk buffer.

Definition:

: free-buffer (n --)
 updated? if buffer-block write-buffer
 then disk-buffer ! ;

Source file: <src/kernel.z80s>.

free/wtype

free/wtype (ca len -- ca' len') "free-slash-w-type"

Display in the current-window as many characters of string ca len as fit in the current line, then
remove them from the string, returning the result string ca' len'.

free/wtype is a factor of wltype and wtype.

See also: /wtype.

Source file: <src/lib/display.window.fs>.

fround

fround (r1 -- r2) "f-round"

Round r1 to an integral value using the "round to nearest" rule, giving r2.

Origin: Forth-94 (FLOATING), Forth-2012 (FLOATING).

404

See also: ftrunc, floor.

Source file: <src/lib/math.floating_point.rom.fs>.

fsin

fsin (F: r1 -- r2)

See also: fcos, ftan, fasin.

Source file: <src/lib/math.floating_point.rom.fs>.

fta,

fta, (a --) "f-t-a-comma"

Compile the Z80 assembler instruction LD A,(a), i.e. fetch the contents of memory address a into
register "A".

See also: sta,, ld,, ld#,.

Source file: <src/lib/assembler.fs>.

ftan

ftan (F: r1 -- r2)

See also: fcos, fsin, fatan.

Source file: <src/lib/math.floating_point.rom.fs>.

ftap,

ftap, (repg --) "f-t-a-p-comma"

Compile the Z80 assembler instruction LD A,(regp).

See also: stap,.

Source file: <src/lib/assembler.fs>.

fthl,

fthl, (a --) "f-t-h-l-comma"

405

Compile the Z80 assembler instruction LD HL,(a), i.e. fetch the contents of memory address a into
register pair "HL".

See also: sthl,, ftp,.

Source file: <src/lib/assembler.fs>.

ftp,

ftp, (a regp --) "f-t-p-comma"

Compile the Z80 assembler instruction LD regp,(a), i.e. fetch the contents of pair register regp from
memory address a.

NOTE
For the "HL" register has a specific word: fthl,, which compiles shorten and faster
code.

See also: stp,.

Source file: <src/lib/assembler.fs>.

ftpx,

ftpx, (disp regpi regp --) "f-t-p-x-comma"

Compile the Z80 assembler instructions required to fetch register pair regp from the address pointed
by regpi plus disp.

Example: 16 ix h ftpx, will compile the Z80 instructions LD L,(IX+16) and LD H,(IX+17).

See also: stpx,, ftx,.

Source file: <src/lib/assembler.fs>.

ftrunc

ftrunc (F: r1 -- r2) "f-trunc"

Round r1 to an integral value using the "round toward zero" rule, giving r2.

Origin: Forth-94 (FLOATING), Forth-2012 (FLOATING).

See also: fround ,floor.

Source file: <src/lib/math.floating_point.rom.fs>.

406

ftx,

ftx, (disp regpi reg --) "f-t-x-comma"

Compile the Z80 assembler instruction LD reg,(regpi+disp).

See also: stx,.

Source file: <src/lib/assembler.fs>.

fvariable

fvariable ("name" --) (F: --) "f-constant"

Parse name. create a definition for name, which is referred to as a "floating-point variable". allot a
float of data space, the data field of name, to hold the contents of the variable. When name is later
executed, the address of its data field is placed on the data stack.

Origin: Forth-94 (FLOATING), Forth-2012 (FLOATING).

See also: constant, 2constant, cconstant, fconstant.

Source file: <src/lib/math.floating_point.rom.fs>.

fyi

fyi (--) "f-y-i"

Display information about the current status of the Forth system.

See also: #words, here, last-wordlist, limit, unused. np@, latest, current-latest, farlimit, farunused,
greeting.

Source file: <src/lib/tool.debug.fyi.fs>.

f~

f~ (-- f) (F: r1 r2 r3 --) "f-tilde"

Medley for comparing r1 and r2 for equality:

• r3>0: f~abs;

• r3=0: f==;

• r3<0: f~relabs.

407

Origin: Forth-94 (FLOATING EXT), Forth-2012 (FLOATING EXT).

See also: f~rel.

Source file: <src/lib/math.floating_point.rom.fs>.

f~abs

f~abs (-- f) (F: r1 r2 r3 --) "f-tilde-abs"

Approximate equality with absolute error: |r1-r2|<r3.

Flag f is true if the absolute value of r1-r2 is less than r3.

Origin: Gforth.

See also: f~rel, f~relabs.

Source file: <src/lib/math.floating_point.rom.fs>.

f~rel

f~rel (-- f) (F: r1 r2 r3 --) "f-tilde-rel"

Approximate equality with relative error: |r1-r2|<r3*|r1+r2|.

Flag f is true if the absolute value of r1-r2 is less than the value of r3 times the sum of the absolute
values of r1 and r2.

See also: f~abs, f~relabs.

Source file: <src/lib/math.floating_point.rom.fs>.

f~relabs

f~relabs (-- f) (F: r1 r2 r3 --) "f-tilde-rel-abs"

Approximate equality with relative error: |r1-r2|<|r3|*|r1+r2|.

Flag f is true if the absolute value of r1-r2 is less than the absolute value of r3 times the sum of the
absolute values of r1 and r2.

See also: f~rel, f~abs.

Source file: <src/lib/math.floating_point.rom.fs>.

408

g

g

g (u --)

A command of gforth-editor: Go to screen u.

See also: c, a, n, p, t.

Source file: <src/lib/prog.editor.gforth.fs>.

g+dos

g+dos (--) "g-plus-dos"

An alias of noop that is defined only in the G+DOS version of Solo Forth. Its goal is to check the DOS a
program is running on, using defined or [defined].

g+dos is an immediate word.

See also: dos, tr-dos, +3dos.

Source file: <src/kernel.z80s>.

g-at-x

g-at-x (gx --)

Set the current graphic x coordinate gx, without changing the current graphic y coordinate.

See also: g-at-xy, g-at-y.

Source file: <src/lib/graphics.coordinates.fs>.

g-at-xy

g-at-xy (gx gy --) "g-at-x-y"

Set the current graphic coordinates gx gy.

See also: g-xy, g-at-y, g-at-x, g-home.

Source file: <src/lib/graphics.coordinates.fs>.

409

g-at-y

g-at-y (gy --)

Set the current graphic y coordinate gy, without changing the current graphic x coordinate.

See also: g-at-xy, g-at-x.

Source file: <src/lib/graphics.coordinates.fs>.

g-cr

g-cr (--) "g-c-r"

Move the graphic coordinates to the next character row.

See also: g-at-xy, g-emit.

Source file: <src/lib/display.g-emit.fs>.

g-emit

g-emit (gx gy c --)

Display character c (32..255) at the current graphic coordinates. If c greater than last-font-char
from the UDG font, otherwise it is printed from the main font.

The character is printed with overprinting (equivalent to 1 overprint).

See also: g-emit-udg, (g-emit, g-type.

Source file: <src/lib/display.g-emit.fs>.

g-emit-udg

g-emit-udg (c --) "g-emit-u-d-g"

Display UDG c (0..255) at the current graphic coordinates, from the font pointed by system variable
os-udg, which contains the address of the first UDG bitmap (0).

The UDG character is printed with overprinting (equivalent to 1 overprint).

See also: g-emit, g-emit_.

Source file: <src/lib/display.g-emit.fs>.

410

g-emit_

g-emit_ (-- a) "g-emit-underscore"

a is the address of a machine code routine that prints an 8x8 bits character at graphic coordinates.
Used by g-emit-udg.

Input registers:

• DE = address of the first char (0) bitmap in a charset

• A = char code (0..255)

• B = y coordinate

• C = x coordinate

Modifies: AF BC HL IX DE

See also: g-emit.

Source file: <src/lib/display.g-emit.fs>.

g-emitted

g-emitted (--)

Update the current graphic coordinates after printing a character at them.

See g-emit, g-cr, g-at-xy.

Source file: <src/lib/display.g-emit.fs>.

g-home

g-home (--)

Set the graphic coordinates to 0, 0.

See also: g-at-xy.

Source file: <src/lib/graphics.coordinates.fs>.

g-type

g-type (ca len --)

If len is greater than zero, display the character string ca len at the current graphic coordinates.

411

See also: g-emit.

Source file: <src/lib/display.g-emit.fs>.

g-x

g-x (-- gx)

Return the current graphic x coordinate gx.

See also: g-xy, g-y, g-at-xy.

Source file: <src/lib/graphics.coordinates.fs>.

g-xy

g-xy (-- gx gy) "g-x-y"

Return the current graphic coordinates gx gy.

See also: g-x, g-y, g-at-xy.

Source file: <src/lib/graphics.coordinates.fs>.

g-y

g-y (-- gy)

Return the current graphic y coordinate gy.

See also: g-xy, g-x, g-at-xy.

Source file: <src/lib/graphics.coordinates.fs>.

gcd

gcd (n1 n2 -- n3) "g-c-d"

n3 is the greatest common divisor of n1 and n2.

See also: /, mod.

Source file: <src/lib/math.operators.1-cell.fs>.

412

get-block-drives

get-block-drives (-- c#n..c#1 n | 0)

Get the current configuration of block drives, as configured by set-block-drives.

See also: 2-block-drives, -block-drives, #block-drives, block-drive!.

Source file: <src/lib/dos.COMMON.fs>.

get-bright

get-bright (-- f)

If bright is active in the current attribute, return true, else return false.

See also: set-bright, attr@, bright., get-paper, get-ink, get-flash, bright-mask.

Source file: <src/lib/display.attributes.fs>.

get-current

get-current (-- wid)

Return wid, the identifier of the compilation word list.

Definition:

: get-current (-- wid) current @ ;

Origin: Forth-94 (SEARCH), Forth-2012 (SEARCH).

See also: current.

Source file: <src/kernel.z80s>.

get-date

get-date (-- day month year)

Get the current date. The default date is 2016-01-01. It can be changed with set-date. The date is not
updated by the system.

See also: set-date, date, time&date, .date.

413

Source file: <src/lib/time.fs>.

get-drive

get-drive (-- n ior)

Get the current default drive c (0..3), i.e. the drive implied by all filenames that do not specify a
drive, and the drive used by block operations. The default drive is initially 0. Return also an error
result ior.

get-drive is written in Z80. Its equivalent definition in Forth is the following:

: get-drive (-- n ior) 23833 c@ false ;

See also: set-drive.

Source file: <src/kernel.trdos.z80s>.

get-drive

get-drive (-- b)

Return the number b of the current drive (0..3).

get-drive is written in Z80. Its equivalent definition in Forth is the following:

: get-drive (-- b) $5FC6 c@ ;

See also: set-drive.

Source file: <src/lib/dos.trdos.fs>.

get-esc-order

get-esc-order (-- wid[n]..wid[1] n)

Return the number of word lists n in the escaped strings search order and the word lists identifiers
wid[n]..wid[1] identifying these word lists. wid[1] identifies the word list that is searched first, and
wid[n] the word list that is searched last.

See also: set-esc-order, >esc-order.

Source file: <src/lib/strings.escaped.fs>.

414

get-filename

get-filename (-- ca len)

Return the filename ca len that is stored in fda (File Descriptor Area).

See also: set-filename, fda-filename, /filename, filename>filetype.

Source file: <src/lib/dos.trdos.fs>.

get-flash

get-flash (-- f)

If flash is active in the current attribute, return true, else return false.

See also: set-flash, attr!, flash., get-paper, get-ink, get-bright, flash-mask.

Source file: <src/lib/display.attributes.fs>.

get-font

get-font (-- a)

Get address a of the current font (characters 32..127), by fetching the system variable os-chars. a is
the bitmap address of character 0.

See also: set-font, default-font.

Source file: <src/lib/display.fonts.fs>.

get-heap

get-heap (-- a u b)

Get the values of the current heap: its address a (returned by heap), its size u (returned by /heap)
and its bank b (stored in heap-bank).

get-heap and set-heap are useful when more than one memory heap are needed by the application.

Source file: <src/lib/memory.allocate.COMMON.fs>.

get-ink

415

get-ink (-- b)

Get the ink color b from the current attribute.

See also: set-ink, attr@, ink., get-paper, get-bright, get-flash, ink-mask.

Source file: <src/lib/display.attributes.fs>.

get-inkey

get-inkey (-- 0 | c)

Leave the value of the key being pressed. If no key being pressed leave zero.

get-inkey reads the keyboard, so it works even when the keyboard is not read by an interrupts
routine.

See also: inkey, key.

Source file: <src/lib/keyboard.get-inkey.fs>.

get-key?

get-key? (-- f) "get-key-question"

An alternative to key?. It works also when the system interrupts are off. Variant with relative jumps.

See also: key?, fast-get-key?.

Source file: <src/lib/keyboard.get-key-question.fs>.

get-mixer

get-mixer (-- b)

Get the contents b of the mixer register of the AY-3-8912 sound generator.

416

Register 7 (Mixer - I/O Enable)

This controls the enable status of the noise and tone mixers for the three
channels, and also controls the I/O port used to drive the RS232 and Keypad
sockets.

Bit 0 Channel A Tone Enable (0=enabled).

Bit 1 Channel B Tone Enable (0=enabled).

Bit 2 Channel C Tone Enable (0=enabled).

Bit 3 Channel A Noise Enable (0=enabled).

Bit 4 Channel B Noise Enable (0=enabled).

Bit 5 Channel C Noise Enable (0=enabled).

Bit 6 I/O Port Enable (0=input, 1=output).

Bit 7 Not used.

See also: set-mixer, -mixer, @sound.

Source file: <src/lib/sound.128.fs>.

get-order

get-order (-- wid#n .. wid#1 n)

Return the number of word lists n in the search order and the word lists identifiers wid#n .. wid#1
identifying these word lists. wid#1 identifies the word list that is searched first, and wid#n the word
list that is searched last.

: get-order (-- wid#n .. wid#1 n)
 #order @ dup 0 ?do
 dup i - 1- cells context + @ swap
 loop ;

Origin: Forth-94 (SEARCH), Forth-2012 (SEARCH).

See also: set-order, >order, context, #order.

417

Source file: <src/kernel.z80s>.

get-paper

get-paper (-- b)

Get the paper color b from the current attribute.

See also: set-paper, attr@, paper., get-ink, get-bright, get-flash, paper-mask.

Source file: <src/lib/display.attributes.fs>.

get-time

get-time (-- second minute hour)

Return the current time.

NOTE

The computer doesn’t have a real clock. The OS frames counter is used instead,
which is increased by the OS interrupts routine every 20th ms. The counter is a 24-
bit value, so its maximum is $FFFFFF ticks of 20 ms (335544 seconds or 5592
minutes or 93 hours), then it starts again from zero.

See also: set-time, time&date, .time.

Source file: <src/lib/time.fs>.

get-udg

get-udg (-- a) "get-u-d-g"

Get address a of the current UDG set (characters 0..255), by fetching the system variable os-udg. a is
the bitmap address of character 0.

See also: set-udg.

Source file: <src/lib/graphics.udg.fs>.

gforth-editor

gforth-editor (--)

A vocabulary containing a port of the Gforth block editor. When gforth-editor is loaded, it becomes
the action of editor.

418

Table 27. Gforth block editor commands

Word Description

a (--) Go to marked position.

c (n --) Move cursor by n chars.

d (--) Delete marked area.

dl (--) Delete a line at the cursor position.

f ("ccc<eol>" --) Search ccc and mark it.

g (u --) Go to screen u.

h (--) Type the line of the marked area, highlighting it.

i ("ccc<eol>" --) Insert ccc; if ccc is empty, instert the contents of the insert buffer.

il (--) Insert a line at the cursor position..

l (--) List current screen.

m (--) Mark current position.

n (--) Go to next screen.

p (--) Go to previous screen.

r ("ccc<eol>" --) Replace marked area.

s (u "ccc<eol>" --) Search ccc until screen u; if ccc is empty, use the string of the
previous search.

t (u "ccc<eol>"--) Go to line u and insert ccc.

y (--) Yank deleted string.

See also: specforth-editor.

Source file: <src/lib/prog.editor.gforth.fs>.

gigatype

gigatype (ca len --)

If len is greater than zero, display text string ca len using the current font, with doubled pixels
(16x16 pixels per character) and modifying the characters on the fly after the style stored in
gigatype-style. The text is combined with the current content of the screen, as if overprint were
active. The current attribute, set by attr! and other words, is used to color the text.

Usage example:

419

: demo (--)
 cls
 8 0 ?do
 i gigatype-style c!
 17 0 i 3 * tuck at-xy s" GIGATYPE" gigatype
 at-xy ." style " i .
 loop
 key drop home ;

See also: gigatype-title, set-font, (gigatype, type.

Source file: <src/lib/display.gigatype.fs>.

gigatype-style

gigatype-style (-- ca)

ca is the address of a byte containing the font style used by gigatype (0..7).

Source file: <src/lib/display.gigatype.fs>.

gigatype-title

gigatype-title (ca len --)

If len1 is greater than zero, display the character string ca len at the center of the current row (the
current column is not used), using gigatype.

WARNING

gigatype prints double-size (16x16 pixels) characters. Therefore, the maximum
value of len1 is 16 characters, but gigatype-title does no check. Beside, it
calculates the column of the title assuming the current mode is mode-32 (32
characters per line), which is the default one.

See also: gigatype-style, type-center-field.

Source file: <src/lib/display.gigatype.fs>.

gil-allocate

gil-allocate (u -- a ior)

Allocate u bytes of contiguous data space. The data-space pointer is unaffected by this operation.
The initial content of the allocated space is undefined.

If the allocation succeeds, a is the starting address of the allocated space and ior is zero.

420

If the operation fails, a does not represent a valid address and ior is the I/O result code #-59, the
throw code for allocate.

gil-allocate is the action of allocate in the heap implementation based on code written by Javier
Gil, whose words are defined in gil-heap-wordlist.

See also: gil-free.

Source file: <src/lib/memory.allocate.gil.fs>.

gil-empty-heap

gil-empty-heap (--)

Empty the current heap, which was created by allot-heap, limit-heap, bank-heap or farlimit-heap.

gil-empty-heap is the action of empty-heap in the memory heap implementation based on code
written by Javier Gil, whose words are defined in gil-heap-wordlist.

See also: gil-allocate, gil-free.

Source file: <src/lib/memory.allocate.gil.fs>.

gil-free

gil-free (a -- ior)

Return the contiguous region of data space indicated by a to the system for later allocation. a shall
indicate a region of data space that was previously obtained by gil-allocate.

gil-free is the action of free in the heap implementation based on code written by Javier Gil, whose
words are defined in gil-heap-wordlist.

Source file: <src/lib/memory.allocate.gil.fs>.

gil-heap-wordlist

gil-heap-wordlist (-- wid)

wid is the word-list identifier of the word list that holds the words the memory heap implementation
adapted from code written by Javier Gil (2007-01).

need gil-heap-wordlist is used to load the memory heap implementation and configure allocate,
free and empty-heap accordingly. This implementation of the memory heap does not provide resize.

An alternative, bigger implementation of the memory heap is provided by charlton-heap-wordlist.

421

The actual heap must be created with allot-heap, limit-heap, farlimit-heap or bank-heap, which are
independent from the heap implemention.

Source file: <src/lib/memory.allocate.gil.fs>.

graphic-ascii-char?

graphic-ascii-char? (c -- f) "graphic-ascii-char-question"

Is c a printable ASCII character, i.e. in the range 32..126?

See also: ascii-char?, >graphic-ascii-char.

Source file: <src/lib/chars.fs>.

greater-of

greater-of
 Compilation: (C: -- of-sys)
 Run-time: (x1 x2 -- | x1)

greater-of is an immediate and compile-only word.

Usage example:

: test (x --)
 case
 10 of ." ten!" endof
 15 greater-of ." greater than 15" endof
 ." less than 10 or 11 ... 15"
 endcase ;

See also: case, less-of, (greater-of.

Source file: <src/lib/flow.case.fs>.

green

green (-- b)

A cconstant that returns 4, the value that represents the green color.

See also: black, blue, red, magenta, cyan, yellow, white, contrast, papery, inversely.

Source file: <src/lib/display.attributes.fs>.

422

greeting

greeting (--)

Display the boot message.

See also: cold, fyi.

Source file: <src/kernel.z80s>.

gx>x

gx>x (gx -- col) "g-x-to-x"

Convert graphic coordinate gx to cursor column col.

See also: gy>y, x>gx.

Source file: <src/lib/graphics.pixels.fs>.

gxy176>scra

gxy176>scra (gx gy -- n a) "g-x-y-176-to-s-c-r-a"

Return screen address a and pixel position n (0..7) of pixel coordinates gx (0..255) and gy (0..175).

See also: gxy176>scra_, gxy>scra, xy>scra.

Source file: <src/lib/graphics.pixels.fs>.

gxy176>scra_

gxy176>scra_ (-- a) "g-x-y-176-to-s-c-r-a-underscore"

Return address a of a routine that uses an alternative entry point to the PIXEL-ADD ROM routine
($22AA), to bypass the error check.

Input registers:

• C = x cordinate (0..255)

• B = y coordinate (0..176)

Output registers:

• HL = address of the pixel byte in the screen bitmap

423

• A = position of the pixel in the byte address (0..7), note: position 0=bit 7, position 7=bit 0.

See also: gxy176>scra, gxy>scra_.

Source file: <src/lib/graphics.pixels.fs>.

gxy>attra

gxy>attra (gx gy -- a) "g-x-y-to-a-t-t-r-a"

Convert pixel coordinates gx gy to their correspondent attribute address a.

Source file: <src/lib/graphics.pixels.fs>.

gxy>scra

gxy>scra (gx gy -- n a) "g-x-y-to-s-c-r-a"

Return screen address a and pixel position n (0..7) of pixel coordinates gx (0..255) and gy (0..191).

See also: gxy>scra_, gxy176>scra, xy>scra.

Source file: <src/lib/graphics.pixels.fs>.

gxy>scra_

gxy>scra_ (-- a) "g-x-y-to-s-c-r-a-underscore"

A deferred word (see defer) that executes fast-gxy>scra_ or, by default, slow-gxy>scra_: Return
address a of an alternative to the PIXEL-ADD ROM routine ($22AA), to let the range of the y
coordinate be 0..191 instead of 0..175.

See also: gxy176>scra_, xy>scra_.

Source file: <src/lib/graphics.pixels.fs>.

gy>y

gy>y (gy -- row) "g-y-to-y"

Convert graphic y coordinate gy to cursor coordinate row.

See also: gx>x, y>gy.

Source file: <src/lib/graphics.pixels.fs>.

424

h

h

h (-- reg)

Return the identifier reg of the Z80 assembler register "H", which is interpreted as register pair "HL"
by assembler words that use register pairs (for example ldp,).

See also: a, b, c, d, e, l, m, ix, iy, sp.

Source file: <src/lib/assembler.fs>.

h

h (--)

A command of gforth-editor: Type the line of the marked area, highlighting it.

See also: m, a, d, f, r.

Source file: <src/lib/prog.editor.gforth.fs>.

h

h (n --)

A command of specforth-editor: Hold line n at pad (used by system more often than by user).

See also: b, c, d, e, f, i, l, m, n, p, r, s, t, x.

Source file: <src/lib/prog.editor.specforth.fs>.

halt,

halt, (--) "halt-comma"

Compile the Z80 assembler instruction HALT.

See also: im1,, im2,, di,, ei,.

Source file: <src/lib/assembler.fs>.

425

hayes-test

hayes-test (--)

An unexistent word. hayes-test is used just for doing need hayes-test in order to run the Hayes test,
which tests the core words of an ANS Forth system.

The test assumes a two’s complement implementation where the range of signed numbers is -2^(n
-1) … 2^(n-1)-1 and the range of unsigned numbers is 0 … 2^(n)-1.

Some words are not tested: key, quit, abort, abort" environment?…

See also: hayes-tester, ttester, forth2012-test-suite.

Source file: <src/lib/meta.test.hayes.fs>.

hayes-tester

hayes-tester (--)

Do nothing. This word is used just for doing need hayes-tester in order to load {, ->, and }, which
are used by hayes-test.

Usage example:

{ 1 2 3 swap -> 1 3 2 } ok
{ 1 2 3 swap -> 1 2 2 } Incorrect result
Use WHERE to see the error line.
{ 1 2 3 swap -> 1 2 } Wrong number of results:
Expected=3
Actual=2
Use WHERE to see the error line.

See also: ttester, forth2012-test-suite.

Source file: <src/lib/meta.tester.hayes.fs>.

header

header ("name" | --)

A deferred word (see defer) that creates a dictionary header. Its default action is input-stream-
header, and it’s set by default-header. Its alternative temporary action is nextname-header.

See also: header,.

426

Source file: <src/kernel.z80s>.

header,

header, (ca len --) "header-comma"

Create a definition header in the name space using the name ca len and hide it by setting its smudge
bit.

The execution token pointer of the new header points to the data space pointer.

See also: header, warn.

Source file: <src/kernel.z80s>.

heap

heap (-- a)

Address of the current memory heap, used by allocate, resize and free.

The memory heap can be created by allot-heap, limit-heap, bank-heap, or farlimit-heap. Then it
must be initialized by empty-heap.

See also: /heap, get-heap.

Source file: <src/lib/memory.allocate.COMMON.fs>.

heap-bank

heap-bank (-- ca)

A cvariable ca that contains the memory bank used to store the heap, when the memory heap was
created by bank-heap or farlimit-heap. If the heap was created by allot-heap or limit-heap, heap-
bank contains zero.

See also: heap-in, heap-out, get-heap.

Source file: <src/lib/memory.allocate.COMMON.fs>.

heap-in

heap-in (--)

If the current heap was created by bank-heap or farlimit-heap, page in its bank, which is stored at
heap-bank; else do nothing.

427

heap-in is a deferred word (see defer) whose default action is noop. Its alternative action is (heap-in.

See also: heap-out.

Source file: <src/lib/memory.allocate.COMMON.fs>.

heap-out

heap-out (--)

If the current heap was created by bank-heap or farlimit-heap, page in the default memory bank
instead; else do nothing.

heap-out is a deferred word (see defer) whose default action is noop. Its alternative action is default-
bank.

See also: heap-in.

Source file: <src/lib/memory.allocate.COMMON.fs>.

here

here (-- a)

a is the data-space pointer.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: dp, limit, unused, there.

Source file: <src/kernel.z80s>.

hex

hex (--)

Set contents of base to sixteen.

Origin: fig-Forth, Forth-79 (Reference Word Set), Forth-83 (Controlled Reference Words), Forth-94
(CORE EXT), Forth-2012 (CORE EXT).

See also: decimal, binary.

Source file: <src/kernel.z80s>.

428

hex.

hex. (n --) "hex-dot"

Display n as an unsigned hexadecimal number, followed by one space.

See also: dec., bin., u., ..

Source file: <src/lib/display.numbers.fs>.

hex>

hex> (--) "end-hex"

End a code zone where hexadecimal radix is the default, by restoring the value of base from base'.
The zone was started by <hex.

Source file: <src/lib/display.numbers.fs>.

hidden

hidden (nt --)

Hide the definition nt by setting its smudge bit.

Definition:

: hidden (nt --) smudge-mask swap lex! ;

See also: revealed, hide, smudge-mask, lex!.

Source file: <src/kernel.z80s>.

hide

hide (--)

Hide the latest definition by setting its smudge bit.

Definition:

: hide (--) latest hidden ;

See also: hidden, reveal.

429

Source file: <src/kernel.z80s>.

hide-internal

hide-internal (nt xtp --)

Hide all words defined between the latest pair internal and end-internal, setting the smudge bit of
their headers.

Usage example:

internal

: hello (--) ." hello" ;

end-internal

: salute (--) hello ;

hide-internal

salute \ ok!
hello \ error!

At least one word must be defined between end-internal and hide-internal.

The alternative word unlink-internal uses a different, simpler method: it unlinks the internal
words from the dictionary.

privatize uses a similar method, but it has error checking and does not use the stack.

Source file: <src/lib/modules.internal.fs>.

hld

hld (-- a) "h-l-d"

A user variable. a is the address of a cell containing the address of the latest character of text during
numeric output conversion.

Origin: fig-Forth.

See also: hold, <#, #>.

Source file: <src/kernel.z80s>.

430

hold

hold (c --)

Insert character c into a pictured numeric output string. Typically used between <# and #>.

Definition:

: hold (c --) -1 hld +! hld @ c! ;

See also: holds.

Source file: <src/kernel.z80s>.

holds

holds (ca len --)

Add string ca len to the pictured numeric output string started by <#.

Origin: Forth-2012 (CORE EXT).

See also: hold.

Source file: <src/lib/display.numbers.fs>.

home

home (--)

Set the cursor position at the top left position (column 0, row 0).

home is a deferred word (see defer), whose default action is (home.

See also: at-xy, home?.

Source file: <src/kernel.z80s>.

home?

home? (-- f) "home-question"

Is the cursor at home position (column 0, row 0)?

See also: xy, home.

431

Source file: <src/lib/display.cursor.fs>.

hook,

hook, (--) "hook-comma"

Compile the Z80 assembler instruction rst $08. Therefore hook, is equivalent to $08 rst,.

See also: rst,, prt,.

Source file: <src/lib/assembler.fs>.

horizontal-curtain

horizontal-curtain (b --)

Wash the screen with the given color attribute b from the top and bottom rows to the middle.

See also: vertical-curtain.

Source file: <src/lib/graphics.cls.fs>.

hunt

hunt (ca1 len1 ca2 len2 -- ca3 len3)

Search a string ca1 len1 for a substring ca2 len2. Return the part of ca1 len1 that starts with the first
occurence of ca2 len2. Therefore ca3 len3 = ca1+n len1-n.

Origin: Charscan library, by Wil Baden, 2003-02-17, public domain.

See also: search, compare, skip, scan.

Source file: <src/lib/strings.MISC.fs>.

hz>bleep

hz>bleep (frequency duration1 -- duration2 pitch) "hertz-to-bleep;

Convert frequency (in Hz) and duration1 (in ms) to the parameters duration2 pitch needed by bleep.

See also: dhz>bleep.

Source file: <src/lib/sound.48.fs>.

432

i

i

i (-- n|u) (R: do-sys -- do-sys)

Return a copy n|u of the current (innermost) loop index.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: i', j, k.

Source file: <src/kernel.z80s>.

i

i ("ccc<eol>" --)

A command of gforth-editor: insert ccc or, if it’s empty, the contents of the ibuf insert buffer.

See also: il, h, l, r.

Source file: <src/lib/prog.editor.gforth.fs>.

i

i (n --)

A command of specforth-editor: Insert text from pad at line n, moving the old line n down. Line 15
is lost.

See also: b, c, d, e, f, h, l, m, n, p, r, s, t, x.

Source file: <src/lib/prog.editor.specforth.fs>.

i'

i' (-- n|u) (R: loop-sys -- loop-sys) "i-tick"

Return a copy n|u of the limit of the current (innermost) loop index.

Origin: Comus.

See also: i, j', k'.

433

Source file: <src/lib/flow.j.fs>.

ibuf

ibuf (-- ca)

Return the address ca of the 100-byte insert buffer used by the gforth-editor.

See also: rbuf, fbuf, i, il, insert.

Source file: <src/lib/prog.editor.gforth.fs>.

if

if
 Compilation: (C: -- orig)
 Run-time: (f --)

Compilation: Compile a conditional 0branch and put the location orig of its unresolved destination
on the control-flow stack, to be resolved by else or then.

Run-time: If f is zero, continue execution at the location specified by the resolution of orig.

if is an immediate and compile-only word.

Definition:

: if \ Compilation: (C: -- orig)
 \ Run-time: (f --)
 compile 0branch >mark ; immediate compile-only

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: again, until, ahead, 0if, -if, +if, andif, orif.

Source file: <src/kernel.z80s>.

if>

if> "if-from"
 Compilation: (--)
 (C: -- orig)

Part of the {if control structure.

434

Source file: <src/lib/flow.dijkstra.fs>.

ifcase

ifcase
 Compilation: (-- orig)
 Run-time: (x f -- x|)

Part of a thiscase structure that checks x.

Compilation: Leave the forward reference orig, to be consumed by exitcase.

Runtime: If f is true, discard x and continue execution; else skip the code compiled until the next
exitcase.

ifcase is an immediate and compile-only word.

See also: othercase.

Source file: <src/lib/flow.thiscase.fs>.

ifelse

ifelse (x1 x2 f -- x1 | x2) "if-else"

If f is true return x1, otherwise return x2.

Source file: <src/lib/math.operators.1-cell.fs>.

if}

if} "if-curly-bracket"
 Compilation: (count --)
 (C: orig#...orig#n --)

Terminate a {if control structure.

Source file: <src/lib/flow.dijkstra.fs>.

il

il (--)

A command of gforth-editor: insert the line stored into pad at the cursor position.

See also: i, l.

435

Source file: <src/lib/prog.editor.gforth.fs>.

im1,

im1, (--) "i-m-one-comma"

Compile the Z80 assembler instruction IM 1.

See also: im2,, di,, ei,, halt,.

Source file: <src/lib/assembler.fs>.

im2,

im2, (--) "i-m-two-comma"

Compile the Z80 assembler instruction IM 2.

See also: im1,, di,, ei,, halt,.

Source file: <src/lib/assembler.fs>.

immediate

immediate (--)

Make the most recent definition an immediate word.

Definition:

: immediate (--) immediate-mask latest lex! ;

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: immediate-mask, latest, lex!, immediate?, compile-only.

Source file: <src/kernel.z80s>.

immediate-mask

immediate-mask (-- b)

A cconstant. b is the bitmask of the precedence bit, set by immediate.

436

See also: compile-only-mask, smudge-mask, word-length-mask.

Source file: <src/kernel.z80s>.

immediate?

immediate? (nt -- f) "immediate-question"

f is true if the word nt is immediate.

Definition:

: immediate? (nt -- f) immediate-mask lex? ;

See also: immediate, lex?, immediate-mask.

Source file: <src/kernel.z80s>.

in,

in, (b --) "in-comma"

Compile the Z80 assembler instruction IN A,(b).

See also: out,, inbc,.

Source file: <src/lib/assembler.fs>.

inbc,

inbc, (reg --) "in-b-c-comma"

Compile the Z80 assembler instruction IN reg,©.

See also: outbc, in,.

Source file: <src/lib/assembler.fs>.

inc,

inc, (reg --) "inc-comma"

Compile the Z80 assembler instruction INC reg.

See also: dec,, incp,.

437

Source file: <src/lib/assembler.fs>.

incp,

incp, (regp --) "inc-p-comma"

Compile the Z80 assembler instruction INC regp.

See also: decp,, inc,.

Source file: <src/lib/assembler.fs>.

incx

incx (-- a) "inc-x"

A 2variable used by adraw176 and aline176.

See also: incy, x1, y1.

Source file: <src/lib/graphics.lines.fs>.

incx,

incx, (disp regpi --) "inc-x-comma"

Compile the Z80 assembler instruction INC (regp+disp).

See also: decx,, addx,, adcx,.

Source file: <src/lib/assembler.fs>.

incy

incy (-- a) "ink-y"

A 2variable used by adraw176 and aline176.

See also: incx, x1, y1.

Source file: <src/lib/graphics.lines.fs>.

indented+

438

indented+ (u --) "indented-plus"

Add u to #indented.

Source file: <src/lib/display.ltype.fs>.

index

index (u1 u2 --)

Display the first line of each block over the range from u1 to u2, which conventionally contains a
comment with a title.

Origin: fig-Forth, Forth-79 (Reference Word Set), Forth-83 (Uncontrolled Reference Words).

Source file: <src/lib/tool.list.blocks.fs>.

index-block

index-block (block --)

Index block block.

See also: use-fly-index.

Source file: <src/lib/blocks.indexer.fly.fs>.

index-ilike

index-ilike (u1 u2 "name" --)

Display the first line of each block over the range from u1 to u2, which conventionally contains a
comment with a title, as long as the string name is included in the line. The string comparison is
case-insensitive.

See also: index, index-like.

Source file: <src/lib/tool.list.blocks.fs>.

index-like

index-like (u1 u2 "name" --)

Display the first line of each block over the range from u1 to u2, which conventionally contains a

439

comment with a title, as long as the string name is included in the line. The string comparison is
case-sensitive.

See also: index, index-ilike.

Source file: <src/lib/tool.list.blocks.fs>.

index-name

index-name (ca len --)

Add word ca len to the blocks index, if not done before.

The current word list must be index-wordlist.

WARNING
The block where ca len was found is stored as the execution token of its
definition in the index. This way the index uses no data space. Don’t put index-
wordlist in the search order unless you know what you’re doing.

Source file: <src/lib/blocks.indexer.COMMON.fs>.

index-wordlist

index-wordlist (-- wid)

Word list for the indexed words.

Source file: <src/lib/blocks.indexer.COMMON.fs>.

indexed-block?

indexed-block? (block -- f) "indexed-block-question"

Is block block indexed?

See also: use-fly-index.

Source file: <src/lib/blocks.indexer.fly.fs>.

indexed-blocks

indexed-blocks (-- ca)

Bit array to mark the indexed blocks

440

See also: use-fly-index.

Source file: <src/lib/blocks.indexer.fly.fs>.

init-2val

init-2val (--) "init-two-val"

Init the default behaviour of words created by 2val: Make them return their content.

init-2val is a factor of 2val.

Source file: <src/lib/data.val.fs>.

init-arg-action

init-arg-action (--)

Set arg-action to arg-default-action.

init-arg-action is a factor of arguments.

Source file: <src/lib/locals.arguments.fs>.

init-asm

init-asm (--)

A deferred word (see defer) called by asm. Its action is set by the assembler labels module in order to
init the labels. Its default action is noop.

Source file: <src/kernel.z80s>.

init-cval

init-cval (--) "init-c-val"

Init the default behaviour of words created by cval: Make them return their content.

init-cval is a factor of cval.

Source file: <src/lib/data.val.fs>.

init-drive

441

init-drive (b -- ior)

Init TR-DOS drive b (0..3) and set it as the current one.

init-drive is used by set-drive.

See also: read-system-track.

Source file: <src/kernel.trdos.z80s>.

init-labels

init-labels (--)

Init the assembler labels and their references, by allocating space for them in the stringer and
erasing it. labels and l-refs are given new values.

Loading init-labels makes it the action of init-asm, which is called by asm and therefore also by
code and ;code. Therefore, if the program needs a specific ammount of labels or label references,
max-labels and max-l-refs must be configured before compiling the assembly word.

Source file: <src/lib/assembler.labels.fs>.

init-val

init-val (--)

Init the default behaviour of words created by val: Make them return their content.

init-val is a factor of val.

Source file: <src/lib/data.val.fs>.

ink-mask

ink-mask (-- b)

A cconstant. b is the bitmask of the bits used to indicate the ink in an attribute byte.

See also: unink-mask, set-ink, attr!, paper-mask, bright-mask, flash-mask.

Source file: <src/lib/display.attributes.fs>.

ink.

442

ink. (b --) "ink-dot"

Set ink color to b (0..9), by printing the corresponding control characters. If b is greater than 9, 9 is
used instead.

ink. is much slower than set-ink or attr!, but it can handle pseudo-colors 8 (transparent) and 9
(contrast), setting the corresponding system variables accordingly.

See also: paper., (0-9-color..

Source file: <src/lib/display.attributes.fs>.

inkey

inkey (-- 0 | c)

Leave the value of the key being pressed. If no key being pressed, leave 0.

inkey works only when an interrupts routine reads the keyboard and updates the related system
variables.

See also: get-inkey, key.

Source file: <src/lib/keyboard.inkey.fs>.

input-buffer

input-buffer (-- a)

A 2variable. a is the address of a double cell containing the address and length of the current input
buffer.

See also: source, set-source.

Source file: <src/kernel.z80s>.

input-stream-header

input-stream-header ("name" --)

Create a dictionary header name.

Definition:

443

: input-stream-header ("name" --)
 parse-name dup 0= #-16 ?throw header, ;

See also: header, header,, nextname-header, parse-name.

Source file: <src/kernel.z80s>.

insert

insert (ca1 len1 ca2 len2 --)

Insert string ca1 len1 at the start of string ca2 len2.

See also: delete, replace.

Source file: <src/lib/strings.MISC.fs>.

internal

internal (-- nt)

Start internal (private) definitions. Return the nt of the latest word created in the compilation word
list.

The end of the internal definitions is marked by end-internal. Then those definitions can be
unlinked by unlink-internal or hidden by hide-internal.

See also: isolate, module, package, privatize, seclusion.

Source file: <src/lib/modules.internal.fs>.

interpret

interpret (--)

The text interpreter which sequentially executes or compiles text from the current input stream
source (terminal or disk) depending on state. If the word name cannot be found in the search order
it is converted to a number by number?, according to the current base. That also failing, an error will
happen.

The actions of the text interpreter are determined by the configuration of interpret-table.

See also: evaluate, execute-parsing, set-source, nest-source.

Source file: <src/kernel.z80s>.

444

interpret-table

interpret-table (-- a)

a is the zero-offset address of the execution table used by interpret. The table contains 13 vectors.
The behaviour of the Forth text interpreter can be changed by replacing these vectors. The
structure and contents of the execution table is the following:

Table 28. Structure of interpret-table.

Cell offset Execution token or zero Condition

-6 execute Compile an immediate and
compile-only word

-5 compile, Compile a compile-only word

-4 execute Compile an immediate word

-3 compile, Compile an ordinary word

-2 2literal Compile a 2-cell number

-1 xliteral Compile a 1-cell number

0 not-understood Not a word nor a number
(error)

1 0 Interpret a 1-cell number (do
nothing)

2 0 Interpret a 2-cell number (do
nothing)

3 execute Interpret an ordinary word

4 execute Interpret an immediate word

5 compilation-only Interpret a compile-only word
(error)

6 compilation-only Interpret an immediate and
compile-only word (error)

Source file: <src/kernel.z80s>.

inverse

inverse (f --)

If f is zero, turn the inverse printing mode off; else turn it on.

See also: inverse-off, inverse-on, overprint.

Source file: <src/lib/display.attributes.fs>.

445

inverse-cond

inverse-cond (op1 -- op2)

Convert a Z80 assembler condition flag op1 (actually a jump opcode) to its opposite op2.

Examples: The opcode returned by c? is converted to the opcode returned by nc?, nz? to z?, po? to
pe?, p? to `m?; and vice versa.

inverse-cond is used by rif, runtil, aif and auntil.

Source file: <src/lib/assembler.fs>.

inverse-off

inverse-off (--)

Turn the inverse printing mode off.

See also: inverse-on, inverse, overprint-off.

Source file: <src/lib/display.attributes.fs>.

inverse-on

inverse-on (--)

Turn the inverse printing mode on.

See also: inverse-off, inverse, overprint-on.

Source file: <src/lib/display.attributes.fs>.

inversely

inversely (b1 -- b2)

Convert attribute b1 to its inversely equivalent b2, i.e. b2 has paper and ink exchanged.

See also: contrast, papery, brighty, flashy, attr>paper, attr>ink.

Source file: <src/lib/display.attributes.fs>.

invert

446

invert (x1 -- x2)

Invert all bits of x1 giving its logical inverse x2.

See also: 0=, negate.

Source file: <src/kernel.z80s>.

invert-display

invert-display (--)

Invert the pixels of the whole screen.

See also: wave-display, fade-display.

Source file: <src/lib/graphics.display.fs>.

is

is
 Interpretation: (xt "name" --)
 Compilation: ("name" --)
 Run-time: (xt --)

Interpretation: (xt "name" — )

Set name, which was defined by defer, to execute xt.

Compilation: ("name" — )

Append the run-time semantics given below to the current definition.

Run-time: (xt — )

Set name, which was defined by defer, to execute xt.

WARNING is is a state-smart word (see state).

Origin: Forth-2012 (CORE EXT).

See also: [is], <is>.

Source file: <src/lib/define.deferred.fs>.

447

isolate

isolate (--)

Create a word list, push it on the search order and set it as the compilation word list.

isolate is the simplest way to create a module. Usage example:

get-current isolate
 \ Inner words.
set-current
 \ Interface words.
previous

See also: internal, module, package, privatize, seclusion.

Source file: <src/lib/modules.MISC.fs>.

item

item (ca len wid -- i*x)

If ca len is an item of the associative-list wid, return its value i*x; else throw an exception #-13
("undefined word").

See also: item?. entry:, centry:, 2entry:, sentry:, items.

Source file: <src/lib/data.associative-list.fs>.

item?

item? (ca len wid -- false | xt true) "item-question"

Is ca len an item of the associative-list wid? If so return its xt and true, else return false.

See also: item. entry:, centry:, 2entry:, sentry:, items.

Source file: <src/lib/data.associative-list.fs>.

items

items (wid --)

List items of the associative-list wid.

448

Source file: <src/lib/data.associative-list.fs>.

ix

ix (-- regpi) "i-x"

regpi is the identifier of the Z80 assembler register "IX".

See also: a, b, c, d, e, h, l, m, iy, sp.

Source file: <src/lib/assembler.fs>.

iy

iy (-- regpi) "i-y"

regpi is the identifier of the Z80 assembler register "IY".

See also: a, b, c, d, e, h, l, m, ix, sp.

Source file: <src/lib/assembler.fs>.

j

j

j (-- n|u) (R: loop-sys1 loop-sys2 -- loop-sys1 loop-sys2)

Return a copy n|u of the next-outer loop index.

Origin: Forth-83 (Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: j', i, k.

Source file: <src/lib/flow.j.fs>.

j'

j' (-- n|u) (R: loop-sys1 loop-sys2 -- loop-sys1 loop-sys2) "j-tick"

Return a copy n|u of the limit of the next-outer loop index.

Origin: Comus.

See also: j, i', k'.

449

Source file: <src/lib/flow.j.fs>.

join

join (b1 b2 -- x)

b1 is the low-order byte of x, and b2 is the high-order byte of x.

Origin: IsForth.

See also: split, flip.

Source file: <src/lib/math.operators.1-cell.fs>.

jp,

jp, (a --) "j-p-comma"

Compile the Z80 opcode to jump to a.

Definition:

: jp, (a --) $C3 c, , ;

See also: call,.

Source file: <src/kernel.z80s>.

jp>jr

jp>jr (op1 -- op2) "j-p-greater-than-j-r"

Convert a Z80 assembler absolute-jump instruction op1 to its relative-jump equivalent op2. Throw
error #-273 if the jump condition is invalid.

jp>jr is a factor of ?jr,, rif and runtil.

Source file: <src/lib/assembler.fs>.

jphl,

jphl, (--) "j-p-h-l-comma"

Compile the Z80 assembler instruction JP (HL).

450

See also: jpix,.

Source file: <src/lib/assembler.fs>.

jpix,

jpix, (--) "j-p-i-x-comma"

Compile the Z80 assembler instruction JP (IX).

See also: jphl,.

Source file: <src/lib/assembler.fs>.

jpnext,

jpnext, (--) "j-p-next-comma"

Compile a Z80 jump to next.

See also: jp,.

Source file: <src/kernel.z80s>.

jr,

jr, (a --) "j-r-comma"

Compile the Z80 assembler instruction JR n, being n an offset from the current address to address a.

See also: ?jr,, djnz,, jp,.

Source file: <src/lib/assembler.fs>.

k

k

k (-- n|u) (R: loop-sys1 ... loop-sys3 -- loop-sys1 ... loop-sys3)

Return a copy n|u of the second outer loop index.

Origin: Forth-83 (Controlled reference words).

See also: k', i, j.

451

Source file: <src/lib/flow.j.fs>.

k'

k' (-- n|u) (R: loop-sys1 ... loop-sys3 -- loop-sys1 ... loop-sys3) "k-tick"

Return a copy n|u of the limit of the second outer loop index.

Origin: Comus.

See also: k, i', j'.

Source file: <src/lib/flow.j.fs>.

key

key (-- c)

Return character c of the key struck, a member of the defined character set. Keyboard events that
do not correspond to such characters are discarded until a valid character is received, and those
events are subsequently unavailable.

Origin: Forth-94 (CORE), Forth-2012 (CORE).

See also: key?, new-key, new-key-, -keys.

Source file: <src/kernel.z80s>.

key-caps-lock

key-caps-lock (-- c)

c is the caps-lock control character, which is obtained by pressing "Caps Shift + 2" and can be read
by key.

See also: key-edit, key-left, key-right, key-down, key-up, key-delete, key-enter, key-graphics, key-
true-video, key-inverse-video.

Source file: <src/lib/keyboard.MISC.fs>.

key-delete

key-delete (-- c)

c is the delete control character, which is obtained by pressing "Caps Shift + 0" and can be read by
key.

452

See also: key-edit, key-left, key-right, key-down, key-up, key-enter, key-graphics, key-true-video, key-
inverse-video, key-caps-lock.

Source file: <src/lib/keyboard.MISC.fs>.

key-down

key-down (-- c)

c is the cursor-down control character, which is obtained by pressing "Caps Shift + 6" and can be
read by key.

See also: key-edit, key-left, key-right, key-up, key-delete, key-enter, key-graphics, key-true-video,
key-inverse-video, key-caps-lock.

Source file: <src/lib/keyboard.MISC.fs>.

key-edit

key-edit (-- c)

c is the edit control character, which is obtained by pressing "Caps Shift + 1" and can be read by key.

See also: key-left, key-right, key-down, key-up, key-delete, key-enter, key-graphics, key-true-video,
key-inverse-video, key-caps-lock.

Source file: <src/lib/keyboard.MISC.fs>.

key-enter

key-enter (-- c)

c is the enter control character, which is obtained by pressing "Enter" and can be read by key.

See also: key-edit, key-left, key-right, key-down, key-up, key-delete, key-graphics, key-true-video,
key-inverse-video, key-caps-lock.

Source file: <src/lib/keyboard.MISC.fs>.

key-graphics

key-graphics (-- c)

c is the graphics control character, which is obtained by pressing "Caps Shift + 9" and can be read by
key.

453

See also: key-edit, key-left, key-right, key-down, key-up, key-delete, key-enter, key-true-video, key-
inverse-video, key-caps-lock.

Source file: <src/lib/keyboard.MISC.fs>.

key-inverse-video

key-inverse-video (-- c)

c is the inverse-video control character, which is obtained by pressing "Caps Shift + 4" and can be
read by key.

See also: key-edit, key-left, key-right, key-down, key-up, key-delete, key-enter, key-graphics, key-
true-video, key-caps-lock.

Source file: <src/lib/keyboard.MISC.fs>.

key-left

key-left (-- c)

c is the cursor-left control character, which is obtained by pressing "Caps Shift + 5" and can be read
by key.

See also: key-edit, key-right, key-down, key-up, key-delete, key-enter, key-graphics, key-true-video,
key-inverse-video, key-caps-lock.

Source file: <src/lib/keyboard.MISC.fs>.

key-right

key-right (-- c)

c is the cursor-right control character, which is obtained by pressing "Caps Shift + 8" and can be
read by key.

See also: key-edit, key-left, key-down, key-up, key-delete, key-enter, key-graphics, key-true-video,
key-inverse-video, key-caps-lock.

Source file: <src/lib/keyboard.MISC.fs>.

key-translation-table

key-translation-table (-- a)

454

A variable. a is the address of a cell containing the address of the current key translation table, used
by key.

The table consists of pairs of characters. The first one is the character that has to be translated and
the second one is its translation. The table is finished with a zero.

The default table makes it possible to access the following characters with Symbol Shift: '[', ']', '~', '|',
'\', '{' and '}'.

Source file: <src/kernel.z80s>.

key-true-video

key-true-video (-- c)

c is the true-video control character, which is obtained by pressing "Caps Shift + 3" and can be read
by key.

See also: key-edit, key-left, key-right, key-down, key-up, key-delete, key-enter, key-graphics, key-
inverse-video, key-caps-lock.

Source file: <src/lib/keyboard.MISC.fs>.

key-up

key-up (-- c)

c is the cursor-up control character, which is obtained by pressing "Caps Shift + 7" and can be read
by key.

See also: key-edit, key-left, key-right, key-down, key-delete, key-enter, key-graphics, key-true-video,
key-inverse-video, key-caps-lock.

Source file: <src/lib/keyboard.MISC.fs>.

key?

key? (-- f) "key-question"

If a character is available, return true. Otherwise, return false. If non-character keyboard events
are available before the first valid character, they are discarded and are subsequently unavailable.
The character is returned by the next execution of key.

After key? returns with a value of true, subsequent executions of key? prior to the execution of key
also return true, without discarding keyboard events.

Origin: Forth-94 (FACILITY), Forth-2012 (FACILITY).

455

See also: -keys.

Source file: <src/kernel.z80s>.

kk#>kk

kk#>kk (n -- b a) "k-k-dash-to-k-k"

Convert keyboard key number n to its data: key bitmask b and keyboard row port a.

See also: kk-ports, /kk, kk@.

Source file: <src/lib/keyboard.MISC.fs>.

kk,

kk, (b a --) "k-k-comma"

Compile key definition b a (bitmask and port) into table kk-ports. The actual definition of kk,
depends on the value of /kk.

See also: kk@, /kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-0

kk-0 (-- b a) "k-k-0"

Return key bitmask b and keyboard row port a needed for reading the physical key "0" with
pressed?.

See also: kk-0#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-0#

kk-0# (-- n) "k-k-0-dash"

Return index n of the physical key "0" in tables kk-chars and kk-ports.

See also: kk-0, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

456

kk-1

kk-1 (-- b a) "k-k-1"

Return key bitmask b and keyboard row port a needed for reading the physical key "1" with
pressed?.

See also: kk-1#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-1#

kk-1# (-- n) "k-k-1-dash"

Return index n of the physical key "1" in tables kk-chars and kk-ports.

See also: kk-1, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-2

kk-2 (-- b a) "k-k-2"

Return key bitmask b and keyboard row port a needed for reading the physical key "2" with
pressed?.

See also: kk-2#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-2#

kk-2# (-- n) "k-k-2-dash"

Return index n of the physical key "2" in tables kk-chars and kk-ports.

See also: kk-2, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-3

457

kk-3 (-- b a) "k-k-3"

Return key bitmask b and keyboard row port a needed for reading the physical key "3" with
pressed?.

See also: kk-3#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-3#

kk-3# (-- n) "k-k-3-dash"

Return index n of the physical key "3" in tables kk-chars and kk-ports.

See also: kk-3, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-4

kk-4 (-- b a) "k-k-4"

Return key bitmask b and keyboard row port a needed for reading the physical key "4" with
pressed?.

See also: kk-4#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-4#

kk-4# (-- n) "k-k-4-dash"

Return index n of the physical key "4" in tables kk-chars and kk-ports.

See also: kk-4, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-5

kk-5 (-- b a) "k-k-5"

Return key bitmask b and keyboard row port a needed for reading the physical key "5" with

458

pressed?.

See also: kk-5#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-5#

kk-5# (-- n) "k-k-5-dash"

Return index n of the physical key "5" in tables kk-chars and kk-ports.

See also: kk-5, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-6

kk-6 (-- b a) "k-k-6"

Return key bitmask b and keyboard row port a needed for reading the physical key "6" with
pressed?.

See also: kk-6#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-6#

kk-6# (-- n) "k-k-6-dash"

Return index n of the physical key "6" in tables kk-chars and kk-ports.

See also: kk-6, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-7

kk-7 (-- b a) "k-k-7"

Return key bitmask b and keyboard row port a needed for reading the physical key "7" with
pressed?.

See also: kk-7#, #kk, kk-ports.

459

Source file: <src/lib/keyboard.MISC.fs>.

kk-7#

kk-7# (-- n) "k-k-7-dash"

Return index n of the physical key "7" in tables kk-chars and kk-ports.

See also: kk-7, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-8

kk-8 (-- b a) "k-k-8"

Return key bitmask b and keyboard row port a needed for reading the physical key "8" with
pressed?.

See also: kk-8#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-8#

kk-8# (-- n) "k-k-8-dash"

Return index n of the physical key "8" in tables kk-chars and kk-ports.

See also: kk-8, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-9

kk-9 (-- b a) "k-k-9"

Return key bitmask b and keyboard row port a needed for reading the physical key "9" with
pressed?.

See also: kk-9#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

460

kk-9#

kk-9# (-- n) "k-k-9-dash"

Return index n of the physical key "9" in tables kk-chars and kk-ports.

See also: kk-9, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-a

kk-a (-- b a) "k-k-A"

Return key bitmask b and keyboard row port a needed for reading the physical key "A" with
pressed?.

See also: kk-a#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-a#

kk-a# (-- n) "k-k-A-dash"

Return index n of the physical key "A" in tables kk-chars and kk-ports.

See also: kk-a, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-b

kk-b (-- b a) "k-k-B"

Return key bitmask b and keyboard row port a needed for reading the physical key "B" with
pressed?.

See also: kk-b#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-b#

461

kk-b# (-- n) "k-k-B-dash"

Return index n of the physical key "B" in tables kk-chars and kk-ports.

See also: kk-b, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-c

kk-c (-- b a) "k-k-C"

Return key bitmask b and keyboard row port a needed for reading the physical key "C" with
pressed?.

See also: kk-c#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-c#

kk-c# (-- n) "k-k-C-dash"

Return index n of the physical key "C" in tables kk-chars and kk-ports.

See also: kk-c, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-chars

kk-chars (-- ca) "k-k-chars"

ca is the address of a 40-byte table that contains the characters used as names of the physical keys
(one character per key) and it’s organized by keyboard rows, as follows:

Table 29. Keyboard matrix pointed by kk-chars.

1 2 3 4 5

q w e r t

a s d f g

Caps Shift z x c v

0 9 8 7 6

p o i u y

462

Enter l k j h

Space Symbol Shift m n b

The first 4 UDG codes displayed after the default configuration of last-font-char are used for the
keys whose names are not a printable character, as follows:

Table 30. Items of kk-chars used as names of special keys.

Byte offset UDG code Key

15 128 Caps Shift

30 129 Enter

35 130 Space

36 131 Symbol Shift

The application should define those UDG with proper icons to represent the corresponding keys.

See also: #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-cs

kk-cs (-- b a) "k-k-caps-shift"

Return key bitmask b and keyboard row port a needed for reading the physical key "Caps Shift"
with pressed?.

See also: kk-cs#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-cs#

kk-cs# (-- n) "k-k-caps-shift-dash"

Return index n of the physical key "Caps Shift" in tables kk-chars and kk-ports.

See also: kk-cs, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-d

kk-d (-- b a) "k-k-D"

463

Return key bitmask b and keyboard row port a needed for reading the physical key "D" with
pressed?.

See also: kk-d#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-d#

kk-d# (-- n) "k-k-D-dash"

Return index n of the physical key "D" in tables kk-chars and kk-ports.

See also: kk-d, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-e

kk-e (-- b a) "k-k-E"

Return key bitmask b and keyboard row port a needed for reading the physical key "E" with
pressed?.

See also: kk-e#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-e#

kk-e# (-- n) "k-k-E-dash"

Return index n of the physical key "E" in tables kk-chars and kk-ports.

See also: kk-e, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-en

kk-en (-- b a) "k-k-enter"

Return key bitmask b and keyboard row port a needed for reading the physical key "Enter" with
pressed?.

See also: kk-en#, #kk, kk-ports.

464

Source file: <src/lib/keyboard.MISC.fs>.

kk-en#

kk-en# (-- n) "k-k-enter-dash"

Return index n of the physical key "Enter" in tables kk-chars and kk-ports.

See also: kk-en, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-f

kk-f (-- b a) "k-k-F"

Return key bitmask b and keyboard row port a needed for reading the physical key "F" with
pressed?.

See also: kk-f#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-f#

kk-f# (-- n) "k-k-F-dash"

Return index n of the physical key "F" in tables kk-chars and kk-ports.

See also: kk-f, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-g

kk-g (-- b a) "k-k-G"

Return key bitmask b and keyboard row port a needed for reading the physical key "G" with
pressed?.

See also: kk-g#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

465

kk-g#

kk-g# (-- n) "k-k-G-dash"

Return index n of the physical key "G" in tables kk-chars and kk-ports.

See also: kk-g, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-h

kk-h (-- b a) "k-k-H"

Return key bitmask b and keyboard row port a needed for reading the physical key "H" with
pressed?.

See also: kk-h#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-h#

kk-h# (-- n) "k-k-H-dash"

Return index n of the physical key "H" in tables kk-chars and kk-ports.

See also: kk-h, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-i

kk-i (-- b a) "k-k-I"

Return key bitmask b and keyboard row port a needed for reading the physical key "I" with
pressed?.

See also: kk-i#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-i#

466

kk-i# (-- n) "k-k-I-dash"

Return index n of the physical key "I" in tables kk-chars and kk-ports.

See also: kk-i, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-j

kk-j (-- b a) "k-k-J"

Return key bitmask b and keyboard row port a needed for reading the physical key "J" with
pressed?.

See also: kk-j#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-j#

kk-j# (-- n) "k-k-J-dash"

Return index n of the physical key "J" in tables kk-chars and kk-ports.

See also: kk-j, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-k

kk-k (-- b a) "k-k-K"

Return key bitmask b and keyboard row port a needed for reading the physical key "K" with
pressed?.

See also: kk-k#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-k#

kk-k# (-- n) "k-k-K-dash"

Return index n of the physical key "K" in tables kk-chars and kk-ports.

467

See also: kk-k, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-l

kk-l (-- b a) "k-k-L"

Return key bitmask b and keyboard row port a needed for reading the physical key "L" with
pressed?.

See also: kk-l#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-l#

kk-l# (-- n) "k-k-L-dash"

Return index n of the physical key "L" in tables kk-chars and kk-ports.

See also: kk-l, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-m

kk-m (-- b a) "k-k-M"

Return key bitmask b and keyboard row port a needed for reading the physical key "M" with
pressed?.

See also: kk-m#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-m#

kk-m# (-- n) "k-k-M-dash"

Return index n of the physical key "M" in tables kk-chars and kk-ports.

See also: kk-m, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

468

kk-n

kk-n (-- b a) "k-k-N"

Return key bitmask b and keyboard row port a needed for reading the physical key "N" with
pressed?.

See also: kk-n#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-n#

kk-n# (-- n) "k-k-N-dash"

Return index n of the physical key "N" in tables kk-chars and kk-ports.

See also: kk-n, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-o

kk-o (-- b a) "k-k-O"

Return key bitmask b and keyboard row port a needed for reading the physical key "O" with
pressed?.

See also: kk-o#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-o#

kk-o# (-- n) "k-k-O-dash"

Return index n of the physical key "O" in tables kk-chars and kk-ports.

See also: kk-o, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-p

469

kk-p (-- b a) "k-k-P"

Return key bitmask b and keyboard row port a needed for reading the physical key "P" with
pressed?.

See also: kk-p#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-p#

kk-p# (-- n) "k-k-P-dash"

Return index n of the physical key "P" in tables kk-chars and kk-ports.

See also: kk-p, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-ports

kk-ports (-- a) "k-k-ports"

A table that contains the key definitions (bitmak and port) of all keys.

The table contains 40 items, one per physical key, and it’s organized by keyboard rows.

Every item occupies 3 or 4 bytes, depending on the value of /kk. The default is 4.

See also: kk,, kk@, #kk, kk-chars.

Source file: <src/lib/keyboard.MISC.fs>.

kk-q

kk-q (-- b a) "k-k-Q"

Return key bitmask b and keyboard row port a needed for reading the physical key "Q" with
pressed?.

See also: kk-q#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

470

kk-q#

kk-q# (-- n) "k-k-Q-dash"

Return index n of the physical key "Q" in tables kk-chars and kk-ports.

See also: kk-q, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-r

kk-r (-- b a) "k-k-R"

Return key bitmask b and keyboard row port a needed for reading the physical key "R" with
pressed?.

See also: kk-r#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-r#

kk-r# (-- n) "k-k-R-dash"

Return index n of the physical key "R" in tables kk-chars and kk-ports.

See also: kk-r, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-s

kk-s (-- b a) "k-k-S"

Return key bitmask b and keyboard row port a needed for reading the physical key "S" with
pressed?.

See also: kk-s#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-s#

471

kk-s# (-- n) "k-k-S-dash"

Return index n of the physical key "S" in tables kk-chars and kk-ports.

See also: kk-s, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-sp

kk-sp (-- b a) "k-k-space"

Return key bitmask b and keyboard row port a needed for reading the physical key "Space" with
pressed?.

See also: kk-sp#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-sp#

kk-sp# (-- n) "k-k-space-dash"

Return index n of the physical key "Space" in tables kk-chars and kk-ports.

See also: kk-sp, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-ss

kk-ss (-- b a) "k-k-symbol-shift"

Return key bitmask b and keyboard row port a needed for reading the physical key "Symbol Shift"
with pressed?.

See also: kk-ss#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-ss#

kk-ss# (-- n) "k-k-symbol-shift-dash"

Return index n of the physical key "Symbol Shift" in tables kk-chars and kk-ports.

472

See also: kk-ss, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-t

kk-t (-- b a) "k-k-T"

Return key bitmask b and keyboard row port a needed for reading the physical key "T" with
pressed?.

See also: kk-t#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-t#

kk-t# (-- n) "k-k-T-dash"

Return index n of the physical key "T" in tables kk-chars and kk-ports.

See also: kk-t, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-u

kk-u (-- b a) "k-k-U"

Return key bitmask b and keyboard row port a needed for reading the physical key "U" with
pressed?.

See also: kk-u#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-u#

kk-u# (-- n) "k-k-U-dash"

Return index n of the physical key "U" in tables kk-chars and kk-ports.

See also: kk-u, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

473

kk-v

kk-v (-- b a) "k-k-V"

Return key bitmask b and keyboard row port a needed for reading the physical key "V" with
pressed?.

See also: kk-v#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-v#

kk-v# (-- n) "k-k-V-dash"

Return index n of the physical key "V" in tables kk-chars and kk-ports.

See also: kk-v, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-w

kk-w (-- b a) "k-k-W"

Return key bitmask b and keyboard row port a needed for reading the physical key "W" with
pressed?.

See also: kk-w#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-w#

kk-w# (-- n) "k-k-W-dash"

Return index n of the physical key "W" in tables kk-chars and kk-ports.

See also: kk-w, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-x

474

kk-x (-- b a) "k-k-X"

Return key bitmask b and keyboard row port a needed for reading the physical key "X" with
pressed?.

See also: kk-x#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-x#

kk-x# (-- n) "k-k-X-dash"

Return index n of the physical key "X" in tables kk-chars and kk-ports.

See also: kk-x, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-y

kk-y (-- b a) "k-k-Y"

Return key bitmask b and keyboard row port a needed for reading the physical key "Y" with
pressed?.

See also: kk-y#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-y#

kk-y# (-- n) "k-k-Y-dash"

Return index n of the physical key "Y" in tables kk-chars and kk-ports.

See also: kk-y, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk-z

kk-z (-- b a) "k-k-Z"

Return key bitmask b and keyboard row port a needed for reading the physical key "Z" with

475

pressed?.

See also: kk-z#, #kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

kk-z#

kk-z# (-- n) "k-k-Z-dash"

Return index n of the physical key "Z" in tables kk-chars and kk-ports.

See also: kk-z, #kk, kk#>kk.

Source file: <src/lib/keyboard.MISC.fs>.

kk@

kk@ (a1 -- b a2) "k-k-fetch"

Fetch a key definition b a2 (bitmask and port) from item a1 of table kk-ports. The actual definition
of kk@ depends on the value of /kk.

See also: kk,, /kk, kk-ports.

Source file: <src/lib/keyboard.MISC.fs>.

l

l

l (-- reg)

Return the identifier reg of the Z80 assembler register "L".

See also: a, b, c, d, e, h, m, ix, iy, sp.

Source file: <src/lib/assembler.fs>.

l

l (--)

A command of gforth-editor: Go to current screen.

476

Source file: <src/lib/prog.editor.gforth.fs>.

l

l (--)

A command of specforth-editor: List the current block.

See also: b, c, d, e, f, h, i, m, n, p, r, s, t, x, scr, list.

Source file: <src/lib/prog.editor.specforth.fs>.

l!

l! (x n --) "l-store"

If assembler label n has been defined in the current definition, throw exception #-284 (assembly label
number already used); else create a new assembler label n with value x and resolve all previous
references to it that could have been created by rl# or al#. Usually x is an address.

See also: l:, resolve-refs.

Source file: <src/lib/assembler.labels.fs>.

l-refs

l-refs (-- a)

A variable. a is the address of a cell containing the address of the label references table, which is
allocated in the stringer by init-labels. The size of the table can be configured with max-l-refs.

Each element of the table (0 index) has the following structure:

+0 = byte: unused reference:
 all bits are 0
 used reference:
 label number: bits 0..5
 relative reference?: bit 6 = 1 (mask ``rl-id``)
 absolute reference?: bit 7 = 1 (mask ``al-id``)
+1 = cell: label address

Source file: <src/lib/assembler.labels.fs>.

477

l/scr

l/scr (-- b) "l-slash-s-c-r"

A cconstant. b is the number of lines per block source: 16.

See also: c/l.

Source file: <src/kernel.z80s>.

l:

l: (n --) "l-colon"

If assembler label n has been defined in the current definition, throw exception #-284 (assembly label
number already used); else create a new assembler label n with the value returned by here and
resolve all previous references to it that could have been created by rl# or al#.

See also: l!, .l, labels, l-refs, init-labels.

See also unresolved for an alternative method.

Source file: <src/lib/assembler.labels.fs>.

labels

labels (-- a)

A variable. a is the address of a cell containing the address of the labels table, which is allocated in
the stringer by init-labels. The size of the table can be configured with max-labels.

Each element of the table (0 index) is one cell, which contains either the address of the
corresponding label or zero if the label is undefined.

See also: /labels, l-refs.

Source file: <src/lib/assembler.labels.fs>.

lang

lang (-- b)

A cconstant containing the number b of the current language, used by translation tools localized-
word, localized-string and localized-character.

Its default value is zero. The value must be changed by the application using c!>.

478

See also: langs.

Source file: <src/lib/translation.fs>.

langs

langs (-- b)

A cconstant containing the number b of languages used by the application, needed by translation
tools localized-word, localized-string and localized-character.

Its default value is zero. The value must be configured by the application using c!>, and it should
not be changed later.

See also: lang.

Source file: <src/lib/translation.fs>.

laser-gun

laser-gun (--)

Laser gun sound for ZX Spectrum 48.

Source file: <src/lib/sound.48.fs>.

last

last (-- a)

A user variable. a is the address of a cell containing the name token of the last word defined.

See also: latest, lastxt.

Source file: <src/kernel.z80s>.

last-column

last-column (-- col)

Last column (x coordinate) in the current screen mode.

See also: last-row, columns, column.

Source file: <src/lib/display.cursor.fs>.

479

last-font-char

last-font-char (-- ca)

A cvariable. ca is the address of a byte containing the code of the last character displayed from the
current font by the current action of emit and by g-emit. Higher characters are managed apart,
displayed by emit-udg (depending on the actual implementation of emit, which is a deferred word;
see defer) or g-emit-udg.

At the moment, only mode-32-emit and g-emit check this value. Eventually, also the alternative
modes will use it.

last-font-char is a character variable, which must be set with c!. Its default value is 127.

See also: set-font, set-udg.

Source file: <src/kernel.z80s>.

last-locatable

last-locatable (-- a)

A variable. a is the address of a cell containing the number of the last block to be searched by
located and its descendants. Its default value is the last block of the disk.

See also: first-locatable.

Source file: <src/lib/002.need.fs>.

last-name

last-name (ca1 len1 -- ca2 len2)

Get the last name ca2 len2 from string ca1 len1. A name is a substring separated by spaces.

See also: first-name, /name, string/, -suffix.

Source file: <src/lib/strings.MISC.fs>.

last-row

last-row (-- row)

Last row (y coordinate) in the current screen mode.

See also: last-column, row, rows.

480

Source file: <src/lib/display.cursor.fs>.

last-stream

last-stream (-- n)

n is the number of the last stream.

See also: first-stream, os-strms, stream>, stream?.

Source file: <src/lib/os.fs>.

last-tape-filename

last-tape-filename (-- ca)

Address of the filename in last-tape-header.

See also: /tape-filename, tape-filename.

Source file: <src/lib/tape.fs>.

last-tape-filetype

last-tape-filetype (-- ca)

Address of the file type (one byte) in last-tape-header.

See also: tape-filetype.

Source file: <src/lib/tape.fs>.

last-tape-header

last-tape-header (-- ca)

Address of the second tape header, which is used by the ROM routines while loading. Its structure is
the identical to tape-header.

It can be used by the application to know the details of the last tape file that was loaded.

See also: last-tape-filename, last-tape-filetype, last-tape-start, last-tape-length.

Source file: <src/lib/tape.fs>.

481

last-tape-length

last-tape-length (-- a)

Address of the file length in last-tape-header.

See also: tape-length.

Source file: <src/lib/tape.fs>.

last-tape-start

last-tape-start (-- a)

Address of the file start in last-tape-header.

See also: tape-start.

Source file: <src/lib/tape.fs>.

last-wordlist

last-wordlist (-- a)

A variable. a is the address of a cell containing the data field address of the latest word list created.

See also: wordlist, latest.

Source file: <src/kernel.z80s>.

lastblk

lastblk (-- a) "last-b-l-k"

A user variable. a is the address of a cell containing the block number of the block most recently or
loaded (e.g. with load, continued or load-program). lastblk is updated by (load and used by reload.

Source file: <src/kernel.z80s>.

lastxt

lastxt (-- a) "last-x-t"

A user variable. a is the address of a cell containing the execution token of the last word defined.

482

See also: last.

Source file: <src/kernel.z80s>.

latest

latest (-- nt)

nt is the name token of the last word defined is the system.

Definition:

: latest (-- nt) last @ ;

Origin: Gforth.

See also: last, current-latest, fyi.

Source file: <src/kernel.z80s>.

latest>wordlist

latest>wordlist (wid --) "latest-to-wordlist"

Associate the latest name to the word list identified by wid.

See also: wordlist, wordlist-name!, wordlist>vocabulary, wordlists, latest.

Source file: <src/lib/word_lists.fs>.

latestxt

latestxt (-- xt) "latest-x-t"

Leave the execution token of the last word defined.

Origin: Gforth.

Source file: <src/kernel.z80s>.

lb

lb (--) "l-b"

List bottom half of screen hold in scr.

483

See also: lt, lm, list, list-lines.

Source file: <src/lib/tool.list.blocks.fs>.

lcr

lcr (--) "l-c-r"

If the cursor is neither at the home position nor at the start of a line, move it to the next row. lcr is
part of the left-justified displaying system.

See also: lcr?, (lcr, ltype.

Source file: <src/lib/display.ltype.fs>.

lcr?

lcr? (-- f) "l-c-r-question"

Is the cursor neither at the home position nor at the start of a line? lcr? is part of the left-justified
displaying system.

See also: lcr, ltype.

Source file: <src/lib/display.ltype.fs>.

ld#,

ld#, (8b reg --) "l-d-number-sign-comma"

Compile the Z80 assembler instruction LD reg,8b.

See also: ld,, ldp#,.

Source file: <src/lib/assembler.fs>.

ld,

ld, (reg1 reg2 --) "l-d-comma"

Compile the Z80 assembler instruction LD reg2,reg1.

See also: ld#,, ldp,.

Source file: <src/lib/assembler.fs>.

484

ldai,

ldai, (--) "l-d-a-i-comma"

Compile the Z80 assembler instruction LD A,I.

See also: ldia,, ldar,, ld,.

Source file: <src/lib/assembler.fs>.

ldar,

ldar, (--) "l-d-a-r-comma"

Compile the Z80 assembler instruction LD A,R.

See also: ldra,, ldai,, ld,.

Source file: <src/lib/assembler.fs>.

ldd,

ldd, (--) "l-d-d-comma"

Compile the Z80 assembler instruction LDD.

See also: ldi,, lddr,.

Source file: <src/lib/assembler.fs>.

lddr,

lddr, (--) "l-d-d-r-comma"

Compile the Z80 assembler instruction LDDR.

See also: ldir,, ldd,.

Source file: <src/lib/assembler.fs>.

ldi,

ldi, (--) "l-d-i-comma"

Compile the Z80 assembler instruction LDI.

485

See also: ldd,, ldir,.

Source file: <src/lib/assembler.fs>.

ldia,

ldia, (--) "l-d-i-a-comma"

Compile the Z80 assembler instruction LD I,A.

See also: ldai,, ldra,, ld,.

Source file: <src/lib/assembler.fs>.

ldir,

ldir, (--) "l-d-i-r-comma"

Compile the Z80 assembler instruction LDIR.

See also: lddr,, ldi,.

Source file: <src/lib/assembler.fs>.

ldp#,

ldp#, (16b regp --) "l-d-p-number-sign-comma"

Compile the Z80 assembler instruction LD regp,16b.

See also: ldp,, ld#,.

Source file: <src/lib/assembler.fs>.

ldp,

ldp, (regp1 regp2 --) "l-d-p-comma"

Compile the Z80 assembler instructions required to load register pair regp2 with register pair regp1.

Example: b d ldp, compiles the Z80 instructions LD D,B and LD E,C.

See also: ld,, subp,, tstp,, clrp,.

Source file: <src/lib/assembler.fs>.

486

ldra,

ldra, (--) "l-d-r-a-comma"

Compile the Z80 assembler instruction LD R,A.

See also: ldar,, ldir,, ld,.

Source file: <src/lib/assembler.fs>.

ldsp,

ldsp, (--) "l-d-s-p-comma"

Compile the Z80 assembler instruction LD SP,HL.

Source file: <src/lib/assembler.fs>.

leapy-year?

leapy-year? (n -- f) "leapy-year-question"

Is n a leapy year?

See also: set-date.

Source file: <src/lib/time.fs>.

leave

leave (--) (R: loop-sys --)

Discard the loop control parameters for the current nesting level. Continue execution immediately
following the innermost syntactically enclosing loop or +loop.

Origin: Forth-83 (Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: ?leave, 0leave, unloop, do, ?do, +loop.

Source file: <src/kernel.z80s>.

lemit

lemit (c --) "l-emit"

487

Display character c as part of the left-justified displaying system.

See also: ltype, lspace.

Source file: <src/lib/display.ltype.fs>.

lengths

lengths (ca1 len1 ca2 len2 -- ca1 len1 ca2 len2 len1 len2)

Duplicate lengths len1 and len2 of strings ca1 len1 and ca2 len2. lengths is a factor of s+.

lengths is written in Z80. Its equivalent definition in Forth is the following:

: lengths (ca1 len1 ca2 len2 -- ca1 len1 ca2 len2 len1 len2)
 2over nip over ;

Source file: <src/lib/strings.MISC.fs>.

less-of

less-of
 Compilation: (C: -- of-sys)
 Run-time: (x1 x2 -- | x1)

less-of is an immediate and compile-only word.

Usage example:

: test (x --)
 case
 10 of ." ten!" endof
 15 less-of ." less than 15" endof
 ." greater than 14"
 endcase ;

See also: case, greater-of, (less-of.

Source file: <src/lib/flow.case.fs>.

lex!

lex! (b nt --) "lex-store"

Set the bits of the mask b in the length byte of nt.

488

See also: lex?, immediate, compile-only.

Source file: <src/kernel.z80s>.

lex?

lex? (nt b -- f) "lex-question"

Test the bits at nt specified by the bitmask b. Return true if the result is non-zero, else return false.

See also: lex!, immediate?, compile-only?.

Source file: <src/kernel.z80s>.

lhome

lhome (--) "l-home"

Move the cursor used by ltype and related words to its home position, at the top left (column 0, row
0).

Source file: <src/lib/display.ltype.fs>.

limit

limit (-- a)

A variable. a is the address of a cell containing the address above the highest address usable by the
data space (the data space is the region addressed by dp). Its default value is zero, which is right
above the highest memory address ($FFFF).

limit can be modified by a program in order to reserve a memory zone for special purposes.

Origin: Fig-Forth’s limit constant.

See also: unused, farlimit, fyi, greeting.

Source file: <src/kernel.z80s>.

limit-heap

limit-heap (n -- a)

Create a heap of n bytes right above limit and return its address a. limit is moved down n bytes.

See also: allot-heap, bank-heap, farlimit-heap, empty-heap.

489

Source file: <src/lib/memory.allocate.COMMON.fs>.

line

line (n -- a)

Part of specforth-editor: Leave address a of the beginning of line n in the current block buffer. The
block number is in scr. Read the disk block from disk if it is not already in the disk buffer.

See also: line>string.

Source file: <src/lib/prog.editor.specforth.fs>.

line>string

line>string (n1 n2 -- ca len) "line-to-string"

Convert the line number n1 and the screen number n2 to a string ca len in the disk buffer
containing the data.

Definition:

: line>string (n1 n2 -- ca len)
 >r c/l b/buf */mod r> + block + c/l ;

Origin: fig-Forth’s (line.

Source file: <src/kernel.z80s>.

lineblock>source

lineblock>source (n u --) "line-block-to-source"

Set block u as the current source, starting from its line n.

See also: block>source.

Source file: <src/lib/blocks.fs>.

lineload

lineload (n u --) "line-load"

Begin interpretation at line n of block u.

490

Origin: Forth-83 (Uncontrolled Reference Words).

See also: load.

Source file: <src/lib/blocks.fs>.

link,

link, (head --) "link-comma"

Create a new node in data space for the linked list head:

Before:

• head → old_node

After:

• head → new_node

• new_node → old_node

See also: link@.

Source file: <src/lib/data.MISC.fs>.

link>name

link>name (lfa -- nt) "link-to-name"

Get nt from its lfa.

See also: name>link.

Source file: <src/lib/compilation.fs>.

link@

link@ (node1 -- node2) "link-fetch"

Fetch the node node2 from the linked list node node1. link@ is an alias of @.

See also: link,.

Source file: <src/lib/data.MISC.fs>.

491

list

list (u --)

Display block u and store u in scr.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Controlled Reference Words), Forth-94
(BLOCK EXT), Forth-2012 (BLOCK EXT).

See also: scr, list-lines, lt, lm, lb.

Source file: <src/lib/tool.list.blocks.fs>.

list-line

list-line (n u --)

List line n from block u, without trailing spaces.

See also: list-lines, .line#, .line. list, blk-line.

Source file: <src/lib/tool.list.blocks.fs>.

list-lines

list-lines (u n1 n2 --)

List lines n2..n3 of block u and store u in scr.

See also: list, scr, list-line.

Source file: <src/lib/tool.list.blocks.fs>.

lit

lit (-- x)

Return x, which was compiled by literal after lit.

lit is a compile-only word.

See also: clit, 2lit.

Source file: <src/kernel.z80s>.

492

literal

literal (x --)

Compile x in the current definition.

literal is an immediate and compile-only word.

Definition:

: literal (x --) postpone lit , ; immediate compile-only

See also: lit, cliteral, 2literal, xliteral,]l.

Source file: <src/kernel.z80s>.

lm

lm (--) "l-m"

List middle part of screen hold in scr.

See also: lt, lb, list, list-lines.

Source file: <src/lib/tool.list.blocks.fs>.

load

load (u --)

Save the current input-source specification. Store u in blk (thus making block u the input source
and setting the input buffer to encompass its contents) and lastblk, set >in to zero, and interpret.
When the parse area is exhausted, restore the prior input source specification.

An error is issued if u is zero.

Definition:

: load (u --)
 dup 0= #-259 ?throw nest-source (load unnest-source ;

See also: (load, nest-source, unnest-source, lineload, +load, thru, blk.

Source file: <src/kernel.z80s>.

493

load-program

load-program ("name" --)

Load a program, i.e. a set of blocks that are loaded as a whole. The blocks of a program don’t have
block headers except the first one, which contains name. Therefore programs cannot have internal
requisites, i.e. they use need only to load from the library, which must be before the blocks of the
program on the disk or disks.

Programs don’t need --> or any similar word to control the loading of blocks: The loading starts
from the first block of the disk that has name in its header (surrounded by spaces), and continues
until the last block of the disk or until end-program is executed.

See also: loading-program, (load-program.

Source file: <src/lib/blocks.fs>.

loader

loader (u "name" --)

Define a word name which, when executed, will load block u.

Origin: Forth-79’s loads (Reference Word Set), Forth-83’s loads (Appendix B. Uncontrolled Reference
Words).

Source file: <src/lib/blocks.fs>.

loading-program

loading-program (-- a)

a is the address of a cell containing a flag: Is a program being loaded by load-program? This flag is
modified by load-program and end-program.

Source file: <src/lib/blocks.fs>.

loading?

loading? (-- f) "loading-question"

If a block is being loaded, i.e., if the content of blk is non-zero, return true; else return false.

See also: ?loading, load.

Source file: <src/kernel.z80s>.

494

loads

loads (u n --)

Load n blocks starting from block u.

Origin: MMSFORTH.

Source file: <src/lib/blocks.fs>.

local

local (a --)

Save the value of variable a, which will be restored at the end of the current definition.

local is a compile-only word.

Usage example:

variable v
1 v ! v ? \ default value

: test (--)
 v local
 v ? 1887 v ! v ? ;

v ? \ default value

See also: 2local, clocal, arguments, anon.

Source file: <src/lib/locals.local.fs>.

localized,

localized, (x[langs]..x[1] --)

Store a langs number of cells, from x[1] to x[langs] in the data space, updating dp.

localized, is a factor of localized-word, localized-string, far-localized-string and far>localized-
string.

See also: far-localized,.

Source file: <src/lib/translation.fs>.

495

localized-character

localized-character (c[langs]..c[1] "name" -- c)

Create a word name that will return a character from c[langs]..c[1], depending on lang. c[langs]..c[1]
are ordered by ISO language code, being TOS the first one.

See also: localized-word, localized-string, langs.

Source file: <src/lib/translation.fs>.

localized-string

localized-string (ca[langs]..ca[1] "name" --)

Create a word name that will return a counted string from ca[langs]..ca[1], depending on lang.
ca[langs]..ca[1], are the addresses where the strings have been compiled. ca[langs]..ca[1], are
ordered by ISO language code, being TOS the first one.

See also: far-localized-string, far>localized-string, localized-word, localized-character, langs.

Source file: <src/lib/translation.fs>.

localized-word

localized-word (xt[langs]..xt[1] "name" --)

Create a word name that will execute an execution token from xt[langs]..xt[1], depending on lang.
xt[langs]..xt[1], are the execution tokens of the localized versions. xt[langs]..xt[1], are ordered by
ISO language code, being TOS the first one.

See also: localized-string, localized-character, langs.

Source file: <src/lib/translation.fs>.

locate

locate ("name" -- block | false)

Locate the first block whose header contains name (surrounded by spaces), and return its number
block. If not found, return false. The search is case-sensitive.

Only the blocks delimited by first-locatable and last-locatable are searched.

See also: located.

496

Source file: <src/lib/002.need.fs>.

locate-need

locate-need ("name" --)

If name is not found in the current search order, locate the first block where name is included is the
block header (surrounded by spaces), and load it. If not found, throw an exception #-268 ("needed,
but not located").

locate-need is the default action of the deferred word need (see defer).

See also: make-thru-index.

Source file: <src/lib/002.need.fs>.

locate-needed

locate-needed (ca len --)

If the string ca len is not the name of a word found in the current search order, locate the first block
where ca len is included in the block header (surrounded by spaces), and load it. If not found, throw
an exception #-268 ("needed, but not located").

locate-needed is the default action of the deferred word needed (see defer).

See also: make-thru-index.

Source file: <src/lib/002.need.fs>.

locate-reneed

locate-reneed ("name" --)

Locate the first block whose header contains name (surrounded by spaces), and load it. If not found,
throw an exception #-268 ("needed, but not located").

locate-reneed is the default action of the deferred word reneed (see defer).

See also: make-thru-index.

Source file: <src/lib/002.need.fs>.

locate-reneeded

locate-reneeded (ca len --)

497

Locate the first block whose header contains the string ca len (surrounded by spaces), and load it. If
not found, throw an exception #-268 ("needed, but not located").

locate-reneeded is the default action of the deferred word reneeded (see defer).

See also: make-thru-index.

Source file: <src/lib/002.need.fs>.

located

located (ca len -- block | 0)

Locate the first block whose header contains the string ca len (surrounded by spaces), and return its
number. If not found, return zero. The search is case-sensitive.

Only the blocks delimited by first-locatable and last-locatable are searched`.

located is a deferred word (see defer) whose default action is (located.

See also: need-from.

Source file: <src/lib/002.need.fs>.

loop

loop
 Compilation: (do-sys --)

Compile (loop and resolve the do-sys address left by do, or ?do.

loop is an immediate and compile-only word.

Origin: Forth-83 (Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: +loop, -do.

Source file: <src/kernel.z80s>.

lower

lower (c -- c')

Convert c to lowercase c'.

See also: lowers, upper.

Source file: <src/kernel.z80s>.

498

lower_

lower_ (-- a)

A constant. a is the address of a routine that converts to uppercase the ASCII character hold in the A
register.

See also: lower, upper_.

Source file: <src/kernel.z80s>.

lowers

lowers (ca len --)

Convert string ca len to lowercase.

See also: uppers, lower.

Source file: <src/lib/strings.MISC.fs>.

lpage

lpage (--) "l-page"

Clear the display and init the cursor used by ltype and related words.

Source file: <src/lib/display.ltype.fs>.

lshift

lshift (x1 u -- x2) "l-shift"

Perform a logical left shift of u bit-places on x1, giving x2. Put zeroes into the least significant bits
vacated by the shift.

Origin: Forth-94 (CORE), Forth-2012 (CORE).

See also: rshift, ?shift, clshift.

Source file: <src/lib/math.operators.1-cell.fs>.

lspace

499

lspace (--) "l-space"

Display a space as part of the left-justified printing system.

See also: lemit, ltype.

Source file: <src/lib/display.ltype.fs>.

lt

lt (--) "l-t"

List top half of screen hold in scr.

See also: lm, lb, list, list-lines.

Source file: <src/lib/tool.list.blocks.fs>.

ltype

ltype (ca len --) "l-type"

Display character string ca len left-justified from the current cursor position.

See also: lwidth.

Source file: <src/lib/display.ltype.fs>.

ltype-indentation

ltype-indentation (u --) "l-type-indentation"

Display an indentation of u spaces and update the corresponding variables of the ltype system.

Source file: <src/lib/display.ltype.fs>.

ltyped

ltyped (n --) "l-typed"

Update #ltyped with n characters typed by ltype.

Source file: <src/lib/display.ltype.fs>.

500

lwidth

lwidth (-- ca) "l-width"

A byte variable containing the text width in columns used by ltype and related words. Its default
value is columns, ie. the current width of the screen.

Source file: <src/lib/display.ltype.fs>.

m

m

m (-- reg)

Return the identifier reg of Z80 assembler pseudo-register "(HL)", i.e. the byte stored in the memory
address pointed by register pair "HL".

See also: a, b, c, d, e, h, l, ix, iy, sp.

Source file: <src/lib/assembler.fs>.

m

m (--)

A command of gforth-editor: Mark current position.

Source file: <src/lib/prog.editor.gforth.fs>.

m

m (n --)

A command of specforth-editor: Move the cursor by n characters. The position of the cursor on its
line is shown by a "_" (underline).

See also: b, c, d, e, f, h, i, l, n, p, r, s, t, x, -move.

Source file: <src/lib/prog.editor.specforth.fs>.

m*

501

m* (n1 n2 -- d) "m-star"

Multiply n1 by n2, giving the result d.

Definition:

: m* (n1 n2 -- d)
 2dup xor >r
 abs swap abs um*
 r> ?dnegate ;

Origin: fig-Forth, Forth-94 (CORE), Forth-2012 (CORE).

See also: *, um*, d*, ?dnegate.

Source file: <src/kernel.z80s>.

m*/

m*/ (d1 n1 +n2 -- d2) "m-star-slash"

Multiply d1 by n1 producing the triple-cell intermediate result t. Divide t by +n2 giving the double-
cell quotient d2.

Origin: Forth-94 (DOUBLE), Forth-2012 (DOUBLE).

See also: */, m*.

Source file: <src/lib/math.operators.2-cell.fs>.

m+

m+ (d1|ud1 n -- d2|ud2) "m-plus"

Add n to d1|ud1, giving the sum d2|ud2.

m+ is written in Z80. An equivalent definition in Forth (1.48 slower, but 4 bytes smaller) is the
following:

: m+ (d1|ud1 n -- d2|ud2) s>d d+ ;

Origin: Forth-94 (DOUBLE) Forth-2012 (DOUBLE).

See also: +, d+.

502

Source file: <src/lib/math.operators.2-cell.fs>.

m/

m/ (d n1 -- n2 n3) "m-slash"

A mixed magnitude math operator which leaves the signed remainder n2 and signed quotient n3
from a double number dividend d and divisor n1.

m/ is a deferred word (see defer) whose default action is sm/rem, so it does a symmetric division (the
remainder takes its sign from the dividend), as in fig-Forth and Forth-79. It can be set to execute
fm/mod instead.

m/ is executed by all other division operators. Therefore setting it to execute either sm/rem or fm/mod
will change the behaviour of all division operators.

Rationale:

The Forth-79 Standard specifies that the signed division operators (/, /mod, mod, */mod, and */) round
non-integer quotients towards zero (symmetric division). Forth-83 changed the semantics of these
operators to round towards negative infinity (floored division). To resolve this issue, Forth-94 and
Forth-2012 permit to supply either floored or symmetric operators, and include a floored division
primitive (fm/mod), and a symmetric division primitive (sm/rem).

Origin: fig-Forth.

Source file: <src/kernel.z80s>.

m?

m? (-- op) "m-question"

Return the opcode op of the Z80 assembler instruction jp m, to be used as condition and consumed
by ?ret,, ?jp,, ?call,, aif, awhile or auntil.

See also: z?, nz?, c?, nc?, po?, pe?, p?.

Source file: <src/lib/assembler.fs>.

macro

macro (name --)

Start the definition of an assembler macro name.

Usage example:

503

macro dos-in, (--) DB c, #231 c, endm
 \ Assemble the Z80 instruction `in a,(#231)`, to page in
 \ the Plus D memory.

See also: endm, asm, code.

Source file: <src/lib/assembler.macro.fs>.

magenta

magenta (-- b)

A cconstant that returns 3, the value that represents the magenta color.

See also: black, blue, red, green, cyan, yellow, white, contrast, papery, inversely.

Source file: <src/lib/display.attributes.fs>.

make

make
 Interpretation: ("name" --)
 Compilation: (--)

Interpretation: Parse name, which is the name of a word created by doer, and make it execute the
colon definition that follows.

Usage example:

doer flashes
flashes \ does nothing
make flashes 8 0 ?do i border loop ;
flashes \ works

Compilation: Modify the next inline compiled word of the current definition, which was created by
doer, and make it execute the rest of the definition after it.

Usage example:

doer flashes
flashes \ does nothing
: activate (--) make flashes 8 0 ?do i border loop ;
activate
flashes \ works

504

make is an immediate word.

See also: ;and, undo.

Source file: <src/lib/flow.doer.fs>.

make-block-chars

make-block-chars (a --)

Make the bit patterns of the 16 ZX Spectrum block characters, originally assigned to character codes
128..143, and store them (128 bytes in total) from address a.

make-block-chars is provided for easier conversion of BASIC programs that use the original block
characters. These characters are part of the ZX Spectrum character set, but they are not included in
the ROM font. Instead, their bitmaps are built on the fly by the BASIC ROM printing routine. In Solo
Forth there’s no such restriction, and characters 0..255 can be redefined by the user.

make-block-chars is written in Z80 and uses 18 B of code space, but the word block-chars is provided
as an alternative.

Source file: <src/lib/graphics.udg.fs>.

make-thru-index

make-thru-index (--)

Create the blocks index and activate it. The current word list and the current search order are
preserved.

make-thru-index first creates a blocks index, i.e. a word list from the names that are on the index
(header) line of every searchable block, ignoring duplicates; second, it executes use-thru-index to
activate the blocks index, changing the default behaivour of need and related words.

The words in the index have a fake execution token, which is the block they belong to. This way,
after indexing all the disk blocks only once, need will search the word list and load the block of the
word found. On the contrary, the default action of need is to search all the blocks every time.

The default action of need and related words can be restored with use-no-index.

Source file: <src/lib/blocks.indexer.thru.fs>.

manual-see

manual-see (-- a)

A variable. a is the address of a cell containing a flag. When the flag is non-zero, the decompilation

505

of colon words done by see can be controlled manually with some keys, which are displayed at the
start of the process.

See also: see-usage.

Source file: <src/lib/tool.see.fs>.

marker

marker ("name" --)

Create a definition name. When name is executed, it will restore all dictionary allocation and search
order pointers to the state they had just prior to the definition of "name". Remove the definition of
name and all subsequent definitions.

The following data are preserved and restored: the data-space pointer (here), the name-space
pointer (np@), the word lists pointer (last-wordlist), the compilation word list (get-current), the
search order (order) and the word lists (dump-wordlists).

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: marker,, unmarker, anew.

Source file: <src/lib/tool.marker.fs>.

marker,

marker, (--) "marker-comma"

Save the current state of the system before creating the corresponding marker that will restore it
with unmarker. The data that describes the state of the system is stored at the current data-space
pointer (here), while the data-space pointer itself is stored in the body of the new marker. The saving
process is the following:

Store at the current data-space pointer the names pointer (np@), the latest definition pointers (latest
and latestxt), the word lists pointer (last-wordlist), the current compilation word list (get-
current), the search order (order,) and the word lists (wordlists,) at the current data-space pointer.

marker, is a factor of marker.

Source file: <src/lib/tool.marker.fs>.

mask+attr!

mask+attr! (b1 b2 --) "mask-plus-attribute-store"

Set b1 as the current attribute mask and b2 as the current attribute.

506

See also: mask+attr@, attr!, attr-mask!

Source file: <src/lib/display.attributes.fs>.

mask+attr-setter

mask+attr-setter (b1 b2 "name" --) "mask-plus-attribute-setter"

Create a definition name that, when executed, will set b1 as the current attribute mask and b2 as the
current attribute.

See also: attr-setter.

Source file: <src/lib/display.attributes.fs>.

mask+attr>perm

mask+attr>perm (--) "mask-plus-attribute-to-perm"

Make the current attribute and mask permanent.

NOTE
Words that use attributes don’t use the OS permanent attribute but the temporary
one, which is called "current attribute" in Solo Forth.

Source file: <src/lib/display.attributes.fs>.

mask+attr@

mask+attr@ (-- b1 b2) "mask-plus-attribute-fetch"

Set b as the current attribute mask.

See also: attr-mask!, perm-attr-mask@.

Source file: <src/lib/display.attributes.fs>.

match

match (ca1 len1 ca2 len2 -- true n3 | false n4)

Part of specforth-editor: Match the string ca2 len2 with all strings contained in the string ca1 len1.
If found leave n3 bytes until the end of the matching string, else leave n4 bytes to end of line.

See also: -text.

507

Source file: <src/lib/prog.editor.specforth.fs>.

max

max (n1 n2 -- n3)

n3 is the greater of n1 and n2.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: min, umax, dmax, 0max, >.

Source file: <src/kernel.z80s>.

max-blocks

max-blocks (-- u)

Return the number u of maximum blocks available in the system. The number depends on #block-
drives and blocks/disk.

Source file: <src/kernel.z80s>.

max-char

max-char (-- u)

u is the maximum value of any character in the character set.

See also: address-unit-bits, /counted-string, environment?.

Source file: <src/lib/environment-question.fs>.

max-d

max-d (-- d)

d is the largest usable signed double.

See also: max-n, max-ud, environment?.

Source file: <src/lib/environment-question.fs>.

508

max-drives

max-drives (-- b)

A cconstant. b is the maximum number of drives available in the DOS.

See also: first-drive, drive.

Source file: <src/kernel.z80s>.

max-esc-order

max-esc-order (-- n)

A constant that returns the maximum number of word lists in the escaped strings search order.

Its default value is 4, but the application can define this constant with any other value before
loading the words that need it, and it will be kept.

See also: esc-context, #esc-order, set-esc-order, get-esc-order, >order.

Source file: <src/lib/strings.escaped.fs>.

max-l-refs

max-l-refs (-- ca)

ca is the address of a byte containing the maximum number (count) of unresolved assembler label
references that can be created by rl# or al#. Its default value is 16. The program can change the
value, but the default one should be restored after the code word has been compiled.

max-l-refs is used by init-labels to allocate the l-refs table.

Usage example:

need l:
assembler-wordlist >order max-l-refs c@
 #20 max-l-refs c! previous

code my-word (--)
 \ Z80 code that needs #20 label references
end-code

assembler-wordlist >order max-l-refs c! previous

See also: max-labels.

509

Source file: <src/lib/assembler.labels.fs>.

max-labels

max-labels (-- ca)

ca is the address of a byte containing the maximum number (count) of assembler labels that can be
defined by l:. Its default value is 8, i.e. labels 0..7 can be used. The program can change the value,
but the default one should be restored after the code word has been compiled.

max-labels is used by init-labels to allocate the labels table.

Usage example:

need assembler need l:
assembler-wordlist >order max-labels c@
 #24 max-labels c! previous

code my-word (--)
 \ Z80 code that needs #24 labels
end-code

assembler-wordlist >order max-labels c! previous

See also: max-l-refs.

Source file: <src/lib/assembler.labels.fs>.

max-n

max-n (-- n)

n is the largest usable signed integer.

See also: max-u, max-d, environment?.

Source file: <src/lib/environment-question.fs>.

max-order

max-order (-- n)

A constant. n is the maximum number of word lists in the search order.

See also: context, #order, set-order, get-order, >order.

510

Source file: <src/kernel.z80s>.

max-u

max-u (-- u)

u is the largest usable unsigned integer.

See also: max-n, max-ud, environment?.

Source file: <src/lib/environment-question.fs>.

max-ud

max-ud (-- ud) "max-u-d"

ud is the largest usable unsigned double.

See also: max-u, max-d, environment?.

Source file: <src/lib/environment-question.fs>.

max>top

max>top (n1 n2 -- n1 n2 | n2 n1)

Make sure the top of stack is the greater of n1 and n2.

See also: min>top, pair=.

Source file: <src/lib/math.operators.1-cell.fs>.

menu

menu (--)

Activate the current menu, which has been set by set-menu and displayed by .menu.

See also: new-menu, menu-key-up, menu-key-down, menu-key-choose, options-table, actions-table.

Source file: <src/lib/menu.sinclair.fs>.

menu-banner-attr

511

menu-banner-attr (-- ca)

A cvariable. ca is the address of a byte containing the attribute of the current menu banner. Its
default value is white ink on black paper, with bright.

See also: menu-body-attr, menu-highlight-attr, .menu-banner, black, papery, white, brighty.

Source file: <src/lib/menu.sinclair.fs>.

menu-body-attr

menu-body-attr (-- ca)

A cvariable. ca is the address of a byte containing the attribute of the current menu background. Its
default value is black ink on white paper, with bright.

See also: menu-banner-attr, menu-highlight-attr, .menu-options, white, papery, brighty.

Source file: <src/lib/menu.sinclair.fs>.

menu-highlight-attr

menu-highlight-attr (-- ca)

A cvariable. ca is the address of a byte containing the attribute used to highlight the current menu
option. Its default value is the combination of cyan, papery and brighty, i.e. black ink on cyan bright
paper.

See also: menu-banner-attr.

Source file: <src/lib/menu.sinclair.fs>.

menu-key-choose

menu-key-choose (-- ca)

A cvariable. ca is the address of a byte containing the key code used to move the current menu
selection down. Its default value is 13, i.e. the enter key.

See also: menu-key-up, menu-key-down.

Source file: <src/lib/menu.sinclair.fs>.

512

menu-key-down

menu-key-down (-- ca)

A cvariable. ca is the address of a byte containing the key code used to move the current menu
selection down. Its default value is character '6'.

See also: menu-key-up, menu-key-choose.

Source file: <src/lib/menu.sinclair.fs>.

menu-key-up

menu-key-up (-- ca)

A cvariable. ca is the address of a byte containing the key code used to move the current menu
selection up. Its default value is character '7'.

See also: menu-key-down, menu-key-choose.

Source file: <src/lib/menu.sinclair.fs>.

menu-options

menu-options (-- ca)

A cvariable. ca is the address of a byte containing the current menu number of options. menu-options
is set by set-menu.

See also: menu-width.

Source file: <src/lib/menu.sinclair.fs>.

menu-rounding

menu-rounding (-- a)

A variable. a is the address of a cell containing a flag. When the flag is non-zero, the top and the
bottom menu options are connected in a circular manner, i.e. pressing menu-key-up at the top option
leads to to the botton option, and pressing menu-key-down at the bottom option lead to the top.

See also: menu-key-choose, menu-highlight-attr.

Source file: <src/lib/menu.sinclair.fs>.

513

menu-title

menu-title (-- a)

A 2variable. a is the address of a double cell containing the address and length of a string which is
the title of the current menu. menu-title is set by set-menu.

See also: menu-width, menu-xy, menu-banner-attr, .menu-banner.

Source file: <src/lib/menu.sinclair.fs>.

menu-width

menu-width (-- ca)

A cvariable. ca is the address of a byte containing the width of the current menu in characters. menu-
width is set by set-menu.

See also: menu-title, menu-body-attr, menu-banner-attr, menu-highlight-attr.

Source file: <src/lib/menu.sinclair.fs>.

menu-xy

menu-xy (-- a) "menu-x-y"

A 2variable. a is the address of a double cell containing the coordinates (column and row) of the
current menu. menu-xy is set by set-menu.

See also: menu-width, .menu-border, .menu-banner.

Source file: <src/lib/menu.sinclair.fs>.

message-warn

message-warn (ca len -- ca len) "warn-dot-message"

If the contents of the user variable warnings is not zero and the word name ca len is already defined
in the current compilation word list, display a warning message.

message-warn is an alternative action of the deferred word warn (see defer).

See also: warnings, error-code-warn, error-warn, ?warn.

Source file: <src/lib/compilation.fs>.

514

method

method (m v "name" -- m' `)

Define a selector.

Source file: <src/lib/objects.mini-oof.fs>.

middle-octave

middle-octave (-- a)

Return the address of a 12-cell table that contains the frequencies in dHz (tenths of Hz) of the
middle octave. They are used by beep>dhz to calculate the frequency of any note.

Here is a diagram to show the offsets of all the notes in the table, on the piano (extracted from the
manual of the ZX Spectrum +3 transcripted by Russell et al.):

	C#	D#			F#	G#	A#	
	Db	Eb			Gb	Ab	Bb	
	1	3			6	8	10	
	___	___			___	___	___	
0	2	4	5	7	9	11		
___	___	___	___	___	___	___		
 C D E F G A B

See also: beep, /octave, octave-changer.

Source file: <src/lib/sound.48.fs>.

min

min (n1 n2 -- n3)

n3 is the lesser of n1 and n2.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: max, umin, dmin, <.

Source file: <src/kernel.z80s>.

515

min>top

min>top (n1 n2 -- n1 n2 | n2 n1)

Make sure the top of stack is the lesser of n1 and n2.

See also: max>top, pair=.

Source file: <src/lib/math.operators.1-cell.fs>.

mini-64cpl-font

mini-64cpl-font (-- a) "mini-64-c-p-l-font"

a is the address of a 4x8-pixel font compiled in data space (336 bytes used), to be used in mode-64ao
by setting mode-64-font first.

This font is included also in disk 0 as "mini.f64".

See also: nbot-64cpl-font, omn1-64cpl-font, omn2-64cpl-font, owen-64cpl-font.

Source file: <src/lib/display.mode.64.COMMON.fs>.

mod

mod (n1 n2 -- n3)

Divide n1 by n2, giving the remainder n3.

Definition:

: mod (n1 n2 -- n3) /mod drop ;

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-94 (CORE), Forth-2012 (CORE).

See also: m/, /mod, /_mod, /-rem, gcd.

Source file: <src/kernel.z80s>.

mode-32

mode-32 (--)

Set the default 32-CPL display mode. Usually this is not needed by the application, except when any
other mode has been used, e.g. mode-32iso, mode-42pw or mode-64ao.

516

When any other mode is loaded, mode-32 is automatically loaded and made the default display mode
(therefore restored by restore-mode, which is called by warm and cold).

See also: current-mode, set-font, set-mode-output, columns, rows, mode-32-emit, mode-32-xy, mode-32-at-
xy, >form.

Source file: <src/lib/display.mode.32.fs>.

mode-32-at-xy

mode-32-at-xy (col row --) "mode-32-at-x-y"

Default action of at-xy, in mode-32.

WARNING
The system will crash if the coordinates are out of screen. For the sake of
speed, no check is done. If needed, the program can use a wrapper word.

Source file: <src/kernel.z80s>.

mode-32-emit

mode-32-emit (c --)

Send character c to the current channel, calling the ROM routine at $0010.

mode-32-emit is the default action of emit.

mode-32-emit uses last-font-char the following way: characters up to and including last-font-char
(by default, 0 .. 127) are displayed through the ROM routine, while higher characters (by default,
128 .. 255) are displayed by emit-udg from the current UDG set. The following table shows the effect
of changing the value of last-font-char:

Table 31. Effect of mode-32-emit depending on the value of last-font-char.

Value Effect

126 Characters 0 .. 126 are displayed by the ROM; characters 127 .. 255 are displayed by emit-
udg.

127 Characters 0 .. 127 are displayed by the ROM; characters 128 .. 255 are displayed by emit-
udg.

143 Characters 0 .. 143 are displayed by the ROM (this range includes the block graphics);
characters 144 .. 255 are displayed by emit-udg.

162 Characters 0 .. 162 are displayed by the ROM (this range includes also the 128-BASIC UDG
set 144 .. 162, corresponding to UDG characters 0 .. 18 in Solo Forth); characters 163 .. 255
are displayed by emit-udg.

517

Value Effect

255 Characters 0 .. 255 are displayed by the ROM (this range includes also the 128-BASIC
tokens); no character is displayed by emit-udg.

When a standard character set is required, without the ROM interpreting characters 128 .. 255 its
own way, mode-32iso-emit can be used instead.

See also: current-mode, mode-32, set-font, set-udg.

Source file: <src/kernel.z80s>.

mode-32-font

mode-32-font (-- a)

A variable. a is the address of a cell containing the address of the font used by mode-32. Note the
address of the font must be the address of its character 32 (space).

The default value of mode-32-font is rom-font plus 256 (the address of the space character in the
ROM font).

Source file: <src/lib/display.mode.32.fs>.

mode-32-xy

mode-32-xy (-- col row) "mode-32-x-y"

Return the current cursor coordinates col row in mode-32 and mode-32iso.

mode-32-xy is the action of xy when mode-32 or mode-32iso are active, or by default when no
alternative display mode has been used (e.g. mode-64ao).

Definition:

: mode_32-xy (-- col row)
 24 23689 c@ -
 33 23688 c@ - dup 32 = if drop 1+ 0 then swap ;
 \ 23688 = OS variable S_POSX
 \ 23689 = OS variable S_POSY

Source file: <src/kernel.z80s>.

mode-32iso

mode-32iso (--)

518

Activate a 32-CPL display mode, an alternative to the default mode-32. The only difference with mode-
32 is mode-32iso can use a ISO character set, i.e. it displays characters 32..255 from the current font.
See mode-32iso-emit for details.

mode-32iso is useful when a ISO character set is required (or any character set with more than 128
characters). A similar result could be obtained with mode-32 and last-font-char, by treating the
characters greater than 128 as UDG and using set-udg. The advantage of mode-32iso is the ISO font
can be managed (e.g. built, loaded from disk, allocated, etc.) as a whole, using only the font address,
and reserving the full UDG set for graphics.

See also: current-mode, set-font, set-mode-output, columns, rows, mode-32-xy, mode-32-at-xy, >form.

Source file: <src/lib/display.mode.32iso.fs>.

mode-32iso-emit

mode-32iso-emit (c --)

Display character c in mode-32iso, i.e. using the ROM routines but assuming the current font set by
set-font contains printable characters 32..255. See the low-level factor mode-32iso-output_ for
details how this is achieved.

mode-32iso-emit is not affected by last-font-char.

mode-32iso-emit is a wrapper word which preserves the Forth IP and calls mode-32iso-output_.

Source file: <src/lib/display.mode.32iso.fs>.

mode-32iso-font

mode-32iso-font (-- a)

A variable. a is the address of a cell containing the address of the font used by mode-32iso. Note the
address of the font must be the address of its character 32 (space).

The default value of mode-32iso-font is rom-font plus 256 (the address of the space character in the
ROM font).

Source file: <src/lib/display.mode.32iso.fs>.

mode-32iso-output_

mode-32iso-output_ (-- a) "mode-32-iso-output-underscore"

a is the address of a Z80 routine, the mode-32iso driver, which displays the character in the A
register. calling the ROM routine at $09F4, but assuming the current font set by set-font contains
printable characters 32..255.

519

In order to force the ROM routine interpret characters 128..255 as ordinary characters (not block
graphics, user defined graphics or BASIC tokens, as mode-32-emit does), mode-32iso-emit modifies c if
needed and moves the current font address accordingly before calling the ROM. As a result, the
ROM routine treats character ranges 128..223 and 224..255 as 32..127 and 32..63 respectively.

mode-32iso-output_ is called by mode-32iso-emit.

mode-32iso-output_ is activated by mode-32iso, i.e. it’s set as the output routine of the current
channel.

Source file: <src/lib/display.mode.32iso.fs>.

mode-42pw

mode-42pw (--) "mode-42-p-w"

Start the 42-CPL display mode based on:

PRINT42.ASM
a routine from Your Sinclair #78 (Jun.1992) by P Wardle

Part of the VU-R Browser utility, written by Jim Grimwood:

http://www.users.globalnet.co.uk/~jg27paw4/pourri/pourri.htm

The only control character recognized is #13 (carriage return).

See also: current-mode, set-font, set-mode-output, columns, rows, mode-42pw-emit, mode-42pw-xy, mode-
42pw-font, >form, mode-42pw-output_, mode-42rs.

Source file: <src/lib/display.mode.42pw.fs>.

mode-42pw-emit

mode-42pw-emit (c --) "mode-42-p-w-emit"

Display character c in mode-42pw, by calling mode-64ao-output_.

mode-42pw-emit is configured by mode-42pw as the action of emit.

Source file: <src/lib/display.mode.42pw.fs>.

mode-42pw-font

mode-42pw-font (-- a) "mode-42-p-w-font"

520

A variable. a is the address of a cell containing the address of the font used by mode-42pw. The font is
a standard ZX Spectrum font (8x8-pixel characters, 32 characters per line), which is converted to 42
characters per line at real time. Note the address of the font must be the address of its character 32
(space).

The default value of mode-42pw-font is rom-font plus 256 (the address of the space character in the
ROM font).

Source file: <src/lib/display.mode.42pw.fs>.

mode-42pw-output_

mode-42pw-output_ (-- a)

a is the address of a Z80 routine that displays the character in register A in mode-42pw.

The only control character recognized is #13 (move cursor to next line, column 0).

Source file: <src/lib/display.mode.42pw.fs>.

mode-42pw-xy

mode-42pw-xy (-- col row) "mode-42-p-w-x-y"

Return the current cursor coordinates col row in mode-42pw. mode-64ao-xy is the action of xy when
mode-42pw is active.

Source file: <src/lib/display.mode.42pw.fs>.

mode-42rs

mode-42rs (--) "mode-42-r-s"

Start the 42-CPL display mode based on a routine written by Ricardo Serral Wigge, published on
Microhobby, issue 66 (1986-02), page 24:

• http://microhobby.org/numero066.htm

• http://microhobby.speccy.cz/mhf/066/MH066_24.jpg

WARNING mode-42rs is under development. See the source code for details.

See also: current-mode, mode-42pw.

Source file: <src/lib/display.mode.42rs.fs>.

521

http://microhobby.org/numero066.htm
http://microhobby.speccy.cz/mhf/066/MH066_24.jpg

mode-64-font

mode-64-font (-- a)

A variable. a is the address of a cell containing the address of the 4x8-pixel font used by mode-64ao.
Note the address of the font must be the address of its character 32 (space). The size of a 4x8-pixel
font is 336 bytes. The program is responsible for initializing the contents of this variable before
executing mode-64ao.

NOTE
If mode-64-font is changed when mode-64ao is on, for example to use a new font,
mode-64ao must be executed again in order to make the change effective.

See also: mini-64cpl-font, nbot-64cpl-font, omn1-64cpl-font, omn2-64cpl-font, owen-64cpl-font.

Source file: <src/lib/display.mode.64.COMMON.fs>.

mode-64ao

mode-64ao (--) "mode-64-a-o"

Start the 64-CPL display mode based on:

4x8 FONT DRIVER
(c) 2007, 2011 Andrew Owen
optimized by Crisis (to 602 bytes)
http://www.worldofspectrum.org/forums/discussion/14526/redirect/p1

The control characters recognized are 8 (left), 13 (carriage return) and 22 (at).

WARNING
The "at" control character is followed by column and row, i.e. the order of the
coordinates is inverted compared to the Sinclair BASIC convention and mode-32.
This will be changed in a later version of the code.

See also: current-mode, set-font, set-mode-output, columns, rows, mode-64ao-emit, mode-64ao-xy, mode-
64-font, >form, mode-64ao-output_, mode-64es.

Source file: <src/lib/display.mode.64ao.fs>.

mode-64ao-emit

mode-64ao-emit (c --) "mode-64-a-o-emit"

Display character c in mode-64ao, by calling (mode-64ao-output_.

mode-64ao-emit is configured by mode-64ao as the action of emit.

522

Source file: <src/lib/display.mode.64ao.fs>.

mode-64ao-output_

mode-64ao-output_ (-- a) "mode-64-a-o-output-underscore"

a is the address of a Z80 routine, the entry to mode-64ao driver, which preserves the Forth IP and
then displays the character in the A register by calling (mode-64ao-output_.

Source file: <src/lib/display.mode.64ao.fs>.

mode-64ao-xy

mode-64ao-xy (-- col row) "mode-64-a-o-x-y"

Return the current cursor coordinates col row in mode-64ao. mode-64ao-xy is the action of xy when
mode-64ao is active.

Source file: <src/lib/display.mode.64ao.fs>.

mode-64es

mode-64es (--) "mode-64-e-s"

Start the 64-CPL display mode based on:

4x8 FONT DRIVER
(c) 2007, 2011 Andrew Owen
optimized by Crisis (to 602 bytes)
http://www.worldofspectrum.org/forums/discussion/14526/redirect/p1

Version with integrated driver, adapted from 64#4, written
by Einar Saukas:
https://sites.google.com/site/zxgraph/home/einar-saukas/fonts
http://www.worldofspectrum.org/infoseekid.cgi?id=0027130

WARNING mode-64es is under development. See the source code for details.

See also: current-mode, mode-64ao.

Source file: <src/lib/display.mode.64es.fs>.

module

523

module ("name" -- parent-wid)

Start the definition of a new module named name. end-module ends the module and export exports a
word.

Usage example:

module greet

 : hello (--) ." Hello" ;
 : mods (--) ." Modules" ;

 : hi (--) hello ." , " mods ." !" cr ;

export hi

end-module

Now only the exported definitions of the module are available.

hi \ displays "Hello, Modules!"
hello \ error, not found

The module name is defined as a constant that holds the word list identifier the module words are
defined into. Therefore, to expose the internal words of a module, you can use name >order, where
name is the name of the module.

See also: internal, isolate, package, privatize, seclusion.

Source file: <src/lib/modules.module.fs>.

more-words?

more-words? (nt|0 -- nt|0 f) "more-words-question"

A common factor of words and words-like.

Source file: <src/lib/tool.list.words.fs>.

move

move (a1 a2 u --)

If u is greater than zero, copy the contents of u consecutive bytes at a1 to the u consecutive bytes at

524

a2. After move completes, the u consecutive bytes at a2 contain exactly what the u consecutive bytes
at a1 contained before the move.

See also: cmove, cmove>.

Origin: Forth-83 (Uncontrolled Reference Words), Forth-94 (STRING), Forth-2012 (STRING).

Source file: <src/kernel.z80s>.

move<far

move<far (a1 a2 len --) "move-from-far"

If len is greater than zero, copy len consecutive cells from far-memory address a1 to main-memory
address a2.

Source file: <src/lib/memory.far.fs>.

move>far

move>far (a1 a2 len --) "move-to-far"

If len is greater than zero, copy len consecutive cells from main-memory address a1 to far-memory
address a2.

Source file: <src/lib/memory.far.fs>.

ms

ms (u --)

Wait at least u ms (miliseconds).

Origin: Forth-94 (FACILITY EXT), Forth-202 (FACILITY EXT).

See also: seconds, ticks-pause.

Source file: <src/lib/time.fs>.

ms/tick

ms/tick (-- n) "ms-slash-tick"

Return the duration n of one clock tick in miliseconds.

See also: ticsk/second`, ticks.

525

Source file: <src/lib/time.fs>.

ms>ticks

ms>ticks (n1 -- n2) "ms-to-ticks"

Convert n1 milisecnods to the corresponding number n2 of ticks.

See also: ms/tick.

Source file: <src/lib/time.fs>.

mt*

mt* (d n -- t) "m-t-star"

t is the signed product of d times n.

Source file: <src/lib/math.operators.3-cell.fs>.

multiline-(located

multiline-(located (ca len -- block | 0) "multiline-paren-located"

Locate the first block whose multiline header contains the string ca len (surrounded by spaces), and
return its number. If not found, return zero. The search is case-sensitive.

Only the blocks delimited by first-locatable and last-locatable are searched.

multiline-(located is the default action of (located.

Source file: <src/lib/002.need.fs>.

n

n

n (--)

A command of gforth-editor: Go to next screen.

See also: p, c, a, g, t, scr, top.

Source file: <src/lib/prog.editor.gforth.fs>.

526

n

n (--)

A command of specforth-editor: Find the next occurrence of the string found by an f command.

See also: b, c, d, e, f, h, i, l, m, p, r, s, t, x, find.

Source file: <src/lib/prog.editor.specforth.fs>.

n!

n! (x[u]..x[1] u a --) "n-store"

If u is not zero, store u cells at address a, being x[1] the first cell stored there and x[u] the last one.

See also: nn!, !, n@.

Source file: <src/lib/memory.MISC.fs>.

n,

n, (x[u]..x[1] u --) "n-comma"

If u is not zero, store u cells x[u]..x[1] into data space, being x[1] the first one stored and x[u] the last
one.

See also: ,, far-n,, nn,, n@, n!.

Source file: <src/lib/memory.MISC.fs>.

n>r

n>r (x#1..x#n n --) (R: -- x#1..x#n n) "n-to-r"

Remove n+1 items from the data stack and store them for later retrieval by nr>. The return stack
may be used to store the data. Until this data has been retrieved by nr>:

• this data will not be overwritten by a subsequent invocation of n>r and

• a program may not access data placed on the return stack before the invocation of n>r.

Origin: Forth-2012 (TOOLS EXT).

Source file: <src/lib/return_stack.fs>.

527

n>str

n>str (n -- ca len) "n-to-s-t-r"

Convert n to string ca len.

See also: u>str, d>str, char>string.

Source file: <src/lib/strings.MISC.fs>.

n@

n@ (a u -- x[u]..x[1]) "n-fetch"

If u is not zero, read u cells x[u]..x[1] from a, being x[1] the first one stored and x[u] the last one.

See also: nn@, @, nn!.

Source file: <src/lib/memory.MISC.fs>.

name-indexed?

name-indexed? (ca len -- false | block true) "name-indexed-question"

Search the index for word ca len. If found, return its block and true, else return false.

Source file: <src/lib/blocks.indexer.COMMON.fs>.

name<name

name<name (nt1 -- nt2) "name-from-name"

Get the previous nt2 from nt1, i.e. nt2 is the word that was defined before nt1.

See also: name>name.

Source file: <src/lib/compilation.fs>.

name>

name> (nt -- xt) "name-to"

Definition:

528

: name> (nt -- xt) [2 cells] literal - far@ ;

See also: >name, name>body, name>str, name>string, name>immediate?, name>name.

Source file: <src/kernel.z80s>.

name>>

name>> (nt -- xtp) "name-from-from"

Convert nt into its corresponding xtp.

See also: >>name, name>, name>body, name>name.

Source file: <src/lib/compilation.fs>.

name>body

name>body (nt -- dfa) "name-to-body"

Get dfa from its nt.

See also: body>name, >body, name>, name>>, name>name.

Source file: <src/lib/compilation.fs>.

name>compile

name>compile (nt -- x xt) "name-to-compile"

Compilation token x xt represents the compilation semantics of the word nt. The returned xt has the
stack effect (i*x x — j*x). Executing xt consumes x and performs the compilation semantics of the
word represented by nt.

Origin: Forth-2012 (TOOLS EXT).

See also: name>interpret, comp', (comp', name>.

Source file: <src/lib/compilation.fs>.

name>immediate?

name>immediate? (nt -- xt f)

f is true if the word nt is immediate. xt is the corresponding execution token of nt.

529

Definition:

: name>immediate? (nt -- xt f) dup name> swap immediate? ;

See also: immediate?, name>, name>body, name>str, name>string.

Source file: <src/kernel.z80s>.

name>interpret

name>interpret (nt -- xt | 0) "name-to-interpret"

Return xt that represents the interpretation semantics of the word nt. If nt has no interpretation
semantics, return zero.

Origin: Forth-2012 (TOOLS EXT).

See also: name>compile, ', compile-only?, name>.

Source file: <src/lib/compilation.fs>.

name>link

name>link (nt -- lfa) "name-to-link"

Convert nt into its corresponding lfa.

See also: link>name, name>, name>body, name>>, name>name.

Source file: <src/lib/compilation.fs>.

name>name

name>name (nt1 -- nt2) "name-to-name"

Get the next nt2 from nt1, i.e. nt2 is the word that was defined after nt1.

WARNING

name>name is not absolutely reliable, because nt2 is calculated after the name
length of nt1. If something was compiled in name space or the name-space
pointer np was altered between the definition identified by nt1 and the
following definition, the result nt2 will be wrong.

See also: name<name, name>, name>body, name>>.

Source file: <src/lib/compilation.fs>.

530

name>str

name>str (nt -- ca len) "name-to-s-t-r"

Convert the name token nt to its name string ca len in far memory.

See also: name>string, name>immediate?, name>, name>body.

Source file: <src/lib/compilation.fs>.

name>string

name>string (nt -- ca len) "name-to-string"

Convert the name token nt to its name string ca len in the stringer.

See also: name>str, name>immediate?, name>, name>body.

Source file: <src/lib/compilation.fs>.

nbot-64cpl-font

nbot-64cpl-font (-- a) "n-bot-64-c-p-l-font"

a is the address of a 4x8-pixel font compiled in data space (336 bytes used), to be used in mode-64ao
by setting mode-64-font first.

This font is included also in disk 0 as "nbot.f64".

See also: mini-64cpl-font, omn1-64cpl-font, omn2-64cpl-font, owen-64cpl-font.

Source file: <src/lib/display.mode.64.COMMON.fs>.

nc?

nc? (-- op) "n-c-question"

Return the opcode op of the Z80 assembler instruction jp nc, to be used as condition and consumed
by ?ret,, ?jp,, ?call,, ?jr,, aif, rif, awhile, rwhile, auntil or runtil.

See also: z?, nz?, c?, po?, pe?, p?, m?.

Source file: <src/lib/assembler.fs>.

531

ndrop

ndrop (x1...xn n --) "n-drop"

Drop n cell items from the stack.

See also: 2ndrop, drop, 2drop.

Source file: <src/lib/data_stack.fs>.

need

need ("name" --)

If name is not found in the current search order, locate the first block where name is included is the
block header (surrounded by spaces), and load it. If not found, throw an exception #-268 ("needed,
but not located").

need is a deferred word (see defer) whose default action is locate-need.

See also: make-thru-index.

Source file: <src/lib/002.need.fs>.

need-from

need-from ("name" --)

Locate the first block whose header contains name (surrounded by spaces), and set it the first one
located will search from. If not found, throw an exception #-268 ("needed, but not located").

need-from is intended to prevent undesired name clashes during the execution of need and related
words. name is supposed to be a conventional marker.

Usage example:

532

(x)

: x (--) ." Wrong x!" ;

(use-x)

need-from ==data-structures== need x

x

(y ==data-structures==)

: y ." Y data structure; ;

(x)

: x ." X data structure; ;

Source file: <src/lib/002.need.fs>.

need-here

need-here ("name" --)

If name is not a word found in the current search order, load the current block.

need-here is a faster alternative to need, when the needed word is in the same block, and conditional
compilation is used with ?\, ?(or [if].

Source file: <src/lib/002.need.fs>.

needed

needed (ca len --)

If the string ca len is not the name of a word found in the current search order, load the first block
where ca len is included in the block header (surrounded by spaces). If not found, throw an
exception #-268 ("needed, but not located").

needed is a deferred word (see defer) whose default action is locate-needed.

See also: make-thru-index.

Source file: <src/lib/002.need.fs>.

533

needed-word

needed-word (-- a)

A 2variable. a is the address of a double-cell containing the address and length of the string
containing the word currently needed by need and friends.

Source file: <src/lib/002.need.fs>.

needing

needing ("name" -- f)

Parse name. If there’s no unresolved need, needed, reneed or reneeded, return true. Otherwise, if name
is the needed word specified by the last execution of need or needed, return true, else return false.

See also: unneeding.

Source file: <src/lib/002.need.fs>.

neg,

neg, (--) "neg-comma"

Compile the Z80 assembler instruction NEG.

See also: cpl,, scf,, ccf,.

Source file: <src/lib/assembler.fs>.

negate

negate (n1 -- n2)

Negate n1, giving its arithmetic inverse n2.

Origin: Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE), Forth-2012
(CORE).

See also: ?negate, 0=, inverse, dnegate.

Source file: <src/kernel.z80s>.

neither

534

neither (x1 x2 x3 -- f)

Return true if x1 is not equal to either x2 or x3; else return false.

Origin: IsForth.

See also: either, ifelse, any?.

Source file: <src/lib/math.operators.1-cell.fs>.

nest-source

nest-source (R: -- source-sys)

source-sys describes the current source specification for later use by unnest-source.

nest-source is a compile-only word.

Definition:

: nest-source (R: -- source-sys)
 r>
 input-buffer 2@ 2>r
 source-id >r
 >in @ >r
 blk @ >r
 #tib @ >r
 >r ; compile-only

See also: #tib, blk, >in, (source-id, input-buffer.

Source file: <src/kernel.z80s>.

new

new (class -- o)

Create a new incarnation of the class class.

Source file: <src/lib/objects.mini-oof.fs>.

new-key

new-key (-- c)

535

Remove all keys from the keyboard buffer, then return character c of the key struck, a member of
the a member of the defined character set.

See also: new-key-, key, xkey, -keys.

Source file: <src/lib/keyboard.MISC.fs>.

new-key-

new-key- (--) "new-key-minus"

Remove all keys from the keyboard buffer, then wait for a key press and discard it. Finally remove
all keys from the keyboard buffer.

See also: new-key, key, xkey, -keys.

Source file: <src/lib/keyboard.MISC.fs>.

new-menu

new-menu (a1 a2 ca len col row n1 n2 --)

Set, display an activate a new menu at cursor coordinates col row, with n2 options, n1 characters
width, title ca len, actions table a1 (a cell array of n2 execution tokens) and option texts table a2 (a
cell array of n2 addresses of counted strings).

Usage example:

536

need menu need :noname

:noname (--) unnest unnest ;
:noname (--) 2 border ;
:noname (--) 1 border ;
:noname (--) 0 border ;

create actions> , , , ,

here s" EXIT" s,
here s" Red" s,
here s" Blue" s,
here s" Black" s,

create texts> , , , ,

: menu-pars (-- a1 a2 ca len col row n1 n2)
 actions> texts> s" Border" 7 7 14 4 ;

menu-pars new-menu

See also: set-menu, .menu, menu.

Source file: <src/lib/menu.sinclair.fs>.

new-needed-word

new-needed-word (ca1 len -- ca2 len')

Remove trailing and leading spaces from the word ca1 len, which is the parameter of the latest need
needed, reneed or reneeded, store it in the stringer and return it as ca2 len' for further processing.

Source file: <src/lib/002.need.fs>.

newline

newline (-- ca len)

ca len is a character string containing the character(s) used to mark the start of a new line of text in
file operations.

The string is stored at newline> as a counted string, which can be configured by the application.

Origin: Gforth.

See also: 'cr', 'lf'.

537

Source file: <src/lib/display.control.fs>.

newline>

newline> (-- ca) "new-line-to"

ca is the address of a counted string containing the character(s) (maximum 2) used to mark the start
of a new line of text in file operations.

The string can be configured by the application. By default it contains only the character 'cr'.

The string is returned by newline.

See also: 'lf'.

Source file: <src/lib/display.control.fs>.

newton-sqrt

newton-sqrt (n1 -- n2) "newton-square-root"

Integer square root n2 of radicand n1 by Newton’s method. newton-sqrt is 7..8 times slower than
baden-sqrt.

Loading newton-sqrt makes it the action of sqrt.

Source file: <src/lib/math.operators.1-cell.fs>.

next

next (-- a)

A constant. a is the address of the main entry point of the Forth inner interpreter. It is the address
Forth words jump to at the end. The code at a executes the word whose execution token is in the
address pointed by the Forth IP (the Z80 BC register).

In Solo Forth, the Z80 IX register contains a, which must be preserved across Forth words.

See also: pushhl, pusha.

Source file: <src/kernel.z80s>.

nextname

nextname (ca len --)

538

The next defined word will have the name ca len; the defining word will leave the input stream
alone. nextname works with any defining word.

Origin: Gforth.

See also: nextname-header, nextname-string.

Source file: <src/lib/define.MISC.fs>.

nextname-header

nextname-header (--)

Create a dictionary header using the name string set by nextname. Then restore the default action of
header.

Origin: Gforth.

See also: nextname-string. default-header.

Source file: <src/lib/define.MISC.fs>.

nextname-string

nextname-string (-- a)

A 2variable. a is the address of a double-cell containing the address and length of a name to be used
by the next defining word. This variable is set by nextname.

Origin: Gforth.

See also: nextname-header.

Source file: <src/lib/define.MISC.fs>.

nip

nip (x1 x2 -- x2)

Drop the first item below the top of stack.

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: drop, tuck, 2nip.

Source file: <src/kernel.z80s>.

539

nn!

nn! (x[u]..x[1] u a --) "n-n-store"

Store the count u at a. If u is not zero, store also u cells x[u]..x[1] at the next cell address, being x[1]
the first one stored and x[u] the last one.

See also: n!, !, nn@.

Source file: <src/lib/memory.MISC.fs>.

nn,

nn, (x[u]..x[1] u --) "n-n-comma"

Store the count u into data space. If u is not zero, store also u cells x[u]..x[1] into data space, being
x[1] the first one stored and x[u] the last one.

See also: ,, n,, nn!.

Source file: <src/lib/memory.MISC.fs>.

nn@

nn@ (a -- x[1]..x[u] u | 0) "n-n-fetch"

Read the count u from a. If it’s zero, return it. If u is not zero, read u cells x[u]..x[1] from the next
cell address, being x[1] the first cell stored there and x[u] the last one.

See also: n@, @, nn!.

Source file: <src/lib/memory.MISC.fs>.

no-exit

no-exit (--)

Recover the data-space cell used by the exit compiled by the ; of the latest colon definition. no-exit
can be used after a colon definition that contains and end-less loop, or exits only through an
explicit exit, quit or other means. In such cases the exit compiled by ; can never be reached, so its
space is wasted.

Usage examples:

540

: forever (--)
 begin ." Forever! " again ; no-exit

: maybe-forever (--)
 begin ." Forever? " break-key? until quit ; no-exit

The same effect can be achieved by replacing ; with [and finish-code:

: forever (--)
 begin ." Forever!" again [finish-code

: maybe-forever (--)
 begin ." Forever? " break-key? until quit [finish-code

finish-code is factor of ;. It’s not an immediate word, so [is needed to enter interpretation state.

Origin: Pygmy Forth’s recover.

Source file: <src/lib/compilation.fs>.

no-ltyped

no-ltyped (--) "no-l-typed"

Set #ltyped and #indented to zero.

See also: ltyped.

Source file: <src/lib/display.ltype.fs>.

no-warnings?

no-warnings? (-- f) "no-warnings-question"

Are the warnings deactivated?

See also: ?warn, warnings.

Source file: <src/lib/compilation.fs>.

no?

no? (-- f) "no-question"

Wait for a valid key press for a y/n question and return true if it’s the current value of "n", else

541

return false.

See also: yes?, y/n?.

Source file: <src/lib/keyboard.yes-question.fs>.

noname?

noname? (-- a) "no-name-question"

A variable. a is the address of a cell containing a flag: Was the word being defined created by
:noname? noname? is set by :noname and reset by ;.

Source file: <src/kernel.z80s>.

noop

noop (--) "no-op"

Do nothing.

See also: noop_.

Source file: <src/kernel.z80s>.

noop_

noop_ (-- a) "no-op-underscore"

A constant. a is the address of a routine that does nothing, except executing a Z80 ret to return.

noop_ is used as the default jump point of circle-pixel.

See also: noop.

Source file: <src/kernel.z80s>.

nop,

nop, (--) "nop-comma"

Compile the Z80 assembler instruction NOP.

Source file: <src/lib/assembler.fs>.

542

not-block-drive

not-block-drive (-- c)

c is a constant identifier used by set-block-drives, -block-drives and other related words to mark
unused elements of block-drives.

Source file: <src/lib/dos.COMMON.fs>.

not-redefined?

not-redefined? (ca len -- ca len xt false | ca len true) "not-redefined-question"

Is the word name ca len not yet defined in the compilation word list?

See also: ?warn.

Source file: <src/lib/compilation.fs>.

not-understood

not-understood (--)

throw exception code #-256 ("not understood").

not-understood is used in interpret-table.

See also: compilation-only.

Source file: <src/kernel.z80s>.

np

np (-- a) "n-p"

A constant. a is the address of a cell containing the name-space pointer, which points to the next
free address where the next word header will be stored.

Name space is in "far memory": a 64-KiB memory formed by 4 configurable memory banks.

See also: np0, np@, dp, far-banks.

Source file: <src/kernel.z80s>.

543

np!

np! (a --) "n-p-store"

Store a into the name-space pointer np.

np! is written in Z80. Its equivalent definition in Forth is the following:

: np! (a --) np ! ;

Source file: <src/lib/memory.far.fs>.

np0

np0 (-- a) "n-p-zero"

A constant. a is the the bottom (initial) address of the name-space pointer np.

Source file: <src/kernel.z80s>.

np@

np@ (-- a) "n-p-fetch"

Fetch the content of the name-space pointer np.

np@ is written in Z80. Its equivalent definition in Forth is the following:

: np@ (-- a) np @ ;

Source file: <src/kernel.z80s>.

nr>

nr> (-- x#1..x#n n) (R: x#1..x#n n --) "n-r-from"

Retrieve the items previously stored by an invocation of n>r. n is the number of items placed on the
data stack.

Origin: Forth-2012 (TOOLS EXT).

Source file: <src/lib/return_stack.fs>.

544

nuf?

nuf? (-- f) "nuf-question"

If no key is pressed return false. If a key is pressed, discard it and wait for a second key. Then
return true if it’s a carriage return, else return false.

Usage example:

: listing (--)
 begin ." bla " nuf? until ." Aborted" ;

See also: aborted?.

Source file: <src/lib/keyboard.MISC.fs>.

number

number (ca len -- n | d)

Attempt to convert a string ca len into a number. If a valid point is found, return d; if there is no
valid point, return n. If conversion fails due to an invalid character, throw an exception #-275
("wrong number").

See also: number?, >number.

Source file: <src/lib/math.number.conversion.fs>.

number-base

number-base (ca len -- ca' len' n)

If the first character of string ca len is a radix prefix, return its value n and the updated string ca'
len' (which does not include the radix prefix). Otherwise return ca len untouched and the current
value of base n.

Definition:

545

: number-base (ca len -- ca' len' n)
 dup if
 over c@
 dup '$' = if drop 1 /string #16 exit then
 dup '%' = if drop 1 /string #2 exit then
 '#' = if 1 /string #10 exit then
 then
 base @ ;

Source file: <src/kernel.z80s>.

number-point?

number-point? (c -- f) "number-point-question"

f is true if character c is a valid point in a number. number-point? is a deferred word (see defer) used
in number?. Its default action is standard-number-point?, which only allows the period.

See also: classic-number-point?, extended-number-point?, dpl.

Source file: <src/kernel.z80s>.

number?

number? (ca len -- 0 | n 1 | d 2) "number-question"

Convert a string ca len to a number, using the current value of base.. Return 0 if the conversion is
not possible. If the result is a single number, return n and 1. If the result is a double number, return
d and 2.

number? accepts valid point anywhere on the number and updates dpl with the position of the last
one. If no point is found, dpl contains -1.

Characters between single quotes are recognized, after Forth-2012.

Definition:

546

: number? (ca len -- 0 | n 1 | d 2)

 dup 0= if 2drop 0 exit then \ reject empty strings

 2dup char? if nip nip 1 exit then \ character format

 over c@ number-point? \ first character is a point?
 if 2drop 0 exit then \ is so, reject the string

 base @ >r number-base base ! (R: radix)
 skip-sign? >r (R: radix sign)
 0 0 2swap dpl on

 begin (d ca len) >number dup while

 over c@ number-point? 0= \ invalid point?
 if 2drop 2drop rdrop r> base ! 0 exit then

 dup dpl @ = \ previous character was a point?
 if 2drop 2drop rdrop r> base ! 0 exit then

 dup 1- dpl ! \ update the position of the last point
 1 /string \ skip the point

 repeat

 2drop \ discard the empty string
 dpl @ 0< \ single-cell number?
 if d>s r> ?negate 1 \ single-cell number
 else r> ?dnegate 2 \ double-cell number
 then r> base ! ; \ restore the radix

See also: >number, number-point?, skip-sign?, dpl, number.

Source file: <src/kernel.z80s>.

nup

nup (x1 x2 -- x1 x1 x2)

This word is defined in Z80. Its equivalent definition in Forth is the following:

: nup (x1 x2 -- x1 x1 x2) over swap ;

See also: dup, tuck, drup, dip.

Source file: <src/lib/data_stack.fs>.

547

nx

nx (--) "n-x"

Give next quick index, calculated from scr.

See also: qx, px.

Source file: <src/lib/tool.list.blocks.fs>.

nz?

nz? (-- op) "n-z-question"

Return the opcode op of the Z80 assembler instruction jp nz, to be used as condition and consumed
by ?ret,, ?jp,, ?call,, ?jr,, aif, rif, awhile, rwhile, auntil or runtil.

See also: z?, c?, nc?, po?, pe?, p?, m?.

Source file: <src/lib/assembler.fs>.

o

object

object (-- a)

The base class of all objets.

Source file: <src/lib/objects.mini-oof.fs>.

ocr

ocr (col row -- c | 0) "o-c-r"

Try to recognize the character printed at the given cursor coordinates, using the character set
whose first printable character is pointed by the variable ocr-font. The character variable ocr-chars
contains the number of characters in the set, and its counterpart ocr-first contains the code of its
first character. If succesful, return the character number c according to the said variables.
Otherwise return 0. Inverse characters are not recognized.

NOTE The name ocr stands for "Optical Character Recognition".

See also: udg-ocr, ascii-ocr.

548

Source file: <src/lib/graphics.ocr.fs>.

ocr-chars

ocr-chars (-- ca) "o-c-r-chars"

A cvariable. ca is the address of a byte containing the number of characters used by ocr, from the
address pointed by ocr-font. By default it contais 95, the number of printable ASCII characters in
the ROM character set.

The configuration of ocr, including this variable, can be changed by ascii-ocr and udg-ocr.

See also: ocr-first, ocr-font.

Source file: <src/lib/graphics.ocr.fs>.

ocr-first

ocr-first (-- ca) "o-c-r-first"

A cvariable. ca is the address of a byte containing the code of the first printable character in the
character set used by ocr, pointed by ocr-font. By default it contais bl, the code of the space
character.

The configuration of ocr, including this variable, can be changed by ascii-ocr and udg-ocr.

See also: ocr-chars, ocr-font.

Source file: <src/lib/graphics.ocr.fs>.

ocr-font

ocr-font (-- a) "o-c-r-font"

A variable. a is the address of a cell containing the address of the first printable character in the
character set used by ocr. By default it contains 0x3D00, the address of the space character in the
rom-font.

The configuration of ocr, including this variable, can be changed by ascii-ocr and udg-ocr.

See also: ocr-chars, ocr-first.

Source file: <src/lib/graphics.ocr.fs>.

octave-changer

549

octave-changer (-- a)

a is the address of an execution table that contains the three execution tokens used to calculate the
frequency of notes from any octave. a is the address of the second execution token (cell offset 0).

See also: change-octave, beep>dhz, middle-octave.

Source file: <src/lib/sound.48.fs>.

odd?

odd? (n -- f) "odd-question"

Is n an odd number?

odd? is written in Z80. Its equivalent definition in Forth is the following:

: odd? (n -- f) 1 and 0<> ;

See also: odd?.

Source file: <src/lib/math.operators.1-cell.fs>.

of

of
 Compilation: (C: -- orig)
 Run-time: (x1 x2 --)

of is an immediate and compile-only word.

Compilation: Put orig onto the control flow stack. Append the run-time semantics given below to
the current definition. The semantics are incomplete until resolved by a consumer of orig such as
endof.

Run-time: If x1 and x2 are not equal, discard x2 and continue execution at the location specified by
the consumer of orig, e.g. following the next endof. Otherwise discard x1 x2 and continue execution
in line.

of is an immediate and compile-only word.

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: default-of, less-of, greater-of, between-of, within-of, or-of, any-of.

Source file: <src/lib/flow.case.fs>.

550

off

off (a --)

Store false at a.

off is written in Z80. Its equivalent definition in Forth is the following:

: off (a --) false swap ! ;

Origin: Comus.

See also: on, coff.

Source file: <src/kernel.z80s>.

ok

ok (--)

A deferred word (see defer) called by quit after interpreting a command. Its default action is the
word .ok.

Source file: <src/kernel.z80s>.

omn1-64cpl-font

omn1-64cpl-font (-- a) "omn-1-64-c-p-l-font"

a is the address of a 4x8-pixel font compiled in data space (336 bytes used), to be used in mode-64ao
by setting mode-64-font first.

This font is included also in disk 0 as "omn1.f64".

See also: mini-64cpl-font, nbot-64cpl-font, omn2-64cpl-font, owen-64cpl-font.

Source file: <src/lib/display.mode.64.COMMON.fs>.

omn2-64cpl-font

omn2-64cpl-font (-- a) "omn-2-64-c-p-l-font"

a is the address of a 4x8-pixel font compiled in data space (336 bytes used), to be used in mode-64ao
by setting mode-64-font first.

551

This font is included also in disk 0 as "omn2.f64".

See also: mini-64cpl-font, nbot-64cpl-font, omn1-64cpl-font, owen-64cpl-font.

Source file: <src/lib/display.mode.64.COMMON.fs>.

on

on (a --)

Store true at a.

on is written in Z80. Its equivalent definition in Forth is the following:

: on (a --) true swap ! ;

Origin: Comus.

See also: off, con.

Source file: <src/kernel.z80s>.

only

only (--)

Set the search order to the minimum search order.

Definition:

: only (--) -1 set-order ;

Origin: Forth-94 (SEARCH EXT), Forth-2012 (SEARCH EXT).

See also: also, set-order, previous, order.

Source file: <src/kernel.z80s>.

only-one-pressed

only-one-pressed (-- false | b a true)

Return the key identifier b a (key bitmask and keyboard row port) of the only key from table kk-
ports that happens to be pressed, and true; if no key is pressed or more than one key is pressed at
the same time, return false.

552

See also: pressed, pressed?.

Source file: <src/lib/keyboard.MISC.fs>.

option

option (x "name" --)

Compile the action name of an option x in an options[…]options control structure.

See options[for a usage example.

Source file: <src/lib/flow.options-bracket.fs>.

options-table

options-table (-- a)

A variable. a is the address of a cell containing the address of a cell array, which holds the counted
strings of the current menu options. options-table is set by set-menu.

See also: actions-table.

Source file: <src/lib/menu.sinclair.fs>.

options[

options["options-left-bracket"

Compilation: ( — a1 a2 a3)

Start an options[…]options structure.

The addresses left on the stack will be resolved by]options:

• a1 = address of exit point

• a2 = address of the xt of the default option

• a3 = address of number of options

Usage example:

553

: say10 ." dek" ;
: say100 ." cent" ;
: say1000 ." mil" ;
: say-other ." alia" ;

: say (n)
 options[
 10 option say10
 100 option say100
 1000 option say1000
 default-option say-other
]options ;

10 say 100 say 1000 say 1001 say

options[is an immediate and compile-only word.

Source file: <src/lib/flow.options-bracket.fs>.

or

or (x1 x2 -- x3)

x3 is the bit-by-bit inclusive-or of x1 with x2.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: and, xor, negate, 0=, dor.

Source file: <src/kernel.z80s>.

or#,

or#, (b --) "or-number-sign-comma"

Compile the Z80 assembler instruction OR b.

See also: xor#,, and#,, add#,.

Source file: <src/lib/assembler.fs>.

or,

or, (reg --) "or-comma"

554

Compile the Z80 assembler instruction OR reg.

See also: and,, xor,.

Source file: <src/lib/assembler.fs>.

or-of

or-of
 Compilation: (C: -- of-sys)
 Run-time: (x1 x2 x3 -- | x1)

A variant of of.

Compilation:

Put of-sys onto the control flow stack. Append the run-time semantics given below to the current
definition. The semantics are incomplete until resolved by a consumer of of-sys, such as endof.

Run-time:

If x1 is equal to x2 or x1 is equal to x3 discard x1 x2 x3 and continue execution in line; otherwise
discard x2 x3 and continue execution at the location specified by the consumer of of-sys, e.g.,
following the next endof.

or-of is an immediate and compile-only word.

Usage example:

: test (x --)
 case
 1 of ." one" endof
 2 3 or-of ." two or three" endof
 4 of ." four" endof
 endcase ;

See also: case, any-of, (or-of.

Source file: <src/lib/flow.case.fs>.

order

order (--)

Display the word lists in the search order in their search order sequence, from first searched to last
searched. Also display the word list into which new definitions will be placed.

Origin: Forth-2012 (SEARCH EXT).

555

See also: .context, .current, .wordlist, set-order.

Source file: <src/lib/tool.list.word_lists.fs>.

order,

order, (--)

Compile the current search order by executing get-order and nn,.

order, is a useful factor of marker.

See also: @order, wordlists,.

Source file: <src/lib/tool.marker.fs>.

orif

orif "or-if"
 Compilation: (C: -- orig)
 Run-time: (f --)

Short-circuit or variant of if.

orif is an immediate and compile-only word.

Usage example:

: is-alphanum? (c -- f) cond dup is-lower? orif
 dup is-upper? orif
 dup is-digit?
 thens nip ;

Compare with the following equivalent definition, where all three conditions are always checked:

: is-alphanum? (c -- f) dup is-lower?
 over is-upper? or
 swap is-digit? or ;

See also: andif, cond, thens.

Source file: <src/lib/flow.MISC.fs>.

orthodraw

556

orthodraw (gx gy gxinc gyinc len --)

Draw a line formed by len pixels, starting from gx gy and using gxinc gyinc as increments to
calculate the coordinates of every next pixel.

The status of inverse and overprint modes are obeyed; the screen attributes and the system graphic
coordinates are updated. That’s what makes orthodraw much slower than ortholine.

See also: adraw176, rdraw176.

Source file: <src/lib/graphics.lines.fs>.

ortholine

ortholine (gx gy gxinc gyinc len --)

Draw a line formed by len pixels, starting from gx gy and using gxinc gyinc as increments to
calculate the coordinates of every next pixel.

The status of inverse and overprint modes is ignored; the attributes of the screen are not modified;
and the system graphic coordinates are not updated. That’s what makes ortholine almost twice
faster than orthodraw.

Source file: <src/lib/graphics.lines.fs>.

orx,

orx, (disp regpi --) "or-x-comma"

Compile the Z80 assembler instruction OR (regpi+disp).

See also: andx,, xorx,, cpx,.

Source file: <src/lib/assembler.fs>.

os-attr-p

os-attr-p (-- ca) "o-s-attribute-p"

A constant that returns the address ca of 1-byte system variable ATTR_P, which holds the current
permanent color attribute, as set up by color statements.

See also: os-attr-t, os-mask-p.

Source file: <src/lib/os.variables.fs>.

557

os-attr-t

os-attr-t (-- ca) "o-s-attribute-t"

A constant that returns the address ca of 1-byte system variable ATTR_T, which holds the current
temporary color attribute, as set up by color statements.

See also: os-attr-p, os-mask-t.

Source file: <src/lib/os.variables.fs>.

os-chans

os-chans (-- a) "o-s-chans"

A constant that returns the address a of the system variable CHANS, which holds the address of the
channel data table. Each element of the table has the following structure:

Table 32. Structure of a system channel.

Offset (bytes) Content

+0 Address of the channel output routine

+2 Address of the channel input routine

+4 Channel identifier character

The default contents of the channel data table are the following:

Table 33. Default system channel data table.

Offset (bytes) Content

+0 $09F4 (print-out)

+2 $10A8 (key-input)

+4 'K'

+5 $09F4 (print-out)

+7 $15C4 (report-j)

+9 'S'

+10 $08F1 (add-char)

+12 $15C4 (report-j)

+14 'R'

+15 $09F4 (print-out)

+17 $15C4 (report-j)

+19 'P'

558

NOTE
The elements of the channel data table are pointed from os-strms by 1-indexed byte
offsets, i.e. $0001 points to the first element of the channel data table, channel 'K'.

See also: .os-chans.

Source file: <src/lib/os.variables.fs>.

os-chars

os-chars (-- a) "o-s-chars"

A constant that returns the address of system variable CHARS, which holds the bitmap address of
character 0 of the current font (actual characters 32..127). By default this system variables holds
ROM address 15360 ($3C00).

See also: set-font, get-font, rom-font, os-udg.

Source file: <src/lib/os.variables.fs>.

os-coords

os-coords (-- a) "o-s-coords"

A constant that returns the address a of 2-byte system variable COORDS which holds the graphic
coordinates of the last point plotted.

See also: set-pixel, plot, os-coordx, os-coordy.

Source file: <src/lib/os.variables.fs>.

os-coordx

os-coordx (-- ca) "o-s-coord-x"

A constant that returns the address ca of 1-byte system variable COORDX which holds the graphic x
coordinate of the last point plotted.

See also: set-pixel, plot, os-coords, os-coordy.

Source file: <src/lib/os.variables.fs>.

os-coordy

os-coordy (-- ca) "o-s-coord-y"

559

A constant that returns the address ca of 1-byte system variable COORDY which holds the graphic y
coordinate of the last point plotted.

See also: set-pixel, plot, os-coords, os-coordx.

Source file: <src/lib/os.variables.fs>.

os-flags2

os-flags2 (-- ca) "o-s-flags-two"

A constant that returns the address ca of 1-byte system variable FLAGS2, which holds several flags.

See also: capslock.

Source file: <src/lib/os.variables.fs>.

os-frames

os-frames (-- a) "o-s-frames"

A constant that returns the address a of the 24-bit system variable FRAMES (least significant byte
first), containing the counter of frames, which is incremented every 20 ms by the interrupt routine
of the OS. This counter is returned by ticks and used by its related words.

See also: set-ticks, reset-ticks, ticks-pause, ?ticks-pause.

Source file: <src/lib/os.variables.fs>.

os-mask-p

os-mask-p (-- ca) "o-s-mask-p"

A constant that returns the address ca of 1-byte system variable MASK_P, which holds the
permanent color attribute mask, used for transparent colors, etc. Any bit that is 1 shows that the
corresponding attribute bit is taken not from os-attr-p but from what is already on the screen.

See also: os-attr-p, os-mask-t.

Source file: <src/lib/os.variables.fs>.

os-mask-t

os-mask-t (-- ca) "o-s-mask-t"

A constant that returns the address ca of 1-byte system variable MASK_T, which holds the

560

temporary color attribute mask, used for transparent colors, etc. Any bit that is 1 shows that the
corresponding attribute bit is taken not from os-attr-t but from what is already on the screen.

See also: os-attr-t, os-mask-p.

Source file: <src/lib/os.variables.fs>.

os-p-flag

os-p-flag (-- ca) "o-s-p-flag"

A constant that returns the address ca of 1-byte system variable P_FLAG, which holds some flags
related to printing.

Source file: <src/lib/os.variables.fs>.

os-prog

os-prog (-- a) "o-s-prog"

A constant that returns the address a of 2-byte system variable PROG which holds the address of the
BASIC program.

See also: os-stkend, os-ramtop, os-chans.

Source file: <src/lib/os.variables.fs>.

os-ramtop

os-ramtop (-- a) "o-s-ram-top"

A constant that returns the address a of 2-byte system variable RAMTOP which holds the address of
the last byte of BASIC system area.

See also: os-stkend, os-prog, os-chans.

Source file: <src/lib/os.variables.fs>.

os-seed

os-seed (-- a) "o-s-seed"

A constant that returns the address a of system variable SEED, which holds the seed of the BASIC
random number generator.

Source file: <src/lib/os.variables.fs>.

561

os-sp

os-sp (-- a) "os-s-p"

A variable. a is the address of a cell containing a copy of the OS stack pointer, which is saved when
the Forth system is entered from BASIC, and then restored by (bye before returning to BASIC.

Source file: <src/kernel.z80s>.

os-stkend

os-stkend (-- a) "o-s-stack-end"

A constant that returns the address a of 2-byte system variable STKEND which holds the address of
the start of spare space of BASIC system area.

See also: os-prog, os-chans.

Source file: <src/lib/os.variables.fs>.

os-strms

os-strms (-- a) "o-s-streams"

A constant that returns the address a of a 38-byte (19-cell) system variable STRMS which holds one
cell per stream, containing the address of the channel attached to it, as follows:

Table 34. Structure of the system streams table.

Offset (cells) Stream Content

+0 -3 $0001 (offset to channel 'K')

+1 -2 $0006 (offset to channel 'S')

+2 -1 $000B (offset to channel 'R')

+3 0 $0001 (offset to channel 'K')

+4 1 $0001 (offset to channel 'K')

+5 2 $0006 (offset to channel 'S')

+6 3 $0010 (offset to channel 'P')

+7..+18 4..15 $0000..$0000 (not attached)

NOTE
The contents are 1-index offsets from the address os-chans. When the content of a
stream cell is zero, the stream is not attached to a channel.

See also: .os-strms.

562

Source file: <src/lib/os.variables.fs>.

os-udg

os-udg (-- a) "o-s-u-d-g"

A constant that returns the address a of system variable UDG, which holds the address of the first
character bitmap of the current User Defined Graphics set (characters 128..255 or 0..255, depending
on the words used to access them).

See also: set-udg, get-udg, os-chars.

Source file: <src/lib/os.variables.fs>.

os-unused

os-unused (-- u) "o-s-unused"

u is the amount of unused space by the OS and the BASIC interpreter.

See also: unused, farunused.

Source file: <src/lib/os.fs>.

othercase

othercase (x --)

Mark the default option of a thiscase structure that checked x.

See also: ifcase, exitcase.

Source file: <src/lib/flow.thiscase.fs>.

othercase>

othercase> (orig counter "name" --) "other-case-from"

Compile the default option of a cases: to be the word name. This must be the last option of the
structure and is mandatory. When no default action is required, othercase> noop can be used.

See cases: for an usage example.

Source file: <src/lib/flow.cases-colon.fs>.

563

out,

out, (b --) "out-comma"

Compile the Z80 assembler instruction OUT (b),A.

See also: in,, outbc,.

Source file: <src/lib/assembler.fs>.

outbc,

outbc, (reg --) "out-b-c-comma"

Compile the Z80 assembler instruction OUT ©,reg.

See also: inbc,, out,.

Source file: <src/lib/assembler.fs>.

outlet-autochars

outlet-autochars (a --)

Create a modified, bolder copy of the ZX Spectrum ROM font and store it at a. 768 bytes will be used
from a. Then activate the new font by modifing the contents of os-chars.

The code of outlet-autochars has been adapted from the Autochars routine used by the Outlet
magazine, published in its issue #1 (1987-09).

Usage example:

create outlet-font 768 allot
need outlet-autochars
outlet-font outlet-autochars

See also: set-font, rom-font.

Source file: <src/lib/display.fonts.fs>.

over

over (x1 x2 -- x1 x2 x1)

Place a copy of x1 on top of the stack.

564

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: dup, swap, 2over.

Source file: <src/kernel.z80s>.

overprint

overprint (f --)

If f is zero, turn the overprint mode off; else turn it on.

See also: overprint-on, overprint-off, inverse.

Source file: <src/lib/display.attributes.fs>.

overprint-off

overprint-off (--)

Turn the overprint mode off.

See also: overprint-on, overprint, inverse-off.

Source file: <src/lib/display.attributes.fs>.

overprint-on

overprint-on (--)

Turn the overprint mode on.

See also: overprint-off, overprint, inverse-on.

Source file: <src/lib/display.attributes.fs>.

owen-64cpl-font

owen-64cpl-font (-- a) "owen-64-c-p-l-font"

a is the address of a 4x8-pixel font compiled in data space (336 bytes used), to be used in mode-64ao
by setting mode-64-font first.

This font is included also in disk 0 as "owen.f64".

565

See also: mini-64cpl-font, nbot-64cpl-font, omn1-64cpl-font, omn2-64cpl-font.

Source file: <src/lib/display.mode.64.COMMON.fs>.

p

p

p (--)

A command of gforth-editor: Go to previous screen.

See also: n, c, a, g, t, scr, top.

Source file: <src/lib/prog.editor.gforth.fs>.

p

p (n "ccc<eol>" --)

A command of specforth-editor: Put ccc on line n.

See also: b, c, d, e, f, h, i, l, m, n, r, s, t, x, text.

Source file: <src/lib/prog.editor.specforth.fs>.

p?

p? (-- op) "p-question"

Return the opcode op of the Z80 assembler instruction jp p, to be used as condition and consumed
by ?ret,, ?jp,, ?call,, aif, awhile or auntil.

See also: z?, nz?, c?, nc?, po?, pe?, m?.

Source file: <src/lib/assembler.fs>.

package

package ("name" -- wid0 wid1)

If the package name has been previously defined, open it. Otherwise create it.

wid1 is the word list of the package name; wid0 is the word list in which the package name was
created.

566

end-package ends the package; public start public definitions and private starts private definitions.

Syntax:

package package-name
... private definitions here ...
public
... public definitions here ...
private
... more private definitions maybe ...
end-package

In the above, private definitions are placed in the package-name word list. Public definitions are
placed in whatever word list was current before package package-name. If a package called package-
name already exists prior to the above, then it is reused, rather than redefined.

Usage example:

package example

defer text
: ex1 (-- ca len) s" This is an example" ;
' ex1 ' text defer!

public

: .example (--) text cr type ;

private

: ex2 (-- ca len) s" This is an example (cont.)" ;

end-package

At this point, .example is a new word in whatever the current wordlist was, and text, ex1 and ex2
are all words in the example word list. example itself is created in the current wordlist if it didn’t
already exist. (if example exists and isn’t a package, this is an unchecked error which will probably
be revealed when public runs.)

If this code is in a library, code including the library can then run .example freely.

If there’s some need to reopen the package, this is easily done:

567

package example

:noname (-- ca len) s" This is yet another example" ; '
text defer!

end-package

.example

Use case: loading a package using library with a prelude:

Suppose that you need to load a package with some alien definitions, you can put them in a package
with the same name before loading the code, and this will only affect that package:

package some-package

\ This package's code relies on ``place`` appending a nul byte.

: place (ca1 len1 ca2 --) 2dup + 0 swap c! place ;

end-package

include some-lib.fs

Origin: SwiftForth.

See also: internal, isolate, module, privatize, seclusion.

Source file: <src/lib/modules.package.fs>.

pad

pad (-- ca)

ca is the address of a transient region that can be used to hold data for intermediate processing. It’s
a fixed offset (/hold bytes) above here.

Definition:

: pad (-- ca) here /hold + ;

pad is specifically intended as a programmer convenience. No standard words use it.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE EXT),
Forth-2012 (CORE EXT).

568

See also: /pad.

Source file: <src/kernel.z80s>.

padding-spaces

padding-spaces (len1 len2 --)

If len2 minus len1 is a positive number, display that number of spaces; else do nothing.

See also: type-left-field.

Source file: <src/lib/display.type.fs>.

page

page (--)

Move to another page for output. On a terminal, page clears the screen and resets the cursor
position to the upper left corner. On a printer, page performs a form feed.

Origin: Forth-79 (Reference Word Set), Forth-83 (Uncontrolled Reference Words), Forth-94
(FACILITY), Forth-2012 (FACILITY).

See also: cls.

Source file: <src/kernel.z80s>.

pair=

pair= (x1 x2 x3 x4 -- f)

f is true if and only if x1 x2 is the same pair as x3 x4, i.e. both components of the each pair are in the
other pair, no matter the order.

See also: str<>, min>top, max>top.

Source file: <src/lib/math.operators.1-cell.fs>.

paper-mask

paper-mask (-- b)

A cconstant. b is the bitmask of the bits used to indicate the paper in an attribute byte.

See also: unpaper-mask, papery, set-paper, attr!, ink-mask, bright-mask, flash-mask.

569

Source file: <src/lib/display.attributes.fs>.

paper.

paper. (b --) "paper-dot"

Set paper color to b (0..9), by printing the corresponding control characters. If b is greater than 9, 9
is used instead.

paper. is much slower than set-paper or attr!, but it can handle pseudo-colors 8 (transparent) and 9
(contrast), setting the corresponding system variables accordingly.

See also: ink., (0-9-color..

Source file: <src/lib/display.attributes.fs>.

papery

papery (b1 -- b2)

Convert paper color b1 to its equivalent attribute b2.

papery is an alias of 8*, which is written in Z80.

See also: brighty, flashy, attr>paper, contrast, inversely.

Source file: <src/lib/display.attributes.fs>.

parse

parse (char "ccc<char>" -- ca len)

Parse ccc delimited by the delimiter char. ca is the address (within the input buffer) and len is the
length of the parsed string. If the parse area was empty, the resulting string has a zero length.

Definition:

: parse (char "ccc<char>" -- ca len)
 stream 2dup 2>r rot scan
 dup if char- then
 2r> rot - parsed
 tuck - ;

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: stream, scan, parsed, parse-name, parse-char, parse-string.

570

Source file: <src/kernel.z80s>.

parse-all

parse-all ("ccc" -- ca len)

Parse the rest of the source.

parse-all is a useful factor of text, which is part of specforth-editor.

Source file: <src/lib/parsing.fs>.

parse-char

parse-char ("c" -- c)

Parse the next character in the input stream and return its code c.

See also: parse-name, parse, parsed, stream.

Source file: <src/lib/parsing.fs>.

parse-esc-char>chars

parse-esc-char>chars ("c" -- c[n-1]..c[0] n) "parse-esc-char-to-chars"

Parse and translate a escaped char 'c' to a number of chars c[n-1]..c[0] and their count _n.

The translation is done by searching the name of the escaped char in the current search order,
which has been set by calling set-esc-order in parse-esc-string.

Source file: <src/lib/strings.escaped.fs>.

parse-esc-string

parse-esc-string ("ccc<quote>" -- ca len)

Parse a text string delimited by a double quote, translating some configurable characters that are
escaped with a backslash. Return the translated string ca len in the stringer.

The characters that must be escaped depend on the search order set by set-esc-order. By default,
the escaped characters are those described in Forth-2012’s s\".

parse-esc-string is a common factor of s\" and .\".

See also: (parse-esc-string.

571

Source file: <src/lib/strings.escaped.fs>.

parse-name

parse-name ("name" -- ca len)

Parse name and return it as string ca len within the input buffer. If the parse area is empty or
contains only white space, the len is zero.

Definition:

: parse-name ("name" -- ca len)
 stream (ca0 len0)
 dup >r -leading (ca1 len1) (R: len0)
 over >r bl scan (ca2 len2) (R: len0 ca1)
 dup if char- then \ skip trailing delimiter
 r> r> rot - parsed \ update ``>in``
 tuck - (ca len)
 2dup parsed-name 2! ;

Origin: Forth-2012 (CORE EXT).

See also: parse, parse-name-thru, parse-char, word, parse-string, stream, scan, parsed, parsed-name, >in,
-leading.

Source file: <src/kernel.z80s>.

parse-name-thru

parse-name-thru ("name" -- ca len)

Parse name and return it as string ca len within the input buffer. If the parse area is empty, use
refill to fill it from the input source. If the input source is exhausted, throw an exception #-289
("input source exhausted").

See also: parse-name, parse.

Source file: <src/lib/parsing.fs>.

parse-string

parse-string
 Compilation: (c "ccc<char>" --)
 Interpretation: (c "ccc<char>" -- ca len)
 Run-time: (-- ca len)

572

Parse ccc delimited by character c. If interpreting, copy the parsed string to the stringer and return
it as ca len. If compiling, compile the parsed string and return it at run-time as ca len.

WARNING parse-string is a state-smart word (see state).

Definition:

: parse-string \ Compilation: (c "ccc<char>" --)
 \ Interpretation: (c "ccc<char>" -- ca len)
 \ Run-time: (-- ca len)
 parse compiling? if postpone sliteral exit then >stringer ;

See also: parse-name, compiling?, sliteral, >stringer, parse-char, parse.

Source file: <src/kernel.z80s>.

parsed

parsed (len --)

Add the given len to >in.

Definition:

: parsed (len --) >in +! ;

See also: parse.

Source file: <src/kernel.z80s>.

parsed-name

parsed-name (-- a)

A variable. a is the address of a double cell containing the address and length of the most recently
name parsed by parse-name. It is displayed by .error-word.

As a special case, parsed-name is set also by ?located.

Source file: <src/kernel.z80s>.

past?

past? (u -- f) "past-question"

573

Return true if the ticks clock has passed u.

Usage example: The following word will execute the hypothetical word test for u clock ticks:

: try (u --) ticks + begin test dup past? until drop ;

Origin: lina.

See also: dpast?, elapsed, timer.

Source file: <src/lib/time.fs>.

pe?

pe? (-- op) "p-e-question"

Return the opcode op of the Z80 assembler instruction jp pe, to be used as condition and consumed
by ?ret,, ?jp,, ?call,, aif, awhile or auntil.

See also: z?, nz?, c?, nc?, po?, p?, m?.

Source file: <src/lib/assembler.fs>.

perform

perform (a --)

If the cell stored at a is zero, do nothing. Otherwise execute it as an execution token.

perform is written in Z80. Its equivalent definition in Forth is the following:

: perform (a --) @ ?dup if execute then ;

NOTE perform is called @execute in other Forth systems.

See also: execute, +perform.

Source file: <src/kernel.z80s>.

perm-attr!

perm-attr! (b --) "perm-attribute-store"

Set b as the permanent attribute.

574

NOTE
Words that use attributes don’t use the OS permanent attribute but the temporary
one, which is called "current attribute" in Solo Forth.

See also: perm-attr@, attr!.

Source file: <src/lib/display.attributes.fs>.

perm-attr-mask!

perm-attr-mask! (b --) "perm-attribute-mask-store"

Set b as the permanent attribute mask.

NOTE
Words that use attributes don’t use the OS permanent attribute but the temporary
one, which is called "current attribute" in Solo Forth.

See also: perm-attr-mask@, attr-mask!.

Source file: <src/lib/display.attributes.fs>.

perm-attr-mask@

perm-attr-mask@ (-- b) "perm-attribute-mask-fetch"

Get the permanent attribute mask b.

NOTE
Words that use attributes don’t use the OS permanent attribute but the temporary
one, which is called "current attribute" in Solo Forth.

See also: perm-attr-mask!, attr-mask@.

Source file: <src/lib/display.attributes.fs>.

perm-attr@

perm-attr@ (-- b) "perm-attribute-fetch"

Get the permanent attribute b.

NOTE
Words that use attributes don’t use the OS permanent attribute but the temporary
one, which is called "current attribute" in Solo Forth.

See also: perm-attr!, attr@.

Source file: <src/lib/display.attributes.fs>.

575

pick

pick (x#u...x#1 x#0 u -- x#u...x#1 x#0 x#u)

Remove u copy the x#u to the top of the stack. 0 pick is equivalent to dup and 1 pick is equivalent to
over.

Origin: Forth-83 (Required Word Set), Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: unpick, roll, rot.

Source file: <src/lib/data_stack.fs>.

pixel-pan-right

pixel-pan-right (--)

Pan the whole screen one pixel to the right. pixel-pan-right is a wrapper that calls (pixel-pan-right
saving the BC register.

See (pixel-pan-right, pixels-pan-right, pixel-scroll-up.

Source file: <src/lib/graphics.scroll.fs>.

pixel-scroll-up

pixel-scroll-up (--)

Scroll the whole screen one pixel up. pixel-scroll-up is a wrapper that calls (pixel-scroll-up
saving the BC register.

See also: pixel-pan-right, pixels-scroll-up.

Source file: <src/lib/graphics.scroll.fs>.

pixels

pixels (-- u)

Return the number u of pixels that are set on the screen. pixels is a deferred word (see defer) set by
fast-pixels or slow-pixels.

See also: bits.

Source file: <src/lib/graphics.pixels.fs>.

576

pixels-pan-right

pixels-pan-right (u --)

Pan the whole screen u pixels to the right.

See pixel-pan-right, pixels-scroll-up.

Source file: <src/lib/graphics.scroll.fs>.

pixels-scroll-up

pixels-scroll-up (u --)

Scroll the whole screen u pixels up.

See also: pixel-scroll-up, pixels-pan-right.

Source file: <src/lib/graphics.scroll.fs>.

place

place (ca1 len1 ca2 --)

Store the string ca1 len1 as a counted string at ca2. The source and destination strings are permitted
to overlap.

place is written in Z80. Its equivalent definition in Forth is the following:

: place (ca1 len1 ca2 --) 2dup c! char+ smove ;

See also: +place, smove.

Source file: <src/kernel.z80s>.

play

play (ca --)

Play a 14-byte sound definition stored at ca.

See also: sound,, sound, !sound, edit-sound.

Source file: <src/lib/sound.128.fs>.

577

plot

plot (gx gy --)

Set a pixel, changing its attribute on the screen and the current graphic coordinates. gx is 0..255; gy
is 0..191.

See also: set-pixel, plot176, xy>gxy.

Source file: <src/lib/graphics.pixels.fs>.

plot176

plot176 (gx gy --) "plot-176"

Set a pixel, changing its attribute on the screen and the current graphic coordinates, using only the
top 176 pixel rows of the screen (the lower 16 pixel rows are not used). gx is 0..255; gy is 0..175.

plot176 is equivalent to Sinclair BASIC’s PLOT command.

WARNING
If parameters are out of range, the ROM will throw a BASIC error, and the
system will crash.

See also: set-pixel176, plot, xy>gxy176.

Source file: <src/lib/graphics.pixels.fs>.

po?

po? (-- op) "p-o-question"

Return the opcode op of the Z80 assembler instruction jp op, to be used as condition and consumed
by ?ret,, ?jp,, ?call,, aif, awhile or auntil.

See also: z?, nz?, c?, nc?, pe?, p?, m?.

Source file: <src/lib/assembler.fs>.

polarity

polarity (n -- -1|0|1)

If n is zero, return zero. If n is negative, return negative one. If n is positive, return positive one.

polarity is written in Z80. These are example implementations in Forth:

578

: polarity (n -- -1|0|1) dup 0= ?exit 0< ?dup ?exit 1 ;

: polarity (n -- -1|0|1) dup 0= ?exit 0< 2* 1+ ;

: polarity (n -- -1|0|1) -1 max 1 min ;

See also: <=>, negate, within, between.

Source file: <src/lib/math.operators.1-cell.fs>.

pop,

pop, (regp --) "pop-comma"

Compile the Z80 assembler instruction PUSH regp.

See also: pop,, ret,, sp.

Source file: <src/lib/assembler.fs>.

positional-case:

positional-case: ("name" --) "positional-case-colon"

Create a positional case word name. At runtime, name will execute the n-th word compiled in its
definition, depending upon the value on the stack. No range checking.

Usage example:

: say0 (--) ." nul" ;
: say1 (--) ." unu" ;
: say2 (--) ." du" ;

positional-case: say (n --) say0 say1 say2 ;

0 say cr 1 say cr 2 say cr

Source file: <src/lib/flow.positional-case-colon.fs>.

possibly

possibly ("name" --)

Parse name. If name is the name of a word in the current search order, execute it; else do nothing.

579

See also: exec, defined, name>, execute, anew.

Source file: <src/lib/compilation.fs>.

postpone

postpone ("name" --)

Skip leading space delimiters. Parse name delimited by a space. Find name. Append the compilation
semantics of name to the current definition.

postpone is an immediate word.

Definition:

: postpone ("name" --)
 defined dup ?defined
 name>immediate? 0= if compile compile then compile, ;
 immediate

Origin: Forth-94 (CORE), Forth-2012 (CORE).

See also: [compile], compile, defined, ?defined, name>immediate?, compile,, 0if.

Source file: <src/kernel.z80s>.

prefix?

prefix? (ca1 len1 ca2 len2 -- f) "prefix-question"

Is string ca2 len2 the prefix of string ca1 len1?

See also: suffix?, -prefix.

Source file: <src/lib/strings.MISC.fs>.

pressed

pressed (-- false | b a true)

Return the key identifier b a (key bitmask and keyboard row port) of the first key from table kk-
ports that happens to be pressed, and true; if no key is pressed, return false.

See also: only-one-pressed, pressed?.

Source file: <src/lib/keyboard.MISC.fs>.

580

pressed?

pressed? (b a -- f) "pressed-question"

Is a keyboard key b a pressed? b is the key bitmask and a is the keyboard row port.

See also: pressed, only-one-pressed.

Source file: <src/lib/keyboard.MISC.fs>.

previous

previous (--)

Remove the top word list (the word list that is searched first) from the search order.

Definition:

: previous (--) get-order nip 1- set-order ;

Origin: Forth-94 (SEARCH EXT), Forth-2012 (SEARCH EXT).

See also: >order, get-order, set-order.

Source file: <src/kernel.z80s>.

previous-mode

previous-mode (-- a)

A variable. a is the address of a cell containing the execution token of the word that activates the
screen mode that was active before executing bye (e.g. mode-32, mode-32iso, mode-64ao). previous-mode
is updated by bye, and used by warm to restore the current-mode.

Source file: <src/kernel.z80s>.

printer

printer (--)

Select the printer as output.

See also: terminal, printing.

Source file: <src/lib/display.control.fs>.

581

printing

printing (-- a)

A variable. a is the address of a cell containing the printer flag. printing is set by printer, reset by
terminal and checked by page. printing should not be changed directly by the program.

Source file: <src/kernel.z80s>.

private

private (wid0 wid1 -- wid0 wid1)

Mark subsequent definitions invisible outside the current package. This is the default condition
following the usage of package.

wid1 is the word list of the current package; wid0 is the word list in which the current package was
created.

Origin: SwiftForth.

See also: end-package, public.

Source file: <src/lib/modules.package.fs>.

private{

private{ (--) "private-curly-bracket"

Start private definitions. See privatize for a usage example.

Source file: <src/lib/modules.privatize.fs>.

privatize

privatize (--)

Hide all words defined between the latest valid pair of private{ and }private.

Usage example:

582

private{

\ Everything between ``private{`` and ``}private``
\ will become private.

: foo ;
: moo ;

}private

: goo foo moo ; \ can use ``foo`` and ``moo``
privatize \ hide ``foo`` and ``moo``
' foo \ will fail

See also: internal, isolate, module, package, seclusion.

Source file: <src/lib/modules.privatize.fs>.

prt,

prt, (--) "p-r-t-comma"

Compile the Z80 assembler instruction rst $16. Therefore prt, is equivalent to $16 rst,.

See also: rst,, hook,.

Source file: <src/lib/assembler.fs>.

public

public (wid0 wid1 -- wid0 wid1)

Mark subsequent definitions available outside the current package defined with package.

wid1 is the word list of the current package; wid0 is the word list in which the current package was
created.

Origin: SwiftForth.

See also: end-package, private.

Source file: <src/lib/modules.package.fs>.

push,

push, (regp --) "push-comma"

583

Compile the Z80 assembler instruction PUSH regp.

See also: push,, ret,, sp.

Source file: <src/lib/assembler.fs>.

pusha

pusha (-- a) "push-a"

A constant. a is the address of a secondary entry point of the Forth inner interpreter. The code at a
pushes the A register onto the stack and then continues at the address returned by next.

pusha is useful for exiting from a code word using an absolute conditional jump, or to save the bytes
needed to prepare an 8-bit register to be pushed on the stack.

See also: pushhl, pushhlde.

Source file: <src/kernel.z80s>.

pushdosior

pushdosior (-- a) "push-dos-I-O-R"

Address of an entry point to the Forth inner interpreter. This entry point is jumped to at the end of
a code word, in order to convert a dosior into a ior and push it.

Input:
 A = TR-DOS error result (0..12)
Output (no error):
 TOS = zero
Output (error):
 TOS = Forth exception code (-1012..-1001)

See also: dosior>ior.

Source file: <src/kernel.trdos.z80s>.

pushhl

pushhl (-- a) "push-h-l"

A constant. a is the address of a secondary entry point of the Forth inner interpreter. The code at a
pushes the HL register onto the stack and then continues at the address returned by next.

pushhl is useful for exiting from a code word using an absolute conditional jump.

584

See also: pusha, pushhlde.

Source file: <src/kernel.z80s>.

pushhlde

pushhlde (-- a) "push-h-l-d-e"

a is the address of a secondary entry point of the Forth inner interpreter. The code at a pushes
registers DE and HL onto the stack and then continues at the address returned by next.

NOTE
DE is pushed first, so HL is left on top of the stack. This is equivalent to pushing the
double number formed by both registers, being HL the high part and DE the lower
part.

pushhlde is useful for exiting from a code word using an absolute conditional jump.

See also: pusha, pushhl.

Source file: <src/lib/assembler.MISC.fs>.

px

px (--) "p-x"

Give previous quick index, calculated from scr.

See also: qx, nx.

Source file: <src/lib/tool.list.blocks.fs>.

q

query

query (--)

Make the user input device the input source. Receive input into the terminal input buffer, replacing
any previous contents. Make the result, whose address is returned by tib, the input buffer. Set >in
to zero.

The function of query may be performed with accept and evaluate.

Definition:

585

: query (--)
 tib /tib 2dup blank accept #tib ! space terminal>source ;

Origin: fig-forth, Forth-79 (Required Word Set), Forth-83 (Controlled Reference Words), Forth-94
(CORE EXT, obsolescent).

Source file: <src/kernel.z80s>.

quit

quit (--)

Empty the return stack, make the terminal the current source and enter interpretation state. Then
repeat the following:

• Accept a line from the input source into the input buffer, set >in to zero and interpret.

• Display the system prompt, if in interpretation state.

Definition:

: quit (--)
 rp0 @ rp! postpone [
 begin
 cr query interpret
 interpreting? if ok then
 again ;

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: [, query, interpret, ok, abort.

Source file: <src/kernel.z80s>.

qx

qx (--) "q-x"

Give a quick index. The number and width of the columns depend on the current screen mode. The
current block, stored in scr, is highlighted.

Origin: Gforth’s blocked editor.

See also: nx, px.

Source file: <src/lib/tool.list.blocks.fs>.

586

qx-bounds

qx-bounds (-- u1 u2) "q-x-bounds"

Blocks to be included in the quick index, from block u2 to block u1-1. They depend on scr.

See also: qx.

Source file: <src/lib/tool.list.blocks.fs>.

qx-columns

qx-columns (-- n) "q-x-columns"

n is the number of columns (2..4) of the quick index. It depends on the columns (32, 42, 64…) of the
current screen mode.

See also: qx, /qx-column.

Source file: <src/lib/tool.list.blocks.fs>.

r

r

r ("ccc<eol>" --)

A command of gforth-editor: replace marked area with ccc.

See also: d, m, a, d, f, h, i.

Source file: <src/lib/prog.editor.gforth.fs>.

r

r (n --)

A command of specforth-editor: Replace line n with the text in pad.

See also: b, c, d, e, f, h, i, l, m, n, p, s, t, x, -move.

Source file: <src/lib/prog.editor.specforth.fs>.

587

r#

r# (-- a) "r-slash"

A variable. a is the address of a cell containing the location of the editing cursor, an offset from the
top of the current block. Its default value is zero.

r# is used by specforth-editor and gforth-editor.

Origin: fig-Forth’s user variable r#.

See also: top.

Source file: <src/lib/prog.editor.COMMON.fs>.

r'@

r'@ (-- x1) (R: x1 x2 -- x1 x2) "r-tick-fetch"

Fetch x1 from the return stack.

See also: r@.

Source file: <src/lib/return_stack.fs>.

r>

r> (-- x) (R: x --) "r-from"

Move x from the return stack to the data stack.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: >r, r@, 2r>.

Source file: <src/kernel.z80s>.

r>xy

r>xy (--) (R: col row --) "r-to-x-y"

Restore the current cursor coordinates from the return stack.

See also: xy>r, restore-mode.

588

Source file: <src/lib/display.cursor.fs>.

r@

r@ (-- x) (R: x -- x) "r-fetch"

Copy x from the return stack to the data stack.

Origin: Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE), Forth-2012
(CORE).

See also: >r, r>, rdrop, r'@.

Source file: <src/kernel.z80s>.

ragain

ragain (dest cs-id --) "r-again"

Compile a Z80 assembler unconditional relative-jump instruction to address dest, as part of a
relative-address control-flow structure rbegin .. ragain, identified by cs-id.

See also: aagain, (runtil.

Source file: <src/lib/assembler.fs>.

rahead

rahead (-- orig) "r-ahead"

Compile a Z80 assembler forward relative jump. Leave its unresolved address orig, to be resolved by
>rresolve.

Source file: <src/lib/assembler.fs>.

ram

ram (-- n)

A constant. n is the total RAM size in kibibytes.

NOTE On G+DOS, the RAM size includes the 8 KiB of the Plus D interface.

See also: banks.

589

Source file: <src/kernel.z80s>.

random

random (n1 -- n2)

Return a random number n2 from 0 to n1 minus 1.

See also: rnd, random-within, fast-random.

Source file: <src/lib/random.fs>.

random-between

random-between (n1 n2 -- n3)

Return a random number n3 from n1 (min) to n2 (max).

See also: random-within, random, between.

Source file: <src/lib/random.fs>.

random-within

random-within (n1 n2 -- n3)

Return a random number n3 from n1 (min) to n2-1 (max).

See also: random-between, random, within.

Source file: <src/lib/random.fs>.

randomize

randomize (n --)

Set the seed used by fast-rnd and fast-random to n.

See also: randomize0.

Source file: <src/lib/random.fs>.

randomize0

590

randomize0 (--) "randomize-zero"

Set the seed used by fast-rnd and fast-random to n; if n is zero use the system frames counter
instead.

See also: randomize.

Source file: <src/lib/random.fs>.

rbegin

rbegin (-- dest cs-id) "r-begin"

Mark the start of an assembler sequence for repetitive execution, leaving dest to be resolved by the
corresponding runtil, ragain or rrepeat. Also, leave the control-flow structure identifier_cs-id_ to be
checked by the corresponding same word.

rbegin is part of the assembler relative-address control-flow structures rbegin .. ragain, rbegin ..
runtil and rbegin .. rwhile .. rrepeat.

See also: abegin.

Source file: <src/lib/assembler.fs>.

rbuf

rbuf (-- ca)

Return the address ca of the 100-byte replace buffer used by the gforth-editor.

See also: ibuf, fbuf, r.

Source file: <src/lib/prog.editor.gforth.fs>.

rdepth

rdepth (-- +n) "r-depth"

+n is the number of single-cell values contained in the return stack.

See also: rp0, rp, depth, fdepth.

Source file: <src/lib/return_stack.fs>.

591

rdraw176

rdraw176 (gx gy --) "r-draw-176"

Draw a line relative gx gy to the current coordinates, using only the top 176 pixel rows of the screen
(the lower 16 pixel rows are not used). gx is 0..255; gy is 0..175.

rdraw176 is equivalent to Sinclair BASIC’s DRAW command.

See also: adraw176.

Source file: <src/lib/graphics.lines.fs>.

rdrop

rdrop (R: x --) "r-drop"

Remove x from the return stack.

See also: r@, drop.

Origin: Comus.

Source file: <src/kernel.z80s>.

read-block

read-block (u --)

Read disk block u to the buffer.

Definition:

: read-block (u --) read-mode transfer-block ;

See also: read-mode, transfer-block, write-block, block.

Source file: <src/kernel.z80s>.

read-file-descriptor

read-file-descriptor (n -- ior)

Read file descriptor from disk directory entry n to fda.

592

See also: write-file-descriptor.

Source file: <src/lib/dos.trdos.fs>.

read-mode

read-mode (--)

Set the read mode for transfer-sectors and transfer-block.

See also: write-mode.

Source file: <src/kernel.trdos.z80s>.

read-system-track

read-system-track (-- ior)

Read the system track of the current TR-DOS disk.

read-system-track is used by set-drive.

See also: init-drive.

Source file: <src/kernel.trdos.z80s>.

read-system-track

read-system-track (-- ior)

Read the system track of the current disk of TR-DOS.

Source file: <src/lib/dos.trdos.fs>.

realias

realias (xt "name" --)

Set the alias name to execute xt.

See alias, alias!.

Source file: <src/lib/define.alias.fs>.

593

recurse

recurse (--)

Append the execution semantics of the current definition to the current definition.

recurse is an immediate and compile-only word.

Origin: Forth-83 (Controlled Reference Words), Forth-94 (CORE), Forth-2012 (CORE).

Source file: <src/lib/flow.MISC.fs>.

red

red (-- b)

A cconstant that returns 2, the value that represents the red color.

See also: black, blue, magenta, green, cyan, yellow, white, contrast, papery, inversely.

Source file: <src/lib/display.attributes.fs>.

refill

refill (-- f)

Definition:

: refill (-- f)
 loading? if blk @ 1+ dup block>source block? exit then
 false source-id ?exit 0= query ;

Origin: Forth-94 (CORE EXT, BLOCK EXT); Forth-2012 (CORE EXT, BLOCK EXT).

Source file: <src/kernel.z80s>.

reload

reload (--)

Load the most recently loaded block.

See also: load, lastblk.

Source file: <src/lib/blocks.fs>.

594

relse

relse (orig1 cs-id -- orig2 cs-id) "r-else"

Check the Z80 assembler control-flow structure identifier cs_id, and resolve the forward reference
orig1, both left by rif; then compile a Z80 assembler unconditional relative-address jump, putting its
unresolved forward reference orig2 and control-flow structure identifier cs-id on the stack, to be
resolved by rthen.

relse is part of the assembler relative-address control-flow structure rif .. relse .. rthen.

See also: aelse, ?pairs, (rif.

Source file: <src/lib/assembler.fs>.

rename-file

rename-file (ca1 len1 ca2 len2 -- ior)

Rename the file named by the character string ca1 len1 to the name in the character string ca2 len2,
returning the I/O result code ior.

WARNING

TR-DOS uses the 9th character of filenames as the filetype identifier. When the
filetype is not specified in a filename, Solo Forth uses 'C' (code file) by default.
rename-file does not check filetypes, so it can be used also to change the
filetype. As usual in Forth, the programmer is supposed to know what he is
doing. See the examples below.

Examples:

Given a BASIC program file saved as "old", the following instruction does not rename it to "new",
because filetypes are not specified and filetype 'C' (code file) is used by default. Therefore a code file
"old", if it exists, is renamed to "new":

s" old" s" new" rename-file throw

The following instruction renames a BASIC program "old" to "new", but since the filetype is not
included in the new name, the default filetype 'C' (code file) is used. The "new" file will be a BASIC
program marked as a code file:

s" old B" s" new" rename-file throw

Including both filetypes is always safe:

595

s" old B" s" new B" rename-file throw

Origin: Forth-94 (FILE EXT), Forth-2012 (FILE EXT).

See also: file-status, delete-file.

Source file: <src/lib/dos.trdos.fs>.

reneed

reneed ("name" --)

Load the first block whose header contains name (surrounded by spaces).

reneed is a deferred word (see defer) whose default action is locate-reneed.

See also: make-thru-index.

Source file: <src/lib/002.need.fs>.

reneeded

reneeded (ca len --)

Load the first block whose header contains the string ca len (surrounded by spaces). If not found,
throw an exception #-268 ("needed, but not located").

reneeded is a deferred word (see defer) whose default action is locate-reneeded.

See also: make-thru-index.

Source file: <src/lib/002.need.fs>.

repeat

repeat
 Compilation: (C: orig dest --)
 Run-time: (--)

Compilation: Compile an unconditional branch to the backward reference dest, usually left by begin.
Resolve the forward reference orig, usually left by while.

Run-time: Continue execution at the location specified by dest.

repeat is an immediate and compile-only word.

596

Definition:

: repeat \ Compilation: (C: orig dest --)
 \ Run-time: (--)
 postpone again postpone then ; immediate compile-only

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: again, then, until.

Source file: <src/kernel.z80s>.

replace

replace (ca1 len1 ca2 len2 --)

Replace the contents of zone ca2 len2 with string ca1 len1. If len1 is greater than len2, only len2
bytes are replaced.

See also: insert, delete, replaces.

Source file: <src/lib/strings.MISC.fs>.

replaces

replaces (ca1 len1 ca2 len2 --)

Set the string ca1 len1 as the text to substitute for the substitution named by ca2 len2. If the
substitution does not exist it is created. The program may then reuse the buffer ca1 len1 without
affecting the definition of the substitution.

The name of a substitution should not contain the "%" delimiter character.

replaces allots data space and creates a definition.

Origin: Forth-2012 (STRING EXT).

See also: substitute, unescape, substitution, find-substitution, substitute-wordlist, replace.

Source file: <src/lib/strings.replaces.fs>.

res,

res, (reg b --) "res-comma"

597

Compile the Z80 assembler instruction RES b,reg.

See also: bit,, set,, sub#,.

Source file: <src/lib/assembler.fs>.

reserve

reserve (n -- a)

Reserve n bytes of data space, erase the zone and return its address a.

See also: buffer:, allot, allotted, here, erase.

Source file: <src/lib/memory.MISC.fs>.

reset-bit

reset-bit (b1 n -- b2)

Reset bit n of b1, returning the result b2.

See also: bit?, set-bit, bit>mask.

Source file: <src/lib/memory.MISC.fs>.

reset-default-mode

reset-default-mode (--)

Set default-mode to its default action noop. reset-default-mode is executed by cold.

Source file: <src/kernel.z80s>.

reset-dticks

reset-dticks (--) "reset-d-ticks"

Reset the system clock to zero ticks.

See also: reset-ticks, dticks, set-dticks, ticks/second, bench{.

Source file: <src/lib/time.fs>.

598

reset-pixel

reset-pixel (gx gy --)

Reset a pixel without changing its attribute on the screen or the current graphic coordinates. gx is
0..255; gy is 0..191.

See also: set-pixel, toggle-pixel, reset-pixel176.

Source file: <src/lib/graphics.pixels.fs>.

reset-pixel176

reset-pixel176 (gx gy --) "reset-pixel-176"

Reset a pixel without its attribute on the screen or the current graphic coordinates, and using only
the top 176 pixel rows of the screen (the lower 16 pixel rows are not used). gx is 0..255; gy is 0..175.

See also: set-pixel176, toggle-pixel176, reset-pixel, set-pixel, toggle-pixel, plot, plot176.

Source file: <src/lib/graphics.pixels.fs>.

reset-ticks

reset-ticks (--)

Reset the low 16 bits of the OS clock to zero ticks.

See also: ticks, set-dticks, ticks/second, bench{.

Source file: <src/lib/time.fs>.

reset-time

reset-time (--)

Reset the current time to 00:00:00.

See also: get-time.

Source file: <src/lib/time.fs>.

resize

599

resize (a1 -- a2 ior)

Change the allocation of the contiguous data space starting at the address a1, previously allocated
by allocate or resize, to u bytes. u may be either larger or smaller than the current size of the
region. The data-space pointer is unaffected by this operation.

If the operation succeeds, a2 is the starting address of u bytes of allocated memory and ior is zero.
a2 may be, but need not be, the same as a1. If they are not the same, the values contained in the
region at a1 are copied to a2, up to the minimum size of either of the two regions. If they are the
same, the values contained in the region are preserved to the minimum of u or the original size. If
a2 is not the same as a1, the region of memory at a1 is returned to the system according to the
operation of free.

If the operation fails, a2 equals a1, the region of memory at a1 is unaffected, and ior is the I/O result
code.

resize is a deferred word (see defer) whose action can be charlton-resize, depending on the heap
implementation used by the application.

Origin: Forth-94 (MEMORY), Forth-2012 (MEMORY).

See also: allocate, free, empty-heap.

Source file: <src/lib/memory.allocate.COMMON.fs>.

resolve-al#

resolve-al# (orig b --) "resolve-a-l-number-sign"

Resolve an absolute reference at orig to label b.

See also: resolve-rl#, (resolve-ref, >l.

Source file: <src/lib/assembler.labels.fs>.

resolve-refs

resolve-refs (n --)

Resolve all references to assembler label n, which was defined by l:.

resolve-refs is a factor of l!.

Source file: <src/lib/assembler.labels.fs>.

600

resolve-rl#

resolve-rl# (orig b --) "resolve-r-l-number-sign"

Resolve a relative reference at orig to assembler label b.

See also: resolve-al#, (resolve-ref, >l.

Source file: <src/lib/assembler.labels.fs>.

restore-mode

restore-mode (--)

Restore the screen mode that was saved in previous-mode by save-mode.

restore-mode is executed by warm.

Definition:

: restore-mode (--) previous-mode perform ;

See also: current-mode, perform.

Source file: <src/kernel.z80s>.

results

results (+n --)

Define the number +n of local variables to leave on the stack as results. Used with locals created by
arguments.

results is a compile-only word.

Source file: <src/lib/locals.arguments.fs>.

resx,

resx, (disp regpi b --) "res-x-comma"

Compile the Z80 assembler instruction RES b,(regpi+disp).

See also: bitx,, setx,, subx,, sbcx,, andx,, xorx,, orx,, decx,.

601

Source file: <src/lib/assembler.fs>.

ret,

ret, (--) "ret-comma"

Compile the Z80 assembler instruction RET.

See also: ?ret,, call,, pop,.

Source file: <src/lib/assembler.fs>.

retry

retry (--)

Do an unconditional branch to the start of the word.

retry is an immediate and compile-only word.

See also: ?retry.

Source file: <src/lib/flow.MISC.fs>.

return-stack-cells

return-stack-cells (-- n)

n is the maximum size of the return stack, in cells.

See also: stack-cells, environment?.

Source file: <src/lib/environment-question.fs>.

reveal

reveal (--)

Reveal the latest definition by resetting its smudge bit.

Definition:

: reveal (--) latest revealed ;

See also: revealed, hide.

602

Source file: <src/kernel.z80s>.

revealed

revealed (nt --)

Reveal the definition nt by resetting its smudge bit.

See also: reveal, hidden.

Source file: <src/kernel.z80s>.

rif

rif (op -- orig cs-id) "r-if"

Compile a Z80 assembler conditional relative-jump instruction op, which was put on the stack by z?,
nz?, c? or nc?. Return the address orig to be resolved by relse or rthen and the control-structure
identifier cs-id.

rif is part of the assembler relative-address control-flow structure rif .. relse .. rthen.

See also: aif, rbegin, jp>jr, inverse-cond.

Source file: <src/lib/assembler.fs>.

rl#

rl# (n -- a) "r-l-number-sign"

Create a relative reference to assembler label number n, defined by l:. If label n is already defined,
a is its value. Otherwise a is a temporary address to be consumed by the relative jump instruction,
and the actual address will be resolved when the label is defined by l:.

Usage example:

code my-code (--)
 #2 rl# jr, \ a relative jump to label #2
 nop,
 #2 l: \ definition of label #2
 ret,
end-code

WARNING
rl# is used before the Z80 command, while its counterpart al# is used after the
Z80 command.

603

Source file: <src/lib/assembler.labels.fs>.

rl,

rl, (reg --) "r-l-comma"

Compile the Z80 assembler instruction RL reg.

See also: rr,, rla,, rlc,, rlca,.

Source file: <src/lib/assembler.fs>.

rl-id

rl-id (-- b) "r-l-i-d"

b is the identifier of relative references created by rl#. rl-id is used as a bitmask added to the
assembler label number stored in l-refs.

See also: al-id.

Source file: <src/lib/assembler.labels.fs>.

rla,

rla, (--) "r-l-a-comma"

Compile the Z80 assembler instruction RLA.

See also: rra,, rl,, rlc,, rlca,, rld,.

Source file: <src/lib/assembler.fs>.

rlc,

rlc, (reg --) "r-l-c-comma"

Compile the Z80 assembler instruction RLC reg.

See also: rrc,, rlca,, rl,, rla,.

Source file: <src/lib/assembler.fs>.

rlca,

604

rlca, (--) "r-l-c-a-comma"

Compile the Z80 assembler instruction RLCA.

See also: rrca,, rlc,, rl,, rla,, rld,.

Source file: <src/lib/assembler.fs>.

rlcx,

rlcx, (disp regpi --) "r-l-c-x-comma"

Compile the Z80 assembler instruction RLC (regpi+disp).

See also: rrcx,, rlx,, rrx,, slax,, srax,, sllx,, srlx,, bitx,, resx,, setx,.

Source file: <src/lib/assembler.fs>.

rld,

rld, (--) "r-l-d-comma"

Compile the Z80 assembler instruction RLD.

See also: rla,, rlca,, rra,.

Source file: <src/lib/assembler.fs>.

rlx,

rlx, (disp regpi --) "r-l-x-comma"

Compile the Z80 assembler instruction RL (regpi+disp).

See also: rlcx,, rrcx,, rrx,, slax,, srax,, sllx,, srlx,, bitx,, resx,, setx,.

Source file: <src/lib/assembler.fs>.

rnd

rnd (-- x) "r-n-d"

Generate a single-cell random number x.

See also: random, random-within, fast-rnd.

605

Source file: <src/lib/random.fs>.

roll

roll (x#u x#u-1...x#0 u -- x#u-1...x#0 x#u)

See also: pick, rot.

Source file: <src/lib/data_stack.fs>.

rom-font

rom-font (-- a)

A constant. a is the address of the ROM font, which is 15360 ($3C00), the bitmap address of
character 0, 256 bytes below the bitmap of the space (character 32), which is the first printable
character. a is the default value of os-chars.

See also: default-font, set-font, get-font, outlet-autochars.

Source file: <src/lib/display.fonts.fs>.

root

root (--)

Transform the search order consisting of wid#n .. wid#2 wid#1 (where wid#1 is searched first) into
wid#n .. wid#2 wid#r, where wid#r is the word-list identifier returned by root-wordlist. I.e., replace
the top word list of the search order with root-wordlist.

root is the vocabulary corresponding to root-wordlist.

See also: forth, wordlist.

Source file: <src/kernel.z80s>.

root-wordlist

root-wordlist (-- wid)

Return wid, the identifier of the word list that includes the words defined in the minimum search
order. The words defined in the word list identified by root-wordlist are aliases of the definitions in
forth-wordlist.

See also: only, wordlist, set-order, assembler-wordlist, alias.

606

Source file: <src/kernel.z80s>.

rot

rot (x1 x2 x3 -- x2 x3 x1)

Rotate the top three stack entries.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: -rot, over, tuck, swap, roll, pick.

Source file: <src/kernel.z80s>.

row

row (-- row)

Current row (y coordinate).

See also: column, last-row, rows.

Source file: <src/lib/display.cursor.fs>.

rows

rows (-- n)

Return the number of rows in the current screen mode. The default value is 24.

See also: columns, last-row, row.

Source file: <src/lib/display.mode.COMMON.fs>.

rp

rp (-- a) "r-p"

A constant. a is the address of the return stack pointer.

See also: rp@, rp!.

Source file: <src/kernel.z80s>.

607

rp!

rp! (a --) "r-p-store"

Store a into the return stack pointer.

rp! is written in Z80. Its equivalent definition in Forth is the following:

: rp! (a --) rp ! ;

See also: rp, rp@.

Source file: <src/kernel.z80s>.

rp0

rp0 (-- a) "r-p-zero"

A user variable. a is the address of a cell containing the address of the bottom of the return stack.

Origin: fig-Forth’s r0.

Source file: <src/kernel.z80s>.

rp@

rp@ (-- a) "r-p-fetch"

Fetch the content of the return stack pointer.

rp@ is written in Z80. Its equivalent definition in Forth is the following:

: rp@ (-- a) rp @ ;

See also: rp, rp!.

Source file: <src/kernel.z80s>.

rr,

rr, (reg --) "r-r-comma"

Compile the Z80 assembler instruction RR reg.

608

See also: rl,, rra,, rrc,, rrca,.

Source file: <src/lib/assembler.fs>.

rra,

rra, (--) "r-r-a-comma"

Compile the Z80 assembler instruction RRA.

See also: rla,, rr, rrc,, rrca,.

Source file: <src/lib/assembler.fs>.

rrc,

rrc, (reg --) "r-r-c-comma"

Compile the Z80 assembler instruction RRC reg.

See also: rlc,, rr,, rra,, rrca,.

Source file: <src/lib/assembler.fs>.

rrca,

rrca, (--) "r-r-c-a-comma"

Compile the Z80 assembler instruction RRCA.

See also: rlca,, rrc,, rr,, rra,.

Source file: <src/lib/assembler.fs>.

rrcx,

rrcx, (disp regpi --) "r-r-c-x-comma"

Compile the Z80 assembler instruction RRC (regpi+disp).

See also: rlcx,, rlx,, rrx,, slax,, srax,, sllx,, srlx,, bitx,, resx,, setx,.

Source file: <src/lib/assembler.fs>.

609

rrepeat

rrepeat (dest cs-id1 orig cs-id2 --) "r-repeat"

Compile a Z80 assembler unconditional relative-jump instruction to address dest, left by rbegin, and
check its control-flow identifier cs-id1. Resolve the forward reference orig, usually left by rwhile,
and check its control-flow structure cs-id2.

rrepeat is part of the assembler relative-address control-flow structure rbegin .. rwhile .. rrepeat.

See also: arepeat, ragain.

Source file: <src/lib/assembler.fs>.

rresolve

rresolve (orig dest --) "r-resolve"

Resolve a Z80 assembler relative branch.

See also: <rresolve, >rresolve, ?rel.

Source file: <src/lib/assembler.fs>.

rrx,

rrx, (disp regpi --) "r-r-x-comma"

Compile the Z80 assembler instruction RR (regpi+disp).

See also: rlcx,, rrcx,, rlx,, slax,, srax,, sllx,, srlx,, bitx,, resx,, setx,.

Source file: <src/lib/assembler.fs>.

rshift

rshift (x1 u -- x2) "r-shift"

Perform a logical right shift of u bit-places on x1, giving x2. Put zeroes into the most significant bits
vacated by the shift.

Origin: Forth-94 (CORE), Forth-2012 (CORE).

See also: lshift, ?shift.

Source file: <src/lib/math.operators.1-cell.fs>.

610

rst,

rst, (b --) "r-s-t-comma"

Compile the Z80 assembler instruction RST b.

Source file: <src/lib/assembler.fs>.

rstep

rstep (dest cs-id --) "r-step"

rstep is part of the assembler relative-address control-flow structure rbegin .. rstep.

See also: (runtil.

Source file: <src/lib/assembler.fs>.

rthen

rthen (orig cs-id --) "r-then"

Check the control-flow structure identifier cs-id. Then resolve the address orig left by rif or relse

rthen is part of the assembler relative-address control-flow structure rif .. relse .. rthen.

See also: athen, >rresolve.

Source file: <src/lib/assembler.fs>.

ruler

ruler (c len -- ca len)

Return a string ca len of characters c, in the stringer.

See also: chars>string, char>string, s+.

Source file: <src/lib/strings.MISC.fs>.

run:

run: (a n "ccc<semicolon>" -- a) "run-colon"

Add a clause to a [switch structure whose head is a. The key value of the clause is n and its

611

associated behavior is one or more previously defined words, ending with ;.

Origin: SwiftForth.

See also: switch].

Source file: <src/lib/flow.bracket-switch.fs>.

runs

runs (a n "name" --)

Add a clause to a [switch structure whose head is a. The key value of the clause is n and its
associated behavior is the previously defined name.

Origin: SwiftForth.

See also: [switch, switch].

Source file: <src/lib/flow.bracket-switch.fs>.

runtil

runtil (dest cs-id op --) "r-until"

Compile a Z80 assembler conditional relative-jump instruction op to address dest, as part of a
relative-address control-flow structure rbegin .. runtil, identified by cs-id.

See also: auntil, (runtil, jp>jr, inverse-cond.

Source file: <src/lib/assembler.fs>.

rwhile

rwhile (op -- orig cs-id) "r-while"

Compile a Z80 assembler relative-jump instruction op, which was put on the stack by z?, nz?, c? or
nc?. Put the location of a forward reference orig onto the stack, to be resolved by rrepeat, and the
control-structure identifier cs-id.

rwhile is part of the assembler relative-address control-flow structures rbegin .. rwhile .. rrepeat.

See also: awhile.

Source file: <src/lib/assembler.fs>.

612

s

s

s (u "ccc<eol>" | u --)

A command of gforth-editor: Search for ccc until screen u. If ccc is empty, use the string of the
previous search.

See also: f, c, a, g, n, p, t.

Source file: <src/lib/prog.editor.gforth.fs>. ==== s

s (n --)

A command of specforth-editor: Spread at line n. Line n and following lines are are moved down
one line. Line n becomes blank. Line 15 is lost.

See also: b, c, d, e, f, h, i, l, m, n, p, r, t, x.

Source file: <src/lib/prog.editor.specforth.fs>.

s"

s" "s-quote"
 Compilation: ("ccc<quote>" --)
 Interpretation: ("ccc<quote>" -- ca len)
 Run-time: (-- ca len)

Parse ccc delimited by a double quote. If interpreting, copy the parsed string to the stringer and
return it as ca len. If compiling, compile the parsed string and return it at run-time as ca len.

s" is an immediate word.

Definition:

: s" \ Compilation: ("ccc<quote>" --)
 \ Interpretation: ("ccc<quote>" -- ca len)
 \ Run-time: (-- ca len)
 '"' parse-string ; immediate

Origin: Forth-94 (CORE, FILE), Forth-2012 (CORE, FILE).

See also: parse-string, s\", s', s"", .", ,".

Source file: <src/kernel.z80s>.

613

s""

s"" (-- ca len) "s-quote-quote"

Return an empty string in the stringer.

See also: s", s\", s'.

Source file: <src/lib/strings.MISC.fs>.

s'

s' "s-tick"
 Compilation: ("ccc<char>" --)
 Run-time: (-- ca len)

Identical to the standard word s", but using single quote as delimiter. A simple alternative to s\"
when only double quotes are needed in a string.

s' is an immediate word.

Source file: <src/lib/strings.MISC.fs>.

s+

s+ (ca1 len1 ca2 len2 -- ca3 len3) "s-plus"

Append the string ca2 len2 to the end of string ca1 len1 returning the string ca3 len3 in the stringer.

See also: /string, string/, lengths.

Source file: <src/lib/strings.MISC.fs>.

s,

s, (ca len --) "s-comma"

Compile the string ca len.

Definition:

: s, (ca len --) tuck here place char+ allot ;

See also: c,, here, cmove, allot, count, fars,.

614

Source file: <src/kernel.z80s>.

s>d

s>d (n -- d) "s-to-d"

Sign extend a single number n to form a double number d.

Definition:

: s>d (n -- d)
 dup 0< ;

Origin: fig-Forth’s s->d, Forth-94 (CORE), Forth-2012 (CORE).

See also: d>s, u>ud.

Source file: <src/kernel.z80s>.

s\"

s\"
 Compilation: ("ccc<quote>" --)
 Interpretation: ("ccc<quote>" -- ca len)
 Run-time: (-- ca len)
"s-backslash-quote"

NOTE
When s\" is loaded, esc-standard-chars-wordlist is set as the only word list by set-
esc-order. That is the standard behaviour. Alternative escaped chars can be
configured with esc-block-chars-wordlist and esc-udg-chars-wordlist.

s\" is an immediate word.

Origin: Forth-2012 (CORE EXT, FILE EXT).

See also: parse-esc-string, set-esc-order, .\".

Source file: <src/lib/strings.escaped.fs>.

save-buffers

save-buffers (--)

If the disk buffer has been modified, transfer its contents to disk and mark it as unmodified.

Definition:

615

: save-buffers (--)
 updated? 0exit
 buffer-block dup write-block disk-buffer ! ;

Origin: Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (BLOCK), Forth-2012
(BLOCK).

See also: empty-buffers, flush, block, buffer, buffer-block, disk-buffer.

Source file: <src/kernel.z80s>.

save-mode

save-mode (--)

Store the contents of current-mode into previous-mode.

save-mode is executed by bye before setting the default screen mode (e.g. mode-32, mode-32iso, mode-
64ao).

Definition:

: save-mode (--) current-mode @ previous-mode ! ;

See also: restore-mode.

Source file: <src/kernel.z80s>.

sbc#,

sbc#, (b --) "s-b-c-number-sign-comma"

Compile the Z80 assembler instruction SBC A,b.

Source file: <src/lib/assembler.fs>.

sbc,

sbc, (reg --) "s-b-c-comma"

Compile the Z80 assembler instruction SBC reg.

See also: sub,, adc,, add,, subp,.

Source file: <src/lib/assembler.fs>.

616

sbcp,

sbcp, (regp --) "s-b-c-p-comma"

Compile the Z80 assembler instruction SBC HL,regp.

See also: subp,, sbc,.

Source file: <src/lib/assembler.fs>.

sbcx,

sbcx, (disp regpi --) "s-b-c-x-comma"

Compile the Z80 assembler instruction SBC (regpi+disp).

See also: subx,, adcx,.

Source file: <src/lib/assembler.fs>.

scan

scan (ca1 len1 c -- ca2 len2)

Scan the string ca1 len1 for the first occurence of character c. Leave match address ca2 and length
remaining len2. If no match occurred then len2 is zero and ca2 is ca1+len1.

Source file: <src/kernel.z80s>.

scf,

scf, (--) "s-c-f-comma"

Compile the Z80 assembler instruction SCF.

See also: cpl,, ccf,, neg,, set,, and,.

Source file: <src/lib/assembler.fs>.

sconstant

sconstant (ca len "name" --) "s-constant"

Create a character string constant name with value ca len. The character string is stored into data
space. When name is later executed, it returns the corresponding ca2 len, being ca2 the address

617

where the original string was stored by sconstant.

See also: sconstants.

Source file: <src/lib/strings.MISC.fs>.

sconstants

sconstants (0 ca[n]..ca[1] "name" -- n) "s-constants"

Create a table of string constants name, using counted strings ca[n]..ca[1], being 0 a mark for the
last string on the stack, and return the number n of compiled strings.

When name is executed, it converts the index on the stack (0..n-1) to the correspondent string ca len.

Usage example:

0 \ end of strings
 here ," kvar" \ string 4
 here ," tri" \ string 3
 here ," du" \ string 2
 here ," unu" \ string 1
 here ," nul" \ string 0
sconstants digitname
 constant digitnames

cr .(There are) digitnames . .(digit names:)
0 digitname cr type
1 digitname cr type
2 digitname cr type
3 digitname cr type cr

See also: sconstant, ,", begin-stringtable.

Source file: <src/lib/strings.MISC.fs>.

scr

scr (-- a) "s-c-r"

A user variable. a is the address of a cell containing the number of the block most recently listed by
list. scr is used by the block editors.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Controlled Reference Words), Forth-94
(BLOCK EXT), Forth-2012 (BLOCK EXT).

See also: editor.

618

Source file: <src/kernel.z80s>.

scra>attra

scra>attra (a1 -- a2) "s-c-r-a-to-a-t-t-r-a"

Convert screen bitmap address a1 to its correspondent attribute address a2.

Source file: <src/lib/graphics.pixels.fs>.

seal

seal (--)

Remove all word lists from the search order other than the word list that is currently on top of the
search order. I.e., change the search order such that only the word list at the top of the search order
will be searched.

Origin: Gforth.

See also: only, set-order, #order.

Source file: <src/lib/word_lists.fs>.

search

search (ca1 len1 ca2 len2 -- ca3 len3 f)

Search the string ca1 len1 for the string ca2 len2. If f is true, a match was found at ca3 with len3
characters remaining. If f is false there was no match and ca3 len3 is ca1 len1.

Origin: Forth-94 (STRING), Forth-2012 (STRING).

See also: compare, hunt.

Source file: <src/kernel.z80s>.

search-wordlist

search-wordlist (ca len wid -- 0 | xt 1 | xt -1)

Find the definition identified by the string ca len in the word list identified by wid. If the definition
is not found, return zero. If the definition is found, return its xt and one (1) if the definition is
immediate, minus-one (-1) otherwise.

Origin: Forth-94 (SEARCH), Forth-2012 (SEARCH).

619

See also: find-name, find-name-from, find-name-in, find.

Source file: <src/lib/word_lists.fs>.

seclusion

seclusion (-- wid1 wid2)

Start a seclusion module. Private definitions follow.

Modules hide the internal implementation and leave visible the words of the outer interface.

wid1 is the identifier of the compilation word list before seclusion was executed. wid2 is the
identifier of the word list where private definitions of the seclusion module will be created. They
are used by -seclusion, which marks the start of public definitions, +seclusion, which optionally
marks the start of new private definitions, and end-seclusion, which ends the module.

Usage example:

seclusion
 \ Inner/private words.
-seclusion
 \ Interface/public words.
+seclusion
 \ More inner/private words.
-seclusion
 \ More interface/public words.
 \ Etc.
end-seclusion

A copy of wid2 may be kept by the application in order to access private words later, e.g. seclusion
dup constant my-module.

See also: internal, isolate, module, package, privatize.

Source file: <src/lib/modules.MISC.fs>.

seconds

seconds (u --)

Wait at least u seconds.

See also: ?seconds, ms, ticks.

Source file: <src/lib/time.fs>.

620

sector#

sector# (track sector -- n) "sector-number-sign"

Convert track (0..159) and sector (0..15) to the correspondig logical sector number n (0..2559).

: sector# (track sector -- n)
 swap sectors/track * + ;

Source file: <src/kernel.trdos.z80s>.

sector#>dos

sector#>dos (n -- x) "sector-number-sign-to-dos"

Convert the sequential disk sector n to the disk sector id x, in the format required by TR-DOS: The
high byte of x is the track (0..79 for side 0; 80..159 for side 1); its low byte is the sector (0..15).

Definition:

: sector#>dos (n -- x) sectors/track /mod sector>dos ;

See also: sectors/track, sector>dos, transfer-sectors.

Source file: <src/kernel.trdos.z80s>.

sector>dos

sector>dos (sector track -- x) "sector-to-dos"

Convert the 8-bit sector number sector and the 8-bit track number track to the 16-bit number x in
the format used by TR-DOS: The high byte of x is the sector, and its low byte is the track.

sector>dos is a factor of block-sector#>dos.

sector>dos is written in Z80. Its equivalen definition in Forth is the following:

: sector>dos (sector track -- x) flip or ;

Source file: <src/kernel.trdos.z80s>.

621

sectors/block

sectors/block (-- b) "sectors-slash-block"

A cconstant. b is the number of sectors per block.

See also: b/sector, sectors/track, blocks/disk.

Source file: <src/kernel.z80s>.

sectors/track

sectors/track (-- b) "sectors-slash-track"

A cconstant. b is the number of sectors per track.

See also: b/sector, sectors/block, blocks/disk.

Source file: <src/kernel.z80s>.

see

see ("name" --)

Decode the word’s definition name.

Origin: Forth-94 (TOOLS), Forth-2012 (TOOLS).

See also: see-name, see-xt, see-colon, see-colon-body, see-colon-body>.

Source file: <src/lib/tool.see.fs>.

see-colon

see-colon (nt --)

Decode the colon word’s definition nt.

See also: see, see-name, see-colon-body.

Source file: <src/lib/tool.see.fs>.

see-colon-body

see-colon-body (dfa --)

622

Decode the colon word’s definition whose body is dfa. see-colon-body is a factor of see-colon.

See also: see, see-colon-body>, see-xt, see-usage.

Source file: <src/lib/tool.see.fs>.

see-colon-body>

see-colon-body> (a --) "see-colon-body-to"

Decode the colon word’s definition from a, which is part of its body. see-colon-body> is useful to
decode words that use exit in the midle of the definition, because see stops at the first exit found.

See also: see-colon-body, see-xt, see-name.

Source file: <src/lib/tool.see.fs>.

see-name

see-name (nt --)

Decode the word’s definition nt.

see-name is a factor of see.

See also: see, see-xt, see-colon.

Source file: <src/lib/tool.see.fs>.

see-usage

see-usage (--)

Display the usage of see. see-usage is executed when manual-see contains non-zero.

Source file: <src/lib/tool.see.fs>.

see-xt

see-xt (xt --) "see-x-t"

Decode the word’s definition xt.

The listing can be paused with the space bar, then stopped with the return key or resumed with any
other key.

623

See also: see, see-name, see-colon.

Source file: <src/lib/tool.see.fs>.

sentry:

sentry: (ca len wid "name" --) "s-entry-colon"

Create a string entry name in the associative-list wid, with value ca len.

See also: entry:, centry:, 2entry:, create-entry.

Source file: <src/lib/data.associative-list.fs>.

set,

set, (reg b --) "set-comma"

Compile the Z80 assembler instruction SET b,reg.

See also: bit,, res,, add#,.

Source file: <src/lib/assembler.fs>.

set-anon

set-anon (x#n ... x#1 n --)

Store the given n cells into the buffer pointed by anon>, which will be accessed by anon.

Usage example:

here anon> ! 5 cells allot

: test (x4 x3 x2 x1 x0 --)
 5 set-anon
 [0] anon ? \ display _x0_
 123 [0] anon !
 [0] anon ? \ display 123
 [2] anon ? \ display _x2_
 555 [2] anon !
 [2] anon ? \ display 555
 ;

Source file: <src/lib/locals.anon.fs>.

624

set-bit

set-bit (b1 n -- b2)

Set bit n of b1, returning the result b2.

See also: bit?, set-bit, bit>mask.

Source file: <src/lib/memory.MISC.fs>.

set-block-drives

set-block-drives (c#n..c#1 n --)

Set the drives specified by drive identifiers c#n..c#1 as block drives. Subsequently drive c#1 will be
searched first for blocks from block number 0 to block number blocks/disk 1-; drive c#2 will be
searched for blocks from block number blocks/disk to block number blocks/disk 2 * 1-; and so on.

If n is zero, no drive is used for blocks.

NOTE
set-block-drives sets last-locatable to the last block available on the new
configuration, but first-locatable is not modified.

See also: -block-drives, #block-drives, block-drive!, get-block-drives.

Source file: <src/lib/dos.COMMON.fs>.

set-bright

set-bright (f --)

If f is true, turn bright on by setting the corresponding bit of the current attribute. If f is false, turn
bright off by resetting the bit. Other non-zero values of f will turn bright on or off depending on
them having a common bit with bright-mask.

See also: get-bright, attr!, bright., set-paper, set-ink, set-flash, bright-mask.

Source file: <src/lib/display.attributes.fs>.

set-capslock

set-capslock (--)

Set capslock.

625

See also: unset-capslock, capslock?, toggle-capslock, capslock, cset.

Source file: <src/lib/keyboard.caps_lock.fs>.

set-circle-pixel

set-circle-pixel (a --)

Set the address a of the routine circle-pixel will jump to.

set-circle-pixel is used to make circle-pixel jump to colored-circle-pixel, uncolored-circle-
pixel, or other routine provided by the application, therefore configuring circle.

Source file: <src/lib/graphics.circle.fs>.

set-current

set-current (wid --)

Set the compilation word list to the word list identified by wid.

Definition:

: set-current (wid --) current ! ;

Origin: Forth-94 (SEARCH), Forth-2012 (SEARCH).

Source file: <src/kernel.z80s>.

set-date

set-date (day month year --)

Set the current date. The default date is 2016-01-01. It can be fetch with get-date. The date is not
updated by the system.

See also: get-date, date, .date, leapy-year?.

Source file: <src/lib/time.fs>.

set-drive

set-drive (n -- ior)

Set drive n (0..3) as the current one, returning the I/O result code ior. If the drive is successfully

626

selected, ior is zero, otherwise it’s an exception code. The default drive is 0.

See also: ?set-drive, init-drive, drive, set-block-drives, 2-block-drives, read-system-track.

Source file: <src/kernel.trdos.z80s>.

set-dticks

set-dticks (d --) "set-d-ticks"

Set the system clock to d ticks.

See also: set-ticks, dticks, reset-dticks, ticks/second, bench{.

Source file: <src/lib/time.fs>.

set-esc-order

set-esc-order (widn..wid1 n --)

Set the escaped strings search order to the word lists identified by widn..wid1. Subsequently, word
list wid1 will be searched first, and word list widn searched last. If n is zero, empty the escaped
strings search order.

See also: get-esc-order, >esc-order, esc-standard-chars-wordlist, esc-block-chars-wordlist, esc-udg-
chars-wordlist.

Source file: <src/lib/strings.escaped.fs>.

set-filename

set-filename (ca len --)

Store filename ca len into the TR-DOS fda (File Descriptor Area). If len is greater than 9 characters
(the value returned by /filename), 9 is used instead. If ca len does not include the file type at the end
(at character offset +8), 'C' (code file) is used by default.

See also: -fda-filename, /filename.

Source file: <src/lib/dos.trdos.fs>.

set-flash

set-flash (f --)

If f is true, turn flash on by setting the corresponding bit of the current attribute. If f is false, turn

627

flash off by resetting the bit. Other non-zero values of f will turn flash on or off depending on them
having a common bit with flash-mask.

See also: get-flash, attr!, flash., set-paper, set-ink, set-bright, flash-mask.

Source file: <src/lib/display.attributes.fs>.

set-font

set-font (a --)

Set address a as the current font by setting the system variable os-chars

set-font is used by all screen modes. The character bitmap a points to depends on the mode.

The last character used from the font can be configured by last-font-char.

See also: get-font, rom-font, default-font, mode-32, mode-32iso, mode-42pw, mode-64ao.

Source file: <src/kernel.z80s>.

set-heap

set-heap (a u b --)

Set the values of the current heap: its address a (returned by heap), its size u (returned by /heap) and
its bank b (stored in heap-bank).

set-heap and get-heap are useful when more than one memory heap are needed by the application.

Source file: <src/lib/memory.allocate.COMMON.fs>.

set-ink

set-ink (b --)

Set ink color b (0..7) by modifying bits 0-2 of the current attribute.

set-ink is written in Z80. Its equivalent definition in Forth is the following:

: set-ink (b --) attr@ unink-mask and or attr! ;

See also: get-ink, attr!, ink., set-paper, set-flash, set-bright, unink-mask.

Source file: <src/lib/display.attributes.fs>.

628

set-menu

set-menu (a1 a2 ca len col row n1 n2 --)

Set the current menu to cursor coordinates col row, n2 options, n1 characters width, title ca len,
actions table a1 (a cell array of n2 execution tokens) and option texts table a2 (a cell array of n2
addresses of counted strings).

See also: new-menu, .menu, menu, menu-xy, menu-title, actions-table, menu-options, menu-width, menu-
body-attr, menu-highlight-attr, menu-banner-attr.

Source file: <src/lib/menu.sinclair.fs>.

set-mixer

set-mixer (b --)

Set the mixer register of the AY-3-8912 sound generator to b.

Register 7 (Mixer - I/O Enable)

This controls the enable status of the noise and tone mixers for the three
channels, and also controls the I/O port used to drive the RS232 and Keypad
sockets.

Bit 0 Channel A Tone Enable (0=enabled).

Bit 1 Channel B Tone Enable (0=enabled).

Bit 2 Channel C Tone Enable (0=enabled).

Bit 3 Channel A Noise Enable (0=enabled).

Bit 4 Channel B Noise Enable (0=enabled).

Bit 5 Channel C Noise Enable (0=enabled).

Bit 6 I/O Port Enable (0=input, 1=output).

Bit 7 Not used.

See also: get-mixer, -mixer, !sound.

629

Source file: <src/lib/sound.128.fs>.

set-mode-output

set-mode-output (a --)

Associate the output routine at a to the system channels "K", "S" and "P".

Source file: <src/lib/display.mode.COMMON.fs>.

set-order

set-order (-1 | 0 | wid#n .. wid#1 n --)

Set the search order to the word lists identified by wid#n .. wid#1. Subsequently, word list wid1 will
be searched first, and word list wid#n searched last. If n is zero, empty the search order. If n is
minus one, set the search order to the implementation-defined minimum search order.

Definition:

: set-order (-1 | 0 | wid#n .. wid#1 n --)
 dup -1 = if drop root-wordlist dup 2 then
 dup ?order dup #order !
 0 ?do i cells context + ! loop ;

Origin: Forth-94 (SEARCH), Forth-2012 (SEARCH).

See also: get-order, >order.

Source file: <src/kernel.z80s>.

set-paper

set-paper (b --)

Set paper color b (0..7) by modifying the corresponding bits of the current attribute.

set-paper is written in Z80. Its equivalent definition in Forth is the following:

: set-paper (b --) papery attr@ unpaper-mask and or attr! ;

See also: get-paper, attr!, paper., set-ink, set-flash, set-bright, paper-mask.

Source file: <src/lib/display.attributes.fs>.

630

set-pixel

set-pixel (gx gy --)

Set a pixel without changing its attribute on the screen or the current graphic coordinates. gx is
0..255; gy is 0..191.

See also: plot, plot176, reset-pixel, toggle-pixel, xy>gxy.

Source file: <src/lib/graphics.pixels.fs>.

set-pixel176

set-pixel176 (gx gy --) "set-pixel-176"

Set a pixel without changing its attribute on the screen or the current graphic coordinates, and
using only the top 176 pixel rows of the screen (the lower 16 pixel rows are not used). gx is 0..255;
gy is 0..175.

See also: set-save-pixel176, set-pixel, plot, plot176, reset-pixel, toggle-pixel, reset-pixel176,
toggle-pixel176, xy>gxy176.

Source file: <src/lib/graphics.pixels.fs>.

set-save-pixel176

set-save-pixel176 (gx gy --) "set-save-pixel-176"

Set a pixel without changing its attribute on the screen, and using only the top 176 pixel rows of the
screen (the lower 16 pixel rows are not used). gx is 0..255; gy is 0..175. set-save-pixel176 updates the
graphic coordinates (contrary to set-pixel176).

See also: set-pixel, plot, plot176, reset-pixel, toggle-pixel, reset-pixel176, toggle-pixel176.

Source file: <src/lib/graphics.pixels.fs>.

set-source

set-source (ca len --)

Set the memory zone ca len as the current source by pointing input-buffer to it.

Definition:

631

: set-source (ca len --) input-buffer 2! >in off ;

See also: >in, terminal>source, block>source.

Source file: <src/kernel.z80s>.

set-tape-filename

set-tape-filename (ca len --)

Store filename ca len into the tape-filename field of tape-header.

Source file: <src/lib/tape.fs>.

set-tape-memory

set-tape-memory (ca len --)

Configure tape-header with the memory zone ca len (to be read or written), by storing len into tape-
length and ca into tape-start.

Source file: <src/lib/tape.fs>.

set-ticks

set-ticks (d --)

Set the system clock to n ticks.

See also: set-dticks, ticks, reset-ticks, ticks/second, bench{.

Source file: <src/lib/time.fs>.

set-time

set-time (second minute hour --)

Set the current time.

See also: get-time.

Source file: <src/lib/time.fs>.

632

set-udg

set-udg (a --) "set-u-d-g"

Set address a as the the current UDG set (characters 0..255), by changing the system variable os-udg.
a must be the bitmap address of character 0.

See also: get-udg, set-font.

Source file: <src/lib/graphics.udg.fs>.

setx,

setx, (disp regpi b --) "set-x-comma"

Compile the Z80 assembler instruction SET b,(regpi+disp).

See also: bitx,, resx,, addx,, adcx,, andx,, xorx,, orx,, incx,.

Source file: <src/lib/assembler.fs>.

sfalign

sfalign (--) "s-f-align"

If the data space is not single-float aligned, reserve enough space to make it so.

In Solo Forth, sfalign does nothing: it’s an immediate alias of noop.

Origin: Forth-94 (FLOATING EXT), Forth-2012 (FLOATING EXT).

See also: sfaligned, falign, dfalign, float.

Source file: <src/lib/math.floating_point.rom.fs>.

sfaligned

sfaligned (a -- fa) "s-f-aligned"

fa is the first single-float-aligned address greater than or equal to a

In Solo Forth, sfaligned does nothing: it’s an immediate alias of noop.

Origin: Forth-94 (FLOATING EXT), Forth-2012 (FLOATING EXT).

See also: sfalign, faligned, dfaligned, float.

633

Source file: <src/lib/math.floating_point.rom.fs>.

sign

sign (n --)

If n is negative, add a minus sign to the beginning of the pictured numeric output string.

Definition:

: sign (n --) 0< if '-' hold then ;

Origin: Forth 94 (CORE), Forth-2012 (CORE).

See also: <#, #>, hold.

Source file: <src/kernel.z80s>.

silence

silence (--)

Execute -mixer to disable the noise and tone mixers for the three channels of the AY-3-8912 sound
generator. Then set the volume of the three channels to zero.

See also: !volume.

Source file: <src/lib/sound.128.fs>.

simple-accept

simple-accept (ca1 len1 -- len2)

Receive a string of at most len1 characters. No characters are received or transferred if len1 is zero.
Display graphic characters as they are received.

Input terminates when the Return key is pressed. When input terminates, nothing is appended to
the string or displayed on the screen.

The only control key accepted is Delete.

len2 is the length of the string stored at ca1.

simple-accept is the default action of the deferred word accept (see defer).

Definition:

634

: simple-accept (ca len -- len')
 over + over (bot eot cur)
 begin xkey dup 13 <> \ not carriage return?
 while (bot eot cur c)
 dup 12 = \ delete?
 if drop >r over r@ < dup \ any chars?
 if 8 dup emit bl emit emit then r> +
 else \ maybe printable
 >r 2dup <> \ more?
 r@ [bl 1-] literal > and \ and printable?
 if r@ over c! char+ r@ emit then r> drop
 then
 repeat (bot eot cur c) drop nip swap - ;

See also: query.

Source file: <src/kernel.z80s>.

sinclair-stripes

sinclair-stripes (-- ca)

Return address ca where the following pair of UDG definitions, used to create Sinclair stripes, are
stored:

0 0 0 0 0 0 0 1 X
0 0 0 0 0 0 1 1 XX
0 0 0 0 0 1 1 1 XXX
0 0 0 0 1 1 1 1 XXXX
0 0 0 1 1 1 1 1 XXXXX
0 0 1 1 1 1 1 1 XXXXXX
0 1 1 1 1 1 1 1 XXXXXXX
1 1 1 1 1 1 1 1 XXXXXXXX

1 1 1 1 1 1 1 0 XXXXXXX
1 1 1 1 1 1 0 0 XXXXXX
1 1 1 1 1 0 0 0 XXXXX
1 1 1 1 0 0 0 0 XXXX
1 1 1 0 0 0 0 0 XXX
1 1 0 0 0 0 0 0 XX
1 0 0 0 0 0 0 0 X
0 0 0 0 0 0 0 0

See also: .sinclair-stripes, sinclair-stripes$.

Source file: <src/lib/menu.sinclair.fs>.

635

sinclair-stripes$

sinclair-stripes$ (-- ca len)

Return a string ca len containing the following character codes:

Table 35. Characters of sinclair-stripes$.

Code(s) Meaning

$10 $02 set ink 2 (red)

$80 first stripe UDG

$11 $06 set paper 6 (yellow)

$81 second stripe UDG

$10 $04 set ink 4 (green)

$80 first stripe UDG

$11 $05 set paper 5 (cyan)

$81 second stripe UDG

$10 $00 set ink 0 (black)

$80 first stripe UDG

Definitions for UDG codes $80 and $81 are provided optionally by sinclair-stripes.

See also: .sinclair-stripes.

Source file: <src/lib/menu.sinclair.fs>.

skip

skip (ca1 len1 c -- ca2 len2 | ca1 len1)

Skip over leading occurences of the character c in the string ca1 len1. Leave the address of the first
non-matching character ca2 and length remaining len2. If no characters were skipped leave ca1
len1.

Source file: <src/kernel.z80s>.

skip-sign?

skip-sign? (ca len -- ca' len' f) "skip-sign-question"

If number string ca len starts with a minus sign, remove it and return the result string ca' len' and a
true flag f; else ca' len' is identical to ca len and f is false.

636

Definition:

: skip-sign? (ca len -- ca' len' f)
 over c@ '-' = dup >r abs /string r> ;

See also: number?, ?negate.

Source file: <src/kernel.z80s>.

sla,

sla, (reg --) "s-l-a-comma"

Compile the Z80 assembler instruction SLA reg.

Source file: <src/lib/assembler.fs>.

slax,

slax, (disp regpi --) "s-l-a-x-comma"

Compile the Z80 assembler instruction SLA (regpi+disp).

See also: rlcx,, rrcx,, rlx,, rrx,, srax,, sllx,, srlx,, bitx,, resx,, setx,.

Source file: <src/lib/assembler.fs>.

slit

slit (-- ca len) "s-lit"

Return a string that is compiled after the calling word, and adjust the instruction pointer to step
over the inline string.

Definition:

: slit (-- ca len) r@ count dup char+ r> + >r ;

Source file: <src/kernel.z80s>.

sliteral

637

sliteral "s-literal"
 Compilation: (ca1 len1 --)
 Run-time: (-- ca2 len1)

Compile slit and string ca len in the current definition. At run-time slit will return string ca1 len1
as ca2 len1.

sliteral is an immediate and compile-only word.

Definition:

: sliteral (ca len --)
 postpone slit s, ; immediate compile-only

Origin: Forth-94 (STRING), Forth-2012 (STRING).

See also: s,, csliteral.

Source file: <src/kernel.z80s>.

sll,

sll, (reg --) "s-l-l-comma"

Compile the Z80 assembler instruction SLL reg.

Source file: <src/lib/assembler.fs>.

sllx,

sllx, (disp regpi --) "s-l-l-x-comma"

Compile the Z80 assembler instruction SLL (regpi+disp).

See also: rlcx,, rrcx,, rlx,, rrx,, slax,, srax,, srlx,, bitx,, resx,, setx,.

Source file: <src/lib/assembler.fs>.

slow-gxy>scra_

slow-gxy>scra_ (-- a) "slow-g-x-y-to-s-c-r-a-underscore"

Return address a of an alternative entry point to the PIXEL-ADD ROM routine ($22AA), to let the
range of the y coordinate be 0..191 instead of 0..175.

638

slow-gxy>scra_ is the default action of gxy>scra_.

When fast-gxy>scra_ (which is faster but bigger, and requires the assembler) is needed, the
application must use need fast-gxy>scra_ before need set-pixel or any other word that needs
gxy>scra_.

Input registers:

• C = x cordinate (0..255)

• B = y coordinate (0..191)

Output registers:

• HL = address of the pixel byte in the screen bitmap

• A = position of the pixel in the byte address (0..7), note: position 0=bit 7, position 7=bit 0.

See also: gxy176>scra_.

Source file: <src/lib/graphics.pixels.fs>.

slow-pixels

slow-pixels (-- n)

Return the number u of pixels that are set on the screen. slow-pixels is the alternative action of the
deferred word pixels (see defer). slow-pixels simply executes bits with the screen address and
length on the stack.

See also: fast-pixels.

Source file: <src/lib/graphics.pixels.fs>.

sm/rem

sm/rem (d n1 -- n2 n3) "s-m-slash-rem"

Symmetric division:

D = n3*n1+n2;

sign(n2) = sign(d1) or 0

Divide d by n1, giving the symmetric quotient n3 and the remainder n2. Input and output stack
arguments are signed.

Table 36. Symmetric Division Example

639

Dividend Divisor Remainder Quotient

10 7 3 1

-10 7 -3 -1

10 -7 3 -1

-10 -7 -3 1

Definition:

: sm/rem (d1 n1 -- n2 n3) \ symmetric signed division
 2dup xor >r \ sign of quotient
 over >r \ sign of remainder
 abs >r dabs r> um/mod
 swap r> ?negate
 swap r> ?negate ;

Origin: Forth-94 (CORE), Forth-2012 (CORE).

See also: fm/mod, m/.

Source file: <src/kernel.z80s>.

smove

smove (ca1 len1 ca2 --) "s-move"

Move the string ca1 len1 to ca2.

smove is the equivalent of the idiom swap move, but faster.

See also: cmove, cmove>, move.

Source file: <src/kernel.z80s>.

smudge

smudge (--)

Toggle the "smudge bit" of the latest definition’s name field. This prevents an uncompleted
definition from being found during dictionary searches, until compiling is completed without error.

smudge is obsolete. hide and reveal are used instead.

Origin: fig-Forth.

See also: smudged.

640

Source file: <src/lib/compilation.fs>.

smudge-mask

smudge-mask (-- b)

A cconstant. b is the bitmask of the smudge bit.

See also: word-length-mask, immediate-mask, compile-only-mask.

Source file: <src/kernel.z80s>.

smudged

smudged (nt --)

Toggle the "smudge bit" of the given nt.

smudged is obsolete. hidden and revealed are used instead.

See also: smudge, smudge-mask.

Source file: <src/lib/compilation.fs>.

sound

sound (b[0]..b[13] "name" --)

Create a word name that will play the 14-byte sound defined by b[0]..b[13].

See also: sound,, play, edit-sound.

Source file: <src/lib/sound.128.fs>.

sound,

sound, (b[0]..b[13] --) "sound-comma"

Compile the 14-byte sound definition b[0]..b[13].

See also: play, sound.

Source file: <src/lib/sound.128.fs>.

641

sound-register-port

sound-register-port (-- a)

The I/O port used to select a register of the AY-3-8912 sound generator, before writing a value into it
using sound-write-port, or before reading a value from it using sound-register-port again.

sound-register-port is a fast constant defined with const. Its value is $FFFD.

See also: sound-write-port, !sound, @sound.

Source file: <src/lib/sound.128.fs>.

sound-write-port

sound-write-port (-- a)

The I/O port used to write to a register of the AY-3-8912 sound generator.

sound-write-port is a fast constant defined with const. Its value is $BFFD.

See also: sound-register-port, !sound, @sound.

Source file: <src/lib/sound.128.fs>.

source

source (-- ca len)

ca is the address of, and len is the number of characters in, the input buffer.

Definition:

: source (-- ca len)
 blk @ ?dup if block b/buf exit then
 input-buffer 2@ ;

Origin: Forth-94 (CORE), Forth-2012 (CORE).

See also: input-buffer, set-source, blk, stream, nest-source, unnest-source.

Source file: <src/kernel.z80s>.

source-id

642

source-id (-- 0 | -1) "source-i-d"

Identify the input source as follows:

Table 37. Values returned by source-id.

Value Input source

0 User input device

-1 String via evaluate

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

Source file: <src/kernel.z80s>.

sp

sp (-- regp) "s-p"

Return the identifier reg of the Z80 assembler register "SP".

See also: a, b, c, d, e, h, l, m, ix, iy.

Source file: <src/lib/assembler.fs>.

sp!

sp! (a --) "s-p-store"

Store a into the stack pointer.

Source file: <src/kernel.z80s>.

sp0

sp0 (-- a) "s-p-zero"

A user variable. a is the address of a cell containing the address of the bottom of the data stack.

Origin: fig-Forth’s s0, Forth-79’s s0, Forth-83’s s0.

See also: sp@, sp!.

Source file: <src/kernel.z80s>.

643

sp@

sp@ (-- a) "s-p-fetch"

Fetch the content of the stack pointer. a is the address of the top of the stack just before sp@ was
executed.

Origin: fig-Forth, Forth-79 (Reference Word Set), Forth-83 (Controlled Reference Words).

See also: sp!, sp0.

Source file: <src/kernel.z80s>.

space

space (--)

Display one space.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: bl, emit.

Source file: <src/kernel.z80s>.

spaces

spaces (n --)

If n is greater than zero, display n spaces.

spaces is written in Z80. Its equivalent definition in Forth is the following:

: spaces (n --) bl swap emits ;

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: space, bl, emits.

Source file: <src/kernel.z80s>.

specforth-editor

644

specforth-editor (--)

A vocabulary containing the Specforth block editor. When specforth-editor is loaded, it becomes the
action of editor.

Table 38. Specforth block editor commands

Word Description

b (--) Used after f to backup the cursor by the length of the most recent
text.

c ("ccc<eol>" --) Copy in ccc to the cursor line at the cursor position.

clear (n --) Clear block n with blanks and select for editing.

copy (n1 n2 --) Copy block n1 to block n2.

d (n --) Delete line n but hold it in pad. Line 15 becomes free as all
statements move up one line.

delete (n --) Delete n characters prior to the cursor.

e (n --) Erase line n with blanks.

find, (--) Search for a match to the string at pad, from the cursor position until
the end of block. If no match found issue an error message and
reposition the cursor at the top of the block.

h (n --) Hold line n at pad (used by system more often than by user).

i (n --) Insert text from pad at line n, moving the old line n down. Line 15 is
lost.

l (--) List the current block.

m (n --) Move the cursor by n characters. The position of the cursor on its
line is shown by a "_" (underline).

n (--) Find the next occurrence of the string found by an f command.

p (n "ccc<eol>" --) Put ccc on line n.

r (n --) Replace line n with the text in pad.

s (n --) Spread at line n. Line n and following lines are are moved down one
line. Line n becomes blank. Line 15 is lost.

t (n --) Type line n and save in pad.

till ("ccc<eol>" --) Delete on the cursor line from the cursor till the end of string ccc.

x ("ccc<eol>" --) Find and delete the next occurrence of the string ccc.

See also: gforth-editor.

Source file: <src/lib/prog.editor.specforth.fs>.

645

split

split (x -- b1 b2)

b1 is the low byte of x and b2 is the high byte of x.

Origin: IsForth, CHForth.

See also: join, flip.

Source file: <src/lib/math.operators.1-cell.fs>.

sqrt

sqrt (n1 -- n2) "square-root"

Calculate integer square root n2 of radicand n1. sqrt is a deferred word (see defer) which can
execute baden-sqrt or newton-sqrt.

Source file: <src/lib/math.operators.1-cell.fs>.

sra,

sra, (reg --) "s-r-a-comma"

Compile the Z80 assembler instruction SRA reg.

Source file: <src/lib/assembler.fs>.

srax,

srax, (disp regpi --) "s-r-a-x-comma"

Compile the Z80 assembler instruction SRA (regpi+disp).

See also: rlcx,, rrcx,, rlx,, rrx,, slax,, sllx,, srlx,, bitx,, resx,, setx,.

Source file: <src/lib/assembler.fs>.

srl,

srl, (reg --) "s-r-l-comma"

Compile the Z80 assembler instruction SRL reg.

646

Source file: <src/lib/assembler.fs>.

srlx,

srlx, (disp regpi --) "s-r-l-x-comma"

Compile the Z80 assembler instruction SRL (regpi+disp).

See also: rlcx,, rrcx,, rlx,, rrx,, slax,, srax,, sllx,, bitx,, resx,, setx,.

Source file: <src/lib/assembler.fs>.

st#x,

st#x, (8b disp regpi --) "s-t-number-sign-x-comma"

Compile the Z80 assembler instruction LD (regpi+disp),8b.

See also: stx,.

Source file: <src/lib/assembler.fs>.

sta,

sta, (a --) "s-t-a-comma"

Compile the Z80 assembler instruction LD (a),A, i.e. store the contents of register "A" into memory
address a.

See also: fta,, ld,, ld#,.

Source file: <src/lib/assembler.fs>.

stack-cells

stack-cells (-- n)

n is the maximum size of the data stack, in cells.

See also: return-stack-cells, environment?.

Source file: <src/lib/environment-question.fs>.

standard-number-point?

647

standard-number-point? (c -- f) "standard-number-point-question"

f is true if if character c is a valid point in a number. The only allowed point is period.

standard-number-point? is the default action of the deferred word number-point? (see defer), which is
used in number?.

Definition:

: standard-number-point? (c -- f) '.' = ;

See also: classic-number-point?, extended-number-point?.

Source file: <src/kernel.z80s>.

stap,

stap, (regp --) "s-t-a-p-comma"

Compile the Z80 assembler instruction LD (regp),A.

See also: ftap,.

Source file: <src/lib/assembler.fs>.

state

state (-- a)

A user variable. a is the address of a cell containing the compilation-state flag, which is true when
in compilation state, false otherwise.

Origin: fig-Forth, Forth-89 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: compiling?, [,].

Source file: <src/kernel.z80s>.

step

step
 Compilation: (dest --)
 Run-time: (R: n -- n')

648

Compilation: (dest — )

Append the run-time semantics given below to the current definition. Resolve the destination of
for.

Run-time: (R: n — n')

If the loop index is zero, discard the loop parameters and continue execution after the loop.
Otherwise decrement the loop index and continue execution at the beginning of the loop.

step is an immediate and compile-only word.

NOTE step is usually called next in other Forth systems.

Origin: Z88 CamelForth.

Source file: <src/lib/flow.for.fs>.

sthl,

sthl, (a --) "s-t-h-l-comma"

Compile the Z80 assembler instruction LD (a),HL, i.e. store the contents of register pair "HL" into
memory address a.

See also: fthl,, stp,.

Source file: <src/lib/assembler.fs>.

storer

storer (x a "name" --)

Define a word name which, when executed, will cause that x be stored at a.

Origin: word set found in Forth-79 (Reference Word Set) and Forth-83 (Appendix B. Uncontrolled
Reference Words).

Source file: <src/lib/data.storer.fs>.

stp,

stp, (a regp --) "s-t-p-comma"

Compile the Z80 assembler instruction LD (a),regp, i.e. store the contents of pair register regp into
memory address a.

649

NOTE
For the "HL" register there is a specific word: fthl,, which compiles shorten and
faster code.

See also: ftp,.

Source file: <src/lib/assembler.fs>.

stpx,

stpx, (disp regpi regp --) "s-t-p-x-comma"

Compile the Z80 assembler instructions required to store register pair regp into the address pointed
by regpi plus disp.

Example: 16 ix h stpx, will compile the Z80 instructions LD (IX+16),L and LD (IX+17),H.

See also: ftpx,, stx,.

Source file: <src/lib/assembler.fs>.

str<

str< (ca1 len1 ca2 len2 -- f) "s-t-r-less-than"

Is string ca1 len1 lexicographically smaller than string ca2 len2?

See also: str>, str=, str<>, compare.

Source file: <src/lib/strings.MISC.fs>.

str<>

str<> (ca1 len1 ca2 len2 -- f) "s-t-r-not-equals"

Is string ca1 len1 lexicographically not equal to string ca2 len2?

See also: str=, str<, str>, compare.

Source file: <src/lib/strings.MISC.fs>.

str=

str= (ca1 len1 ca2 len2 -- f) "s-t-r-equals"

f is true if string ca1 len1 is lexicographically equal to string ca2 len2.

650

Definition:

: str= (ca1 len1 ca2 len2 -- f) compare 0= ;

See also: str<>, str<, str>, compare.

Source file: <src/kernel.z80s>.

str>

str> (ca1 len1 ca2 len2 -- f) "s-t-r-greater-than"

Is string ca1 len1 lexicographically larger than string ca2 len2?

See also: str<, str=, str<>, compare.

Source file: <src/lib/strings.MISC.fs>.

stream

stream (-- ca len)

String ca len is the the remaining stream source.

Definition:

: stream (-- ca len) source >in @ /string ;

See also: >in, /string.

Source file: <src/kernel.z80s>.

stream>

stream> (n -- a)

Convert stream number n to address a of its corresponding element in os-strms.

See also: first-stream, last-stream, stream?.

Source file: <src/lib/os.fs>.

stream?

651

stream? (-- false | n true)

If there’s a closed stream, return its number n and true; otherwise return false.

See also: os-strms, .os-strms, first-stream, last-stream, stream>.

Source file: <src/lib/os.fs>.

string-char?

string-char? (ca len c -- f) "string-char-question"

Is char c in string ca len?

See also: char-in-string?, char-position?, contains, compare, #chars.

Source file: <src/lib/strings.MISC.fs>.

string-parameter

string-parameter (-- ca len)

Return a string compiled after the calling word.

See warning" and (warning" for a usage example.

Source file: <src/lib/compilation.fs>.

string/

string/ (ca1 len1 len2 -- ca2 len2) "string-slash"

Return the len2 ending characters of string ca1 len1.

See also: /string.

Source file: <src/lib/strings.MISC.fs>.

string>source

string>source (ca len --) "string-to-source"

Set the string ca len as the current source.

See also: set-source, (source-id.

652

Source file: <src/lib/parsing.fs>.

stringer

stringer (-- a)

A constant. a is the base address of the stringer, which is the circular string buffer used by all string
operations.

A program can move and resize the stringer if needed. Example:

stringer /stringer 2constant old-stringer
 \ Keep the address and length of the old stringer, in order
 \ to reuse its space later.

need !>

here 1024 dup allot !> /stringer !> stringer empty-stringer
 \ Create a new, 1024-byte ``stringer`` in data space.

The default stringer can be restored by default-stringer.

See also: !>, /stringer, empty-stringer, +stringer, unused-stringer, fit-stringer, allocate-stringer,
>stringer.

Source file: <src/kernel.z80s>.

stx,

stx, (reg disp regpi --) "s-t-x-comma"

Compile the Z80 assembler instruction LD (regpi+disp),reg.

See also: st#x,, ftx,.

Source file: <src/lib/assembler.fs>.

sub#,

sub#, (b --) "sub-number-sign-comma"

Compile the Z80 assembler instruction SUB b.

Source file: <src/lib/assembler.fs>.

653

sub,

sub, (reg --) "sub-comma"

Compile the Z80 assembler instruction SUB reg.

See also: sbc,, add,, adc,, subp,.

Source file: <src/lib/assembler.fs>.

subp,

subp, (regp --) "sub-p-comma"

Compile the Z80 assembler instructions required to subtract register pair regp from register pair
"HL".

Example: d subp, compiles the Z80 instructions AND A (to reset the carry flag) and SBC DE.

See also: sbcp,, sub,, ldp,, tstp,.

Source file: <src/lib/assembler.fs>.

substitute

substitute (ca1 len1 ca2 len2 -- ca2 len3 n)

Perform substitution on the string ca1 len1 placing the result at string ca2 len3, where len3 is the
length of the resulting string. An error occurs if the resulting string will not fit into ca2 len2 or if ca2
is the same as ca1. The return value n is positive or 0 on success and indicates the number of
substitutions made. A negative value for n indicates that an error occurred, leaving ca2 len3
undefined, and being n the exception code.

Substitution occurs left to right from the start of ca1 in one pass and is non-recursive. When text of
a potential substitution name, surrounded by "%" (ASCII $25) delimiters is encountered by
substitute, the following occurs:

1. If the name is null, a single delimiter character is passed to the output, i.e., "%%" is replaced by
"%". The current number of substitutions is not changed.

2. If the text is a valid substitution name acceptable to replaces, the leading and trailing delimiter
characters and the enclosed substitution name are replaced by the substitution text. The current
number of substitutions is incremented.

3. If the text is not a valid substitution name, the name with leading and trailing delimiters is
passed unchanged to the output. The current number of substitutions is not changed.

4. Parsing of the input string resumes after the trailing delimiter.

654

If after processing any pairs of delimiters, the residue of the input string contains a single delimiter,
the residue is passed unchanged to the output.

See also: unescape, substitution-delimiter?.

Source file: <src/lib/strings.substitute.fs>.

substitute-wordlist

substitute-wordlist (-- wid)

Word list for substitution names and replacement texts.

See also: replaces.

Source file: <src/lib/strings.replaces.fs>.

substitution

substitution (ca1 len1 -- ca2)

Given a string ca1 len1 create its substitution and storage space. Return the address of the buffer for
the substitution text.

See also: replaces.

Source file: <src/lib/strings.replaces.fs>.

substitution-delimiter

substitution-delimiter (-- c)

A character constant that returns the character used as delimiter by substitute. By default it’s "%".

See also: substitution-delimiter?.

Source file: <src/lib/strings.substitute.fs>.

substitution-delimiter?

substitution-delimiter? (ca -- f) "substitution-delimiter-question"

Does ca contains the character hold in the character constant substitution-delimiter? If so return
true, else return false.

substitution-delimiter? is a factor of substitute.

655

substitution-delimiter? is written in Z80. Its equivalent definition is Forth is the following:

: substitution-delimiter? (ca -- f)
 c@ substitution-delimiter = ;

Source file: <src/lib/strings.substitute.fs>.

subx,

subx, (disp regpi --) "sub-x-comma"

Compile the Z80 assembler instruction SUB (regpi+disp).

See also: sbcx,, addx,.

Source file: <src/lib/assembler.fs>.

suffix?

suffix? (ca1 len1 ca2 len2 -- f) "suffix-question"

Is string ca2 len2 the suffix of string ca1 len1?

See also: -suffix, prefix?.

Source file: <src/lib/strings.MISC.fs>.

swap

swap (x1 x2 -- x2 x1)

Exchange the top two stack items.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: 2swap, over, tuck.

Source file: <src/kernel.z80s>.

swap-current

swap-current (wid1 -- wid2)

Exchange the contents of the current compilation word list, which is identified by wid2, with the

656

word list identified by wid1.

Origin: lpForth.

Source file: <src/lib/word_lists.fs>.

swapped

swapped (i*x n1 n2 -- j*x)

Remove n1 and n2. Swap elements n1 and n2 of the stack, being 0 the top of the stack. 0 1 swapped is
equivalent to swap.

Usage example:

 (1 2 3 4 5) 1 4 swapped (4 2 3 1 5)

Source file: <src/lib/data_stack.fs>.

switch

switch (x switch --)

Execute the switch switch for the key x.

See also: switch:.

Source file: <src/lib/flow.switch-colon.fs>.

switch:

switch: ("name" --) "switch-colon"

Create a new switch control structure name, which is a word list the clauses of the structure will be
added to.

The keys can be 1-byte, 1-cell or 2-cell numbers, but the correspondent words must be used to
create the clauses and execute them later:

Usage example:

657

switch: mynumber

\ Define clauses:

0 mynumber :clause (--) cr ." zero" ;
1 mynumber :cclause (--) cr ." one" ;
2048 mynumber :clause (--) cr ." 2 KiB" ;
100000. mynumber :2clause (--) cr ." big" ;

\ Execute the clauses:

0 mynumber switch
1 mynumber cswitch
2048 mynumber switch
100000. mynumber 2switch

New clauses can be added any time, in any order, with any key.

Clauses created with :clause (for 1-cell keys), :cclause (for character keys) and :2clause (for 2-cell
keys) must be executed with switch, cswitch and 2switch respectively. The smaller the key type, the
less memory used by clauses in headers space (every clause is a definition whose name is the
binary string of its key) and the less execution time, though the difference will be unimportant in
most cases.

If a new clause is added with a previously used key, the new clause will replace the old one.

There’s no default clause: if the a given key is not found, no code is executed and no exception is
thrown.

Source file: <src/lib/flow.switch-colon.fs>.

switch]

switch] (a --) "switch-bracket"

Terminate a switch structure (or the latest additions to it) by marking the end of its linked list.
Discard the switch head a from the stack.

Origin: SwiftForth.

See also: [switch, [+switch, runs, run:.

Source file: <src/lib/flow.bracket-switch.fs>.

switcher

switcher (i*x n a -- j*x)

658

Search the linked list from its head a for a match to the value n. If a match is found, discard n and
execute the associated matched xt. If no match is found, leave n on the stack and execute the
default xt.

switcher is a common factor of :switch and [switch, two variants of the same control structure.

Origin: SwiftForth.

Source file: <src/lib/flow.bracket-switch.fs>.

synonym

synonym ("newname" "oldname" --)

Create a definition for newname with the execution and compilation semantics of oldname.
newname may be the same as oldname; when looking up oldname, newname shall not be found.

Synonyms have the execution token of the old word and, contrary to aliases created by alias, they
also inherit its attributes immediate and compile-only.

Origin: Forth-2012 (TOOLS EXT).

Source file: <src/lib/define.synonym.fs>.

system-size

system-size (-- len)

len is the size of the system, in bytes, i.e. the size of data/code space.

See also: +origin, system-zone, turnkey, here.

Source file: <src/lib/tool.turnkey.fs>.

system-zone

system-zone (-- a len)

Return the start address a of the system and its length len, to be used as parameters for saving the
system to tape or disk.

See also: +origin, system-size, turnkey.

Source file: <src/lib/tool.turnkey.fs>.

659

t

t

t (u "ccc<eol>" --)

A command of gforth-editor: Go to line u and insert ccc.

See also: c, a, g, n, p, l.

Source file: <src/lib/prog.editor.gforth.fs>.

t

t (n --)

A command of specforth-editor: Type line n and save in pad.

See also: b, c, d, e, f, h, i, l, m, n, p, r, s, x.

Source file: <src/lib/prog.editor.specforth.fs>.

tab

tab (--)

emit a 'tab' (character code 6), so that the next character displayed will appear at the next 16-
character column.

See also: tabulate.

Source file: <src/lib/display.control.fs>.

tabs

tabs (n --)

Emit n number of tab characters (character code 6).

See also: tab, 'tab'.

Source file: <src/lib/display.control.fs>.

660

tabulate

tabulate (--)

Display the appropriate number of spaces to tabulate to the next position, using the value of
/tabulate.

Note tabulate does not uses the "tab" control code, whose behaviour depends on the screen mode
(in the default screen mode, it moves the cursor 16 positions to the right). tabulate prints spaces
and is independent from the screen mode.

See /tabulate, tab.

Source file: <src/lib/display.control.fs>.

tape-file>

tape-file> (ca1 len1 ca2 len2 --) "tape-file-from"

Read a tape file ca1 len1 into a memory region ca2 len2.

• When len1 is zero, it means the filename is unspecified, ca1 is irrelevant and the first file must
be loaded.

• When ca2 is zero the destination address will be taken from the file header, i.e. the address the
file was saved from.

• When len2 is zero the zone size will be taken from the file header, i.e. the whole length of the
file.

WARNING
If len2 is not zero or the exact length of the file, the ROM routine returns to
BASIC with "Tape loading error". This crashes the system, because in Solo Forth
the lower screen has no lines, and BASIC cannot display the message.

See also: >tape-file, (tape-file> , >file.

Source file: <src/lib/tape.fs>.

tape-file>display

tape-file>display (ca len --) "tape-file-to-display"

Read tape file ca len into the display memory.

See also: display>tape-file, >tape-file.

Source file: <src/lib/tape.fs>.

661

tape-filename

tape-filename (-- ca)

Address of the filename in tape-header.

See also: /tape-filename, set-tape-filename, last-tape-filename.

Source file: <src/lib/tape.fs>.

tape-filetype

tape-filetype (-- ca)

Address of the file type (one byte) in tape-header. Its default value is 3 (code file).

See also: last-tape-filetype.

Source file: <src/lib/tape.fs>.

tape-header

tape-header (-- a)

Address of the tape header, which is used by the ROM routines. Its structure is the following:

Table 39. Structure of a tape header

Offset Size Description

+00 byte filetype (3 for code files)

+01 10 chars filename, padded with spaces

+11 cell length

+13 cell start address

+15 cell not used for code files

When the first char of the filename is 255, it is regarded as a wildcard which will match any
filename. The word tape-file> sets the wildcard when the provided filename is empty.

A second tape header, pointed by last-tape-header, follows the main one. It is used by the ROM
routines while loading. It can be used by the application to know the details of the last tape file that
was loaded.

IX addresses the first header, which must contain the data. The second header is used by the system
when loading and verifying. Only the "CODE" file type column is relevant to Solo Forth.

662

Table 40. Detailed structure of both tape headers

First header Second
header

BASIC
program

Num DATA String DATA CODE Notes

IX+$00 IX+$11 0 1 2 3 File type

IX+$01 IX+$12 x x x x F ($FF if
filename is
null)

IX+$02 IX+$13 x x x x i

IX+$03 IX+$14 x x x x l

IX+$04 IX+$15 x x x x e

IX+$05 IX+$16 x x x x n

IX+$06 IX+$17 x x x x a

IX+$07 IX+$18 x x x x m

IX+$08 IX+$19 x x x x e

IX+$09 IX+$1A x x x x .

IX+$0A IX+$1B x x x x Padding
spaces

IX+$0B IX+$1C lo lo lo lo Total…

IX+$0C IX+$1D hi hi hi hi …length of
datablock

IX+$0D IX+$1E Auto - - Start Various

IX+$0E IX+$1F Start a-z a-z addr ($80 if no
autostart).

IX+$0F IX+$20 lo - - - Length of
program
only…

IX+$10 IX+$21 hi - - - …i.e. without
variables

See also: tape-filename, tape-filetype, tape-start, tape-length, any-tape-filename, ?set-tape-
filename.

Source file: <src/lib/tape.fs>.

tape-length

tape-length (-- a)

Address of the file length in tape-header.

663

See also: last-tape-length.

Source file: <src/lib/tape.fs>.

tape-start

tape-start (-- a)

Address of the file start in tape-header.

See also: last-tape-start.

Source file: <src/lib/tape.fs>.

terminal

terminal (--)

Select the terminal as output.

See also: printer, printing, page.

Source file: <src/kernel.z80s>.

terminal>source

terminal>source (--) "terminal-to-source"

Set the terminal as the current source.

Definition:

: terminal>source (--)
 blk off (source-id off tib #tib @ set-source ;

See also: set-source, blk, tib, #tib, (source-id, block>source.

Source file: <src/kernel.z80s>.

text

text ("ccc<eol>" --)

Part of specforth-editor: Parse the text string until end of line and store it into pad as a counted
string, blank-filling the remainder of pad to c/l characters.

664

See also: parse-all.

Source file: <src/lib/prog.editor.specforth.fs>.

then

then
 Compilation: (C: orig --)
 Run-time: (--)

Resolve the forward reference orig, usually left by if or while.

then is an immediate and compile-only alias of >resolve.

Definition:

' >resolve alias then immediate compile-only
 \ Compilation: (C: orig --)
 \ Run-time: (--)

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: else, ahead.

Source file: <src/kernel.z80s>.

thens

thens
 Compilation: (C: cs-mark orig#1 ... orig#n --)
 Run-time: (--)

Compilation: Resolve all forward references orig#1 … orig#n with then until cs-mark is found.

Run-time: Continue execution.

thens is an immediate and compile-only word.

thens is a factor of endcase and other control structures, but it’s also the end of the cond … thens
structure. See cond for an usage example.

See also: cs-test, andif, orif.

Source file: <src/lib/flow.MISC.fs>.

665

there

there (a --)

Set a as the address of the data-space pointer. A non-standard counterpart of here.

Source file: <src/lib/compilation.fs>.

thiscase

thiscase (x -- x x)

Part of a thiscase structure.

Usage example:

: say0 (--) ." nul" ;
: say1 (--) ." unu" ;
: say2 (--) ." du" ;
: say-other (--) ." alia" ;

: test (x --)
 thiscase 0 = ifcase say0 exitcase
 thiscase 1 = ifcase say1 exitcase
 thiscase 2 = ifcase say2 exitcase
 othercase say-other ;

See also: ifcase, exitcase, othercase, case.

Source file: <src/lib/flow.thiscase.fs>.

throw

throw (k*x n -- k*x | i*x n)

If n is zero, drop it and continue. Otherwise, pop the topmost exception frame from the exception
stack, along with everything on the return stack above that frame. Then restore the input source
specification in use before the corresponding catch and adjust the depths of all stacks so that they
are the same as the depths saved in the exception frame (i is the same number as the i in the input
arguments to the corresponding catch), put n on top of the data stack, and transfer control to a
point just after the catch that pushed that exception frame.

If the top of the stack is non-zero and there is no exception frame on the exception stack, i.e. the
content of catcher is zero, error is executed with n on top of the stack.

Definition:

666

: throw (k*x n -- k*x | i*x n)
 ?dup 0exit
 catcher @ ?dup 0= \ no catcher?
 if error then \ ``error`` does not return
 rp! \ restore previous return stack
 r> catcher ! (n) \ restore previous catcher
 r> swap >r (saved-SP) (R: n)
 sp! drop r> (n) \ restore stack
 unnest-source ; \ restore previous source specification

Origin: Forth-94 (EXCEPTION), Forth-2012 (EXCEPTION).

Source file: <src/kernel.z80s>.

thru

thru (block1 block2 --)

Load consecutively the blocks from block1 through block2.

Origin: Forth-79 (Reference Word Set), Forth-83 (Controlled Reference Words), Forth-94 (BLOCK
EXT), Forth-2012 (BLOCK EXT).

See also: load, +thru.

Source file: <src/lib/blocks.fs>.

thru-index-need

thru-index-need ("name" --)

If word name is found in the current search order, do nothing. Otherwise search the index word list
for it. If found, execute it, causing its associated block be loaded. If not found, throw an exception #-
277 ("needed, but not indexed").

thru-index-need is an alternative action of the deferred word need (see defer).

Source file: <src/lib/blocks.indexer.thru.fs>.

thru-index-needed

thru-index-needed (ca len --)

If word ca len is found in the current search order, do nothing. Otherwise search the index word list
for it. If found, execute it, causing its associated block be loaded. If not found, throw an exception #-
277 ("needed, but not indexed").

667

thru-index-needed is an alternative action of the deferred word needed (see defer).

Source file: <src/lib/blocks.indexer.thru.fs>.

thru-index-reneed

thru-index-reneed ("name" --)

Search the index word list for word "name". If found, execute it, causing its associated block be
loaded. If not found, throw an exception #-277 ("needed, but not indexed").

thru-index-reneed is an alternative action of the deferred word reneed (see defer).

Source file: <src/lib/blocks.indexer.thru.fs>.

thru-index-reneeded

thru-index-reneeded (ca len--)

Search the index word list for word ca len. If found, load the block it’s associated to. If not found,
throw an exception #-277 ("needed, but not indexed").

thru-index-reneeded is an alternative action of the deferred word reneeded (see defer).

Source file: <src/lib/blocks.indexer.thru.fs>.

tib

tib (-- a) "t-i-b"

A constant. a is the address of the terminal input buffer.

Origin: Forth-83 (Required Word Set), Forth-94 (CORE EXT, obsolescent).

See also: /tib, #tib.

Source file: <src/kernel.z80s>.

ticks

ticks (-- n)

Return the current count of clock ticks n, which is updated by the OS.

668

NOTE
ticks returns the low 16 bits of the OS frames counter, which is increased by the OS
interrupts routine every 20th ms. The counter is actually a 24-bit value, which can
be fetched by dticks.

Origin: Comus.

See also: set-ticks, reset-ticks, ticks/second, ticks>seconds, ms>ticks, os-frames, bench{.

Source file: <src/lib/time.fs>.

ticks-pause

ticks-pause (u --)

Stop execution during at least u clock ticks.

See also: ?ticks-pause, basic-pause, seconds, ms, ticks/second.

Source file: <src/lib/time.fs>.

ticks/second

ticks/second (-- n) "ticks-slash-second"

Return the number n of clock ticks per second.

See also: ms/tick, dticks>seconds, dticks>cs, dticks>ms, ticks.

Source file: <src/lib/time.fs>.

ticks>cs

ticks>cs (n1 -- n2) "ticks-to-cs"

Convert clock ticks n1 to centiseconds n2.

See also: dticks>cs, ticks>seconds, ticks>ms, ticks/second.

Source file: <src/lib/time.fs>.

ticks>ms

ticks>ms (n1 -- n2) "ticks-to-ms"

Convert clock ticks n1 to milliseconds n2.

669

See also: ms>ticks, dticks>ms, ticks>seconds, ticks>cs, ticks/second, ticks.

Source file: <src/lib/time.fs>.

ticks>seconds

ticks>seconds (n1 -- n2) "ticks-to-seconds"

Convert clock ticks n1 to seconds n2.

See also: dticks>seconds, ticks>cs, ticks>ms, ticks/second, ticks.

Source file: <src/lib/time.fs>.

till

till ("ccc<eol>" --)

A command of specforth-editor: Delete on the cursor line from the cursor till the end of string ccc.

Source file: <src/lib/prog.editor.specforth.fs>.

time&date

time&date (-- second minute hour day month year) "time-and-date"

Return the current time and date: second, minute, hour, day, month and year.

Origin: Forth-94 (FACILITY EXT), Forth-201 (FACILITY EXT).

See also: get-time, get-date, set-time, set-date, .time&date.

Source file: <src/lib/time.fs>.

timer

timer (u --)

For the time u in ticks display the elapsed time since then, also in ticks.

Origin: Comus.

See also: dtimer, elapsed, ticks>seconds, ticks>cs, ticks>ms.

Source file: <src/lib/time.fs>.

670

times

times (u --)

Repeat the next compiled instruction u times. If u is zero, continue executing the following
instruction.

times is useful to implement complicated math operations, like shifts, multiply, divide and square
root, from appropriate math step instructions. It is also useful in repeating auto-indexing memory
instructions.

This structure is not nestable.

Usage example:

: blink (--) 7 0 ?do i border loop 0 border ;
: blinking (--) 100 times blink ." Done" cr ;

Origin: cmForth’s repeats.

See also: dtimes, executions, for, ?do.

Source file: <src/lib/flow.times.fs>.

tnegate

tnegate (t1 -- t2) "t-negate"

t2 is the negation of t1.

Source file: <src/lib/math.operators.3-cell.fs>.

to

to
 Interpretation: (i*x "name" --)
 Compilation: ("name" --)
 Run-time: (i*x --)

to is an immediate word.

Interpretation:

Parse name, which is a word created by cvalue, value or 2value, and make i*x its value.

Compilation:

671

Parse name, which is a word created by cvalue, value or 2value, and append the execution execution
semantics given below to the current definition.

Run-time:

Make i*x the value of name.

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: !>, c!>, 2!>, toval, ctoval, 2toval.

Source file: <src/lib/data.value.fs>.

toarg

toarg (--) "to-arg"

Set the store action for the next local variable created by arguments.

Loading toarg makes @ the default action of arguments locals, which is hold in arg-default-action.

See also: +toarg.

Source file: <src/lib/locals.arguments.fs>.

toggle-capslock

toggle-capslock (--)

Toggle capslock.

See also: set-capslock, unset-capslock, capslock?, capslock, ctoggle.

Source file: <src/lib/keyboard.caps_lock.fs>.

toggle-pixel

toggle-pixel (gx gy --)

Toggle a pixel without changing its attribute on the screen or the current graphic coordinates. gx is
0..255; gy is 0..191.

See also: set-pixel, reset-pixel, toggle-pixel176, set-pixel176, reset-pixel176, plot, plot176.

Source file: <src/lib/graphics.pixels.fs>.

672

toggle-pixel176

toggle-pixel176 (gx gy --) "toggle-pixel-176"

Toggle a pixel without changing its attribute on the screen or the current graphic coordinates, and
using only the top 176 pixel rows of the screen (the lower 16 pixel rows are not used). gx is 0..255;
gy is 0..175.

See also: toggle-pixel, set-pixel, reset-pixel, set-pixel176, reset-pixel176, plot, plot176.

Source file: <src/lib/graphics.pixels.fs>.

top

top (--)

Position the editing cursor at the top of the block, by setting r# to zero.

top is used by specforth-editor and gforth-editor.

Source file: <src/lib/prog.editor.COMMON.fs>.

toval

toval (--) "to-val"

Change the default behaviour of words created by val: make them store a new value instead of
returning its actual one.

toval and val are a non-parsing alternative to the standard to and value.

See also: ctoval, 2toval.

Source file: <src/lib/data.val.fs>.

tr-dos

tr-dos (--) "t-r-dos"

An alias of noop that is defined only in the TR-DOS version of Solo Forth. Its goal is to check the DOS
a program is running on, using defined or [defined].

tr-dos is an immediate word.

See also: dos, g+dos, +3dos.

673

Source file: <src/kernel.z80s>.

trail

trail (-- nt)

Leave the nt of the topmost word in the first word list of the search order.

See also: set-order, context.

Source file: <src/lib/word_lists.fs>.

transfer-block

transfer-block (u --)

Transfer block u to or from disk. The read or write mode must be previously set by write-mode or
read-mode.

Definition:

: transfer-block (u --)
 >drive-block
 sectors/block * block-sector#>dos buffer-data sectors/block
 transfer-sectors throw ;

See also: transfer-sectors.

Source file: <src/kernel.trdos.z80s>.

transfer-sectors

transfer-sectors (x a b -- ior)

The sector-level disk read-write linkage. Transfer b sectors from memory address a to disk sector x
or the other way around. The read or write mode must be previously set by write-mode or read-mode.

The high byte of x is the track (0..79 for side 0; 80..159 for side 1); its low byte is the sector (0..15).

See also: block-sector#>dos, transfer-block.

Source file: <src/kernel.trdos.z80s>.

transient

674

transient (u1 u2 --)

Start transient code, reserving u1 bytes of headers space for it, which will be allocated at the top of
the far memory, and u2 bytes of data space for it, which will be allocated at the top of the main
memory. Therefore the memory used by the transient code must be known in advance.

The inner operation is: Save the current values of dp, np current-latest, last-wordlist, limit and
farlimit; then reserve data and headers space as said and update limit and farlimit accordingly.

transient must be used before compiling the transient code.

Usage example:

2025 1700 transient

need assembler

end-transient

\ ...use assembler here...

forget-transient

The values of limit and farlimit must be preserved between transient and end-transient, because
forget-transient restores them to their previous state, before transient.

Source file: <src/lib/modules.transient.fs>.

translate-char

translate-char (c1 -- c1 | c2)

Translate character c1 using the current keyboard decoding table, pointed by key-translation-
table.

Source file: <src/kernel.z80s>.

trim

trim (ca1 len1 -- ca2 len2)

Remove leading and trailing spaces from a string ca len1, returning the result string ca2 len2.

See also: -leading, -trailing.

Source file: <src/lib/strings.MISC.fs>.

675

true

true (-- true)

Return a true flag, a single-cell value with all its bits set (equivalent to -1).

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: false.

Source file: <src/kernel.z80s>.

tstp,

tstp, (regp --) "t-s-t-p-comma"

Compile the Z80 assembler instructions required to test the register pair regp for zero. Register "A" is
modified.

Example: b tstp, compiles the Z80 instructions LD A,B and OR C.

See also: ldp,, subp,, cp#,, cp,, or,, ld,.

Source file: <src/lib/assembler.fs>.

ttester

ttester (--)

Do nothing. ttester is used just for doing need ttester, loading t{, ->, }t and other words, which are
used by hayes-test and forth2012-test-suite..

Usage example:

T{ 1 2 3 swap -> 1 3 2 }T ok
T{ 1 2 3 swap -> 1 2 2 }T
Incorrect result:
T{ 1 2 3 swap -> 1 2 2 }T ok
T{ 1 2 3 swap -> 1 2 }T
Wrong number of results:
T{ 1 2 3 swap -> 1 2 }T ok

See also: hayes-tester.

Source file: <src/lib/meta.tester.ttester.fs>.

676

tuck

tuck (x1 x2 -- x2 x1 x2)

Copy the first (top) stack item below the second stack item.

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: dup, over, nip, nup.

Source file: <src/kernel.z80s>.

turnkey

turnkey (xt -- a len)

Prepare the system in order to save a copy of its current state. Return its start address a and length
len, to be used as parameters for saving the system to disk. The saved copy will execute xt after the
ordinary boot process.

Usage example:

' my-game turnkey s" my-game" >tape-file

WARNING This word is experimental. See the source code for details.

WARNING

Since name fields are kept in a memory bank, the best way to save a modified
Forth system is creating a snapshot with a ZX Spectrum emulator, or with the
equivalent feature provided by certain interfaces or modern ZX Spectrum
clones. turnkey and its related words are meant to save a Forth program that
does not need to search the dictionary or use data already stored in paged
memory.

See also: boot, extend, system-zone, cold.

Source file: <src/lib/tool.turnkey.fs>.

type

type (ca len --)

If len is greater than zero, display the character string ca len.

: type (ca len — ) bounds ?do i c@ emit loop ;

677

See also: type-udg.

Source file: <src/kernel.z80s>.

type-ascii

type-ascii (ca len --)

If len is greater than zero, display the string ca len, using emit-ascii to make sure the characters are
graphic ASCII characters.

See also: type, fartype-ascii.

Source file: <src/lib/display.type.fs>.

type-center-field

type-center-field (ca1 len1 len2 --)

If len1 is greater than zero, display the character string ca1 len1 at the center of a field of len2
characters.

See also: type-center-field-fit, type-center-field-crop, drop-type, type-left-field, type-right-
field, gigatype-title.

Source file: <src/lib/display.type.fs>.

type-center-field-crop

type-center-field-crop (ca1 len1 len2 --)

If len1 is greater than zero, display the character string ca1 len1 at the center of a field of len2
characters, which is shorter than the string.

See also: type-center-field-fit, type-center-field.

Source file: <src/lib/display.type.fs>.

type-center-field-fit

type-center-field-fit (ca1 len1 len2 --)

If len1 is greater than zero, display the character string ca1 len1 at the center of a field of len2
characters, which is longer than the string.

See also: type-center-field-crop, type-center-field.

678

Source file: <src/lib/display.type.fs>.

type-left-field

type-left-field (ca1 len1 len2 --)

If len1 is greater than zero, display the character string ca1 len1 at the left of a field of len2
characters.

See also: padding-spaces, type-right-field, type-center-field.

Source file: <src/lib/display.type.fs>.

type-right-field

type-right-field (ca1 len1 len2 --)

If len1 is greater than zero, display the character string ca1 len1 at the right of a field of len2
characters.

See also: type-right-field-fit, type-right-field-crop, drop-type, type-left-field, type-center-
field.

Source file: <src/lib/display.type.fs>.

type-right-field-crop

type-right-field-crop (ca1 len1 len2 --)

Type string ca1 len1 at the right of a field of len2 characters, which is shorter than the string.

See also: type-right-field, type-right-field-fit.

Source file: <src/lib/display.type.fs>.

type-right-field-fit

type-right-field-fit (ca1 len1 len2 --)

Type string ca1 len1 at the right of a field of len2 characters, which is longer than the string.

See also: type-right-field, type-right-field-crop.

Source file: <src/lib/display.type.fs>.

679

type-udg

type-udg (ca len --) "type-u-d-g"

If len is greater than zero, display the UDG character string ca len. All characters of the string are
printed with emit-udg.

See also: type.

Source file: <src/lib/graphics.udg.fs>.

t{

t{ (--)

Part of ttester: Start a test.

See also: ->, }t.

Source file: <src/lib/meta.tester.ttester.fs>.

u

u%

u% (u1 u2 -- u3) "u-per-cent"

u1 is percentage u3 of u2.

See also: %, um*, um/mod.

Source file: <src/lib/math.operators.1-cell.fs>.

u.

u. (u --) "u-dot"

Display u in free field format.

Definition:

: u. (u --) s>d ud. ;

Origin: Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE), Forth-2012

680

(CORE).

See also: u.r, ud., ..

Source file: <src/kernel.z80s>.

u.r

u.r (u n --) "u-dot-r"

Display u right aligned in a field n characters wide. If the number of characters required to display
u is greater than n, all digits are displayed with no leading spaces in a field as wide as necessary.

Origin: Forth-79 (Reference Word Set)[11], Forth-83 (Controlled Reference Word Set)[12], Forth-94
(CORE EXT), Forth-2012 (CORE EXT).

See also: ud.r, .r, u..

Source file: <src/lib/display.numbers.fs>.

u.s

u.s (--)

Display, using u., the values currently on the data stack.

See also: .s, depth, .depth.

Source file: <src/lib/tool.list.stack.fs>.

u<

u< (u1 u2 -- f) "u-less-than"

f is true if and only if u1 is less than u2.

Origin: Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE), Forth-2012
(CORE).

See also: <, u>, 0< ,umin.

Source file: <src/kernel.z80s>.

u<=

u<= (u1 u2 -- f) "u-less-or-equal"

681

f is true if and only if u1 is less than or equal to u2.

See also: u>=, <=, 0<=.

Source file: <src/lib/math.operators.1-cell.fs>.

u>

u> (u1 u2 -- f) "u-greater-than"

f is true if and only if u1 is greater than u2.

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: >, u<, 0>, umax.

Source file: <src/kernel.z80s>.

u>=

u>= (u1 u2 -- f) "u-greater-or-equal"

f is true if and only if u1 is greater than or equal to u2.

See also: u<=, >=, 0>=.

Source file: <src/lib/math.operators.1-cell.fs>.

u>str

u>str (u -- ca len) "u-to-s-t-r"

Convert u to string ca len.

See also: n>str, ud>str, d>str, char>string.

Source file: <src/lib/strings.MISC.fs>.

u>ud

u>ud (u -- ud)

Extend a single unsigned number u to form a double unsigned number ud. u>ud is just an alias of 0.

See also: s>d.

682

Source file: <src/lib/math.operators.1-cell.fs>.

uallot

uallot (n --) "u-allot"

If n is greater than zero, reserve n bytes of user data space. If n is less than zero, release n bytes of
user data space. If n is zero, leave the user data-space pointer unchanged. An exception is thrown if
the user-data pointer is out of bounds after the operation.

See also: udp, ucreate, ?user, user, 2user.

Source file: <src/lib/data.user.fs>.

ucreate

ucreate ("name" --) "u-create"

Parse name. Create a header _name which points to the first available offset within the user area.
When name is later executed, its absolute user area storage address is placed on the stack. No user
space is allocated.

See also: uallot, user, 2user, ?user.

Source file: <src/lib/data.user.fs>.

ud*

ud* (ud1 ud2 -- ud3) "u-d-star" "u-d-star"

Multiply ud1 by ud2 giving the product ud3.

See also: d*, um*, m*, *.

Source file: <src/lib/math.operators.2-cell.fs>.

ud.

ud. (ud --) "u-d-dot"

Display an usigned double number ud.

See also: ud.r, d., u..

Source file: <src/lib/display.numbers.fs>.

683

ud.r

ud.r (ud n --) "u-d-dot-r"

Display ud right aligned in a field n characters wide. If the number of characters required to display
ud is greater than n, all digits are displayed with no leading spaces in a field as wide as necessary.

See also: u.r, d., ud..

Source file: <src/lib/display.numbers.fs>.

ud/mod

ud/mod (ud1 u2 -- u3 ud4) "u-d-slash-mod"

An unsigned mixed magnitude math operation which leaves a double quotient ud4 and remainder
u3, from a double dividend ud1 and single divisor u2.

Definition:

: ud/mod (ud1 u1 -- urem udquot)
 >r 0 r@ um/mod -rot r> um/mod rot ;

Origin: fig-Forth’s m/mod, Gforth, Z88 CamelForth.

Source file: <src/kernel.z80s>.

ud>str

ud>str (ud -- ca len) "u-d-to-s-t-r"

Convert ud to string ca len.

See also: u>str, d>str, char>string.

Source file: <src/lib/strings.MISC.fs>.

udg!

udg! (b0..b7 c --) "u-d-g-store"

Store the 8-byte bitmap b0..b7 into UDG c (0..255) of the UDG font pointed by os-udg. b0 is the first
(top) scan. b7 is the last (bottom) scan.

See also: udg:, udg>.

684

Source file: <src/lib/graphics.udg.fs>.

udg-at-xy-display

udg-at-xy-display (col row c --) "u-d-g-at-x-y-display"

Display UDG c (0..255) at cursor coordinates col row. udg-at-xy-display is much faster than a
combination of at-xy and emit-udg, because no ROM routine is used, the cursor coordinates are not
updated and the screen attributtes are not changed (only the character bitmap is displayed).

See also: at-xy-display-udg.

Source file: <src/lib/graphics.udg.fs>.

udg-blank

udg-blank (-- ca) "u-d-g-blank"

A cvariable. ca is the address of a byte containing the character used by udg-group, udg-block, ,udg-
block and others as a grid blank. By default it’s '.'.

See also: udg-dot, udg-scan>binary.

Source file: <src/lib/graphics.udg.fs>.

udg-block

udg-block (width height c "name..." --) "u-d-g-block"

Parse a UDG block, and store it from UDG character c (0..255). width and height are in characters.
The maximum width is 7 (imposed by the size of Forth source blocks). height has no maximum, as
the UDG block can ocuppy more than one Forth block (provided the Forth block has no index line,
i.e. load-program is used to load the source).

The scans can be formed by binary digits, by the characters hold in udg-blank and udg-dot, or any
combination of both notations.

Usage example:

685

0 cconstant mass-udg
2 cconstant mass-height
5 cconstant mass-width

mass-width mass-height mass-udg udg-block

..XXXX....XXXX....XXXX....XXXX....XXXX..

.XXXXXX..XXXXXX..XXXXXX..XXXXXX..X.XXXX.
XXXXXXXXXXXXXXXXXXXXXXXXX.XXXXXXX.XXXXXX
XXXXXXXXXXXXXXXXX.XXXXXXX.XXXXXXXXXXXXXX
XXXXXXXXX.XXXXXXX.XXXXXXXXXXXXXXXXXXXXXX
XX..XXXXXX.XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
.XXXXXX..XXXXXX..XXXXXX..XXXXXX..XXXXXX.
..XXXX....XXXX....XXXX....XXXX....XXXX..
..XXXX....XXXX....XXXX....XXXX....XXXX..
.XXXXXX..XXXXXX..XXXXXX..XXXXXX..X.XXXX.
XXXXXXXXXXXXXXXXXXXXXXXXX.XXXXXXX.XXXXXX
XXXXXXXXXXXXXXXXX.XXXXXXX.XXXXXXXXXXXXXX
XXXXXXXXX.XXXXXXX.XXXXXXXXXXXXXXXXXXXXXX
XX..XXXXXX.XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
.XXXXXX..XXXXXX..XXXXXX..XXXXXX..XXXXXX.
..XXXX....XXXX....XXXX....XXXX....XXXX..

: .mass (--)
 mass-height 0 ?do
 mass-width 0 ?do
 i j mass-width * + mass-udg + emit-udg
 loop cr
 loop ;

cr .mass

See also: ,udg-block, csprite, udg-group.

Source file: <src/lib/graphics.udg.fs>.

udg-dot

udg-dot (-- ca) "u-d-g-dot"

A cvariable. ca is the address of a byte containing the character used by udg-group, udg-block ,udg-
block and others as a grid blank. By default it’s 'X'.

See also: udg-blank, udg-scan>binary.

Source file: <src/lib/graphics.udg.fs>.

686

udg-group

udg-group (width height c --) "u-d-g-group"

Parse a group of UDG definitions organized in width columns and height rows, and store them
starting from UDG character c (0..255). The maximum width is 7 (imposed by the size of Forth
source blocks). height has no maximum, as the UDG block can ocuppy more than one Forth block
(provided the Forth block has no index line, i.e. load-program is used to load the source).

The UDG scans can be formed by binary digits, by the characters hold in udg-blank and udg-dot, or
any combination of both notations. The UDG scans must be separated with at least one space.

Usage example:

5 1 140 udg-group

..XXXX.. ..XXXX.. ..XXXX.. ..XXXX.. ..XXXX..

.XXXXXX. .XXXXXX. .XXXXXX. .XXXXXX. .X.XXXX.
XXXXXXXX XXXXXXXX XXXXXXXX X.XXXXXX X.XXXXXX
XXXXXXXX XXXXXXXX X.XXXXXX X.XXXXXX XXXXXXXX
XXXXXXXX X.XXXXXX X.XXXXXX XXXXXXXX XXXXXXXX
XX..XXXX XX.XXXXX XXXXXXXX XXXXXXXX XXXXXXXX
.XXXXXX. .XXXXXX. .XXXXXX. .XXXXXX. .XXXXXX.
..XXXX.. ..XXXX.. ..XXXX.. ..XXXX.. ..XXXX..

See also: udg-block.

Source file: <src/lib/graphics.udg.fs>.

udg-ocr

udg-ocr (n --) "u-d-g-o-c-r"

Set ocr to work with the first n chars of the current UDG set, pointed by os-udg.

See also: ocr-font, ocr-first, ocr-chars, ascii-ocr, set-udg.

Source file: <src/lib/graphics.ocr.fs>.

udg-scan>binary

udg-scan>binary (ca len --) "u-d-g-scan-to-binary"

Convert the characters udg-blank and udg-dot found in UDG scan string ca len to '0' and '1'
respectively.

687

See also: udg-scan>number?. udg-group, udg-block, ,udg-block.

Source file: <src/lib/graphics.udg.fs>.

udg-scan>number

udg-scan>number (ca len -- n) "u-d-g-scan-to-number"

If UDG scan string ca len, after being processed by udg-scan>binary, is a valid binary number, return
the result n. Otherwise throw exception #-290 (invalid UDG scan).

See also: udg-scan>number?, udg-dot, udg-blank.

Source file: <src/lib/graphics.udg.fs>.

udg-scan>number?

udg-scan>number? (ca len -- n true | false) "u-d-g-scan-to-number-question"

Is UDG scan string ca len a valid binary number? If so, return n and true; else return false. The
string is processed by udg-scan>binary first.

See also: udg-scan>number, udg-dot, udg-blank.

Source file: <src/lib/graphics.udg.fs>.

udg-width

udg-width (-- b) "u-d-g-width"

b is the width of a UDG (User Defined Graphic), in pixels.

See also: /udg, udg!.

Source file: <src/lib/graphics.udg.fs>.

udg:

udg: (b0..b7 c "name" --) "u-d-g-colon"

Create a cconstant name for UDG char c (0..255) and store the 8-byte bitmap b0..b7 into that UDG
char. b0 is the first (top) scan. b7 is the last (bottom) scan.

See also: udg!, udg>.

Source file: <src/lib/graphics.udg.fs>.

688

udg>

udg> (c -- a) "u-d-g-to"

Convert UDG number n (0..255) to the address a of its bitmap, pointed by os-udg.

See also: udg!, udg:, /udg*, get-udg.

Source file: <src/lib/graphics.udg.fs>.

udp

udp (-- a) "u-d-p"

A user variable. a is the address of a cell containing an offset from the start of the current user area
to the free space in it.

Source file: <src/kernel.z80s>.

um*

um* (u1 u2 -- ud) "u-m-star"

Multiply u1 by u2, giving the unsigned double-cell product ud. All values and arithmetic are
unsigned.

Origin: Forth-94 (CORE), Forth-2012 (CORE).

See also: m*, *, d*.

Source file: <src/kernel.z80s>.

um/mod

um/mod (ud u1 -- u2 u3) "u-m-slash-mod"

Divide ud by u1, giving the quotient u3 and the remainder u2. All values and arithmetic are
unsigned.

Origin: Forth-94 (CORE), Forth-2012 (CORE).

See also: /mod, du/mod, mod, */mod.

Source file: <src/kernel.z80s>.

689

umax

umax (u1 u2 -- u1 | u2) "u-max"

u3 is the greater of u1 and u2.

See also: umin, max, dmax, u>.

Source file: <src/kernel.z80s>.

umin

umin (u1 u2 -- u1 | u2) "u-min"

u3 is the lesser of u1 and u2.

See also: umax, min, dmin, u<.

Source file: <src/kernel.z80s>.

unbright-mask

unbright-mask (-- b)

A cconstant. b is the inverted bitmask of the bit used to indicate the bright status in an attribute
byte.

See also: bright-mask, brighty, set-bright, attr!. unflash-mask, unpaper-mask, unink-mask.

Source file: <src/lib/display.attributes.fs>.

uncolored-circle-pixel

uncolored-circle-pixel (-- a)

a is the address of a subroutine that circle can use to draw its pixels. This routine sets a pixel
without changing its color attributes on the screen (like set-pixel). Therefore it’s faster than its
alternative colored-circle-pixel (0.6 its execution speed).

set-circle-pixel sets the routine used by circle. See the requirements of such routine in the
documentation of circle-pixel.

Source file: <src/lib/graphics.circle.fs>.

690

undefined?

undefined? (ca len -- f) "undefined-question"

Find name ca len. If the definition is not found after searching the active search order, return true,
else return false.

Definition:

: undefined? (ca len -- f) find-name 0= ;

See also: defined?, defined, find-name.

Source file: <src/kernel.z80s>.

undelete-fda

undelete-fda (--) "undelete-f-d-a"

Restore the first character of fda-filename with the character hold in the TR-DOS variable $5D08,
which holds the first filename character of the latest deleted file.

undelete-fda is a factor of undelete-file.

Source file: <src/lib/dos.trdos.fs>.

undelete-file

undelete-file (ca len -- ior)

Undelete the disk file named in the string ca len, returning the I/O result code ior.

TR-DOS deletes a file replacing its first character with byte 1. undelete-file replaces the first
character in ca len with byte 1, then searches the disk for such filename and restores its first
character using the first character removed from the latest deleted file, which TR-DOS keeps in its
variable $5D08.

Therefore, the procedure has some issues:

1. If ca len is not the latest deleted file, the first character of its filename will not be the original
one.

2. If more than one file has been deleted, with only the first character of their filenames being
different in all of them, undelete-file will find the oldest one.

3. TR-DOS does not reuse the space occupied by a deleted file, until the disk is defragmented

691

See also: delete-file.

Source file: <src/lib/dos.trdos.fs>.

under+

under+ (n1|u1 x n2|u2 -- n3|u3 x) "under-plus"

Add n2|u2 to n1|u1, giving the sum n3|u3.

under+ is written in Z80. Its definition in Forth is the following:

: under+ (n1|u1 x n2|u2 -- n3|u3 x) rot + swap ;

Origin: Comus.

See also: +under ,+.

Source file: <src/lib/math.operators.1-cell.fs>.

undo

undo (`name`--)

Parse name, which is the name of a word created by doer, and make it do nothing.

See also: make, ;and.

Source file: <src/lib/flow.doer.fs>.

unescape

unescape (ca1 len1 ca2 -- ca2 len2)

Replace each "%" character in the input string ca1 len1 by two "%" characters. The output is
represented by ca2 len2. The buffer at ca2 shall be big enough to hold the unescaped string.

If you pass a string through unescape and then substitute, you get the original string.

Origin: Forth-2012 (STRING EXT).

See also: replaces.

Source file: <src/lib/strings.MISC.fs>.

692

unflash-mask

unflash-mask (-- b)

A cconstant. b is the inverted bitmask of the bit used to indicate the flash status in an attribute byte.

See also: flash-mask, flashy, set-flash, attr!, unbright-mask, unpaper-mask, unink-mask.

Source file: <src/lib/display.attributes.fs>.

unink-mask

unink-mask (-- b)

A cconstant. b is the inverted bitmask of the bits used to indicate the ink in an attribute byte.

See also: ink-mask, set-ink, attr!, unpaper-mask, unbright-mask, unflash-mask.

Source file: <src/lib/display.attributes.fs>.

unlink-internal

unlink-internal (nt xtp --)

Unlink all words defined between the latest pair internal and end-internal, linking the first word
after end-internal to the word before internal, thus making all the internal words skipped by the
dictionary searches.

Usage example:

internal

: hello (--) ." hello" ;

end-internal

: salute (--) hello ;

unlink-internal

salute \ ok!
hello \ error!

At least one word must be defined between end-internal and unlink-internal.

The alternative word hide-internal can be used instead of unlink-internal in order to keep the

693

internal words searchable.

Source file: <src/lib/modules.internal.fs>.

unlocated

unlocated (block --)

A deferred word (see defer) called in the loop of located, when the word searched for is not located
in block. Its default action is drop, which is changed by use-fly-index in order to index the blocks on
the fly.

Source file: <src/lib/002.need.fs>.

unloop

unloop (--) (R: loop-sys --)

Discard the loop control parameters loop-sys for the current nesting level. An unloop is required for
each nesting level before the definition may be exited with exit.

Origin: Forth-94 (CORE), Forth-2012 (CORE).

See also: leave, do, ?do, +loop.

Source file: <src/kernel.z80s>.

unmarker

unmarker (a --)

Restore the system to the state before the correspondig marker was created. The data that describes
the state of the system was stored at a by marker,. The restoration process is the following:

First set the data-space pointer to a (there), then restore the data stored at a: the name-space
pointer (np!), the latest definition pointers (last and lastxt), the word lists pointer (last-wordlist),
the current compilation word list (set-current), the search order (@order) and the word lists
(@wordlists).

unmarker is a factor of marker.

Source file: <src/lib/tool.marker.fs>.

unneeding

694

unneeding ("name" -- f)

Parse name. If there’s no unresolved need, needed, reneed or reneeded, return false. Otherwise, if
name is the needed word specified by the last execution of need or needed, return false, else return
true.

See also: needing.

Source file: <src/lib/002.need.fs>.

unnest

unnest (R: nest-sys --)

Discard the calling definition specified by nest-sys. Before exiting the current definition, a program
shall remove any parameters the calling definition had placed on the return stack.

unnest is an alias of rdrop.

Origin: DX-Forth.

See also: rp, exit, next.

Source file: <src/kernel.z80s>.

unnest-source

unnest-source (R: source-sys --)

Restore the source specification described by source-sys, which was left by nest-source.

unnest-source is a compile-only word.

Definition:

: unnest-source (R: source-sys --)
 r>
 r> #tib !
 r> blk !
 r> >in !
 r> (source-id !
 2r> input-buffer 2!
 >r ; compile-only

See also: #tib, blk, >in, (source-id, input-buffer.

695

Source file: <src/kernel.z80s>.

unpaper-mask

unpaper-mask (-- b)

A cconstant. b is the inverted bitmask of the bits used to indicate the paper in an attribute byte.

See also: paper-mask, papery, set-paper, attr!, unink-mask, unbright-mask, unflash-mask.

Source file: <src/lib/display.attributes.fs>.

unpick

unpick (x#u...x#1 x#0 x u -- x...x#1 x#0)

Remove x and u. Replace x#u with x. 0 unpick is equivalent to nip (but much slower).

See also: pick.

Origin: LaForth’s put.

Source file: <src/lib/data_stack.fs>.

unresolved

unresolved (n -- a)

Convert element n of the cell array pointed by unresolved> to its address a. unresolved> is used to
store unresolved addresses during the compilation of code words, as a simpler alternative to the
Z80 assembler labels created by l:.

Usage examples (extracted from ocr):

---- 0 d stp, >amark 0 unresolved ! \ modify the code to get the screen address later \ (…) 0 d ldp#, \
restore the screen address >amark 0 unresolved @ !

here jr, >rmark 2 unresolved ! \ (…) 2 unresolved @ >rresolve ----

Source file: <src/lib/assembler.fs>.

unresolved0>

unresolved0> (-- a) "unresolved-zero-greater-than"

Address a is the default value of unresolved>: an 8-cell array.

696

Source file: <src/lib/assembler.fs>.

unresolved>

unresolved> (-- a) "unresolved-greater-than"

A variable. Address a contains the address of a cell array accessed by unresolved. Its default value is
unresolved0>, which is an 8-cell array.

The cell array pointed by unresolved> is used to store unresolved addresses during the compilation
of code words. This method is a simpler alternative to the Z80 assembler labels created by l:.

See unresolved for a usage example.

Source file: <src/lib/assembler.fs>.

unset-capslock

unset-capslock (--)

Unset capslock.

See also: set-capslock, capslock?, toggle-capslock, capslock, creset.

Source file: <src/lib/keyboard.caps_lock.fs>.

until

until
 Compilation: (C: dest --)
 Run-time: (f --)

Compilation: Compile a conditional 0branch to the backward reference dest, usually left by begin.

Run-time: If f is zero, continue execution at the location specified by dest.

until is an immediate and compile-only word.

Definition:

: until \ Compilation: (C: dest --)
 \ Run-time: (f --)
 compile 0branch <resolve ; immediate compile-only

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

697

See also: while, again, repeat, <resolve, compile, 0until, -until, +until.

Source file: <src/kernel.z80s>.

unused

unused (-- u)

u is the amount of space remaining in the region addressed by here, in bytes. This region includes
the transient spaces addressed by pad and hold.

Definition:

: unused (-- u) limit @ here - ;

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: limit, here, farunused, os-unused, fyi, greeting.

Source file: <src/kernel.z80s>.

unused-stringer

unused-stringer (-- n)

Return the number n of free characters in the stringer.

unused-stringer is written in Z80. Its equivalent definition if Forth is the following:

: unused-stringer (-- n) +stringer @ ;

See also: +stringer.

Source file: <src/kernel.z80s>.

up

up (-- a) "u-p"

A variable. a is the address of a cell containing the user area pointer.

Origin: fig-Forth.

See also: /user, user.

698

Source file: <src/kernel.z80s>.

up0

up0 (-- a) "u-p-zero"

A constant. a is the default address of the user area.

Source file: <src/kernel.z80s>.

update

update (--)

Mark the current block buffer as modified. The block will subsequently be transferred
automatically to disk should its buffer be required for storage of a different block, or upon
execution of flush or save-buffers.

Origin: Forth-83 (Required Word Set), Forth-94 (BLOCK), Forth-2012 (BLOCK).

Source file: <src/lib/blocks.fs>.

updated?

updated? (-- f) "updated-question"

f is true if the current disk buffer is marked as modified.

Definition:

: updated? (-- f) buffer-id 0< ;

See also: update, empty-buffers, buffer-id.

Source file: <src/kernel.z80s>.

upper

upper (c -- c')

Convert c to uppercase c'.

See also: uppers, lower, upper_.

Source file: <src/lib/strings.MISC.fs>.

699

upper_

upper_ (-- a) "upper-underscore"

Return address a of a routine that converts the ASCII character in the A register to uppercase.

See also: upper, lower_.

Source file: <src/lib/strings.MISC.fs>.

uppers

uppers (ca len --)

Convert string ca len to uppercase.

See also: uppers1, lowers, upper.

Source file: <src/lib/strings.MISC.fs>.

uppers1

uppers1 (ca len --) "uppers-one"

Change the first char of string ca len to uppercase.

See also: uppers, upper.

Source file: <src/lib/strings.MISC.fs>.

use-default-located

use-default-located (--)

Set the default actions of located and unlocated: Search the blocks.

use-default-located is a common factor of use-no-index and use-thru-index.

Source file: <src/lib/002.need.fs>.

use-default-need

use-default-need (--)

Set the default actions of need, needed, reneed, and reneeded: Use locate to search the blocks.

700

use-default-need is a common factor of use-no-index and use-fly-index.

Source file: <src/lib/002.need.fs>.

use-fly-index

use-fly-index (--)

Set the alternative action of need, needed, reneed, reneeded, located and unlocated in order to use the
blocks index and index the searched blocks on the fly.

The default action of all said words can be restored by use-no-index.

See also: use-thru-index.

Source file: <src/lib/blocks.indexer.fly.fs>.

use-no-index

use-no-index (--)

Set the default action of need, needed, reneed, reneeded and unlocated: Use locate to search the blocks.

The alternative actions are set by use-thru-index and use-fly-index.

See also: use-default-need, use-default-located.

Source file: <src/lib/002.need.fs>.

use-thru-index

use-thru-index (--)

Change the action of need, needed, reneed, reneeded, located and unlocated in order to use the blocks
index created by make-thru-index.

The default action of all said words can be restored by use-no-index.

See also: use-fly-index.

Source file: <src/lib/blocks.indexer.thru.fs>.

user

user (n "name" --)

701

Parse name. Create a user variable name in the first available offset within the user area. When
name is later executed, its absolute user area storage address is placed on the stack.

See also: 2user, ucreate, uallot, ?user.

Source file: <src/lib/data.user.fs>.

ut*

ut* (ud u -- t) "u-t-star"

t is the signed product of ud times u.

Source file: <src/lib/math.operators.3-cell.fs>.

ut/

ut/ (ut n -- d) "u-t-slash"

Divide a triple unsigned number ut by a single number n giving the double number result d.

Source file: <src/lib/math.operators.3-cell.fs>.

v

val

val (x "name" --)

Create a definition for name that will place x on the stack (unless toval is used first) and then will
execute init-val.

val is an alternative to the standard value.

See also: cval, 2val, variable, constant.

Source file: <src/lib/data.val.fs>.

value

value (x "name" --)

Create a definition name with initial value x. When name is later executed, x will be placed on the
stack. to can be used to assign a new value to name.

702

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: cvalue, 2value, constant, variable, val.

Source file: <src/lib/data.value.fs>.

var

var (m v size "name" -- m v')

Define a variable with size bytes.

Source file: <src/lib/objects.mini-oof.fs>.

variable

variable ("name" --)

Parse name. create a definition for name, which is referred to as a "variable". allot one cell of data
space, the data field of name, to hold the contents of the variable. When name is later executed, the
address of its data field is placed on the stack.

The program is responsible for initializing the contents of the variable.

Definition:

: variable ("name" --) create cell allot ;

Origin: Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE), Forth-2012
(CORE).

See also: cvariable, 2variable, constant.

Source file: <src/kernel.z80s>.

version

version (-- ca)

ca is the address of a 9-byte data table containing the Solo Forth version, as follows:

+0 major (one byte)

+1 minor (one byte)

703

+2 patch (one byte)

+3 pre-release identifier (one byte): 'd' for "dev", 'p' for "pre", 'r' for "rc", zero if none

+4 pre-release (one cell)

+6 build (double-cell number)

See also: .version.

Source file: <src/kernel.z80s>.

vertical-curtain

vertical-curtain (b --)

Wash the screen with the given color attribute b from the left and right columns to the middle.

See also: horizontal-curtain.

Source file: <src/lib/graphics.cls.fs>.

view

view ("name" --)

List the block where name is defined, i.e. the first block where name is in the index line
(surrounded by spaces). If name cannot be found, throw an exception #-286 ("not located").

See also: locate, list.

Source file: <src/lib/tool.list.blocks.fs>.

vocabulary

vocabulary ("name" --)

Create a vocabulary name. A vocabulary is a named word list. Subsequent execution of name
replaces the first entry in the search order with the word list associated to name. When name
becomes the compilation word list new definitions will be appended to name's word list.

Origin: Forth-83 (Required Word Set).

See also: wordlist, definitions, wordlist-of, set-current.

Source file: <src/lib/word_lists.fs>.

704

w

warm

warm (--)

Do a "warm" restart of the Forth system: Make the terminal the current output device, restore the
previous display mode (in case warm is automatically executed after reentering from BASIC), clear
the screen and abort.

Definition:

: warm (--) display restore-mode page abort ;

See also: cold, restore-mode, page.

Source file: <src/kernel.z80s>.

warn

warn (ca len -- ca len)

Check if ca len already exists in the compilation word list. If so, and if the content of warnings is not
zero, do a configurable action, usually issue a warning message.

warn is a deferred word (see defer) which is called by header, and whose default action is noop.
Alternative actions are provided by message-warn, error-code-warn and error-warn.

Source file: <src/kernel.z80s>.

warning"

warning"
 Compilation: ("ccc<quote>" --)
 Execution: (f --)
"warning-quote"

Compilation:

Parse and compile ccc delimited by a double quote.

Execution:

If f is not zero, display the compiled message ccc; else do nothing.

705

Source file: <src/lib/exception.fs>.

warnings

warnings (-- a)

A user variable. a is the address of a cell containing a flag. If it’s zero, no warning is shown when a
compiled word is not unique in the compilation word list. Its default value is true.

Source file: <src/lib/compilation.fs>.

wat-xy

wat-xy (col row --) "w-at-x-y"

Store col row as the current-window cursor coordinates and set the cursor coordinates accordingly.
The upper left corner of the window is column zero, row zero.

See also: at-wxy, at-xy.

Source file: <src/lib/display.window.fs>.

wave-display

wave-display (--)

Modify the screen bitmap with a water effect. At the end the original image is restored.

See also: invert-display, fade-display.

Source file: <src/lib/graphics.display.fs>.

wblank

wblank (--) "w-blank"

Fill the current-window by displaying as many blanks (character bl) as needed, starting from the top
left corner of the window. Finally, reset the cursor position of the window at the upper left corner
(column 0, row 0).

wblank is a slower but lighter alternative to wcls.

See also: wstamp, whome, wspace.

Source file: <src/lib/display.window.fs>.

706

wcls

wcls (--) "w-c-l-s-"

Clear the current-window with the current attribute and reset its cursor position at the upper left
corner (column 0, row 0).

See also: attr-wcls, wblank, attr@, whome, clear-rectangle, cls.

Source file: <src/lib/display.window.fs>.

wcolor

wcolor (b --) "w-color"

Color the current-window with color attribute b.

See also: attr-wcls, color-rectangle.

Source file: <src/lib/display.window.fs>.

wcolumns

wcolumns (-- ca) "w-columns"

ca is the address of a byte containing the width in characters of the current-window.

See also: wx, wy, wx0, wy0, wrows.

Source file: <src/lib/display.window.fs>.

wcr

wcr (--) "w-c-r"

Cause subsequent output to the current-window appear at the beginning of the next line.

WARNING
When the end of the window is reached, the cursor is set to the top left corner
with whome. In a future version of the code, the window will be scrolled.

See also: ?wcr, wcr.

Source file: <src/lib/display.window.fs>.

707

wdump

wdump (a len --) "w-dump"

Show the contents of len cells from a.

Source file: <src/lib/tool.dump.fs>.

wemit

wemit (c --) "w-emit"

Display character c in the current-window.

See also: wtype, wspace, emit.

Source file: <src/lib/display.window.fs>.

wfreecolumns

wfreecolumns (-- n) "w-free-columns"

n is the number of free columns in the current line of the current-window.

See also: wcolumns.

Source file: <src/lib/display.window.fs>.

where

where (--)

Display information about the last error: block number, line number and a picture of where it
occurred. If the error was in the command line, nothing is displayed.

Origin: Forth-79 (Reference Word Set).

See also: error-pos, error.

Source file: <src/lib/tool.debug.where.fs>.

while

708

while
 Compilation: (C: dest -- orig dest)
 Run-time: (f --)

Compilation: Put the location of a new unresolved forward reference orig onto the control-flow
stack, under the existing dest. Usually orig and dest are resolved by repeat.

Run-time: If f is zero, continue execution at the location specified by the resolution of orig.

while is an immediate and compile-only word.

Definition:

: while \ Compilation: (C: dest -- orig dest)
 \ Run-time: (f --)
 postpone if cs-swap ; immediate compile-only

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: if, until, cs-swap, postpone, 0while, -while, +while.

Source file: <src/kernel.z80s>.

white

white (-- b)

A cconstant that returns 7, the value that represents the white color.

See also: black, blue, red, magenta, green, cyan, yellow, contrast, papery, inversely.

Source file: <src/lib/display.attributes.fs>.

white-noise

white-noise (--)

White noise for ZX Spectrum 48. u is the duration in number of sample bytes.

Source file: <src/lib/sound.48.fs>.

whome

whome (--) "w-home"

709

Set the current-window cursor coordinates to its top left corner: column zero, row zero.

See also: wat-xy.

Source file: <src/lib/display.window.fs>.

width

width (-- a)

A user variable. a is the address of a cell containing the maximum number of letters saved in the
compilation of a definition name. It must be 1 thru 31, with a default value of 31. The name
character count and its natural characters are saved, up to the value in width. The value may be
changed at any time within the above limits.

Origin: fig-Forth.

Source file: <src/kernel.z80s>.

window

window (col row columns rows -- a)

Create a window definition with top left corner at col row, with a width columns and a height rows
(both in characters). The internal cursor position of the window in set to its top left corner. a is the
address of the window data structure, which is /window bytes long and has the following structure:

Table 41. Data structure created by window:

Byte offset Description

+0 x cursor coordinate

+1 y cursor coordinate

+2 window left x coordinate on screen

+3 window top y coordinate on screen

+4 width in columns

+5 heigth in rows

Windows do not use standard output words like emit and type. Instead, they use specific words
named with the "w" prefix: wemit, wtype, wcls, etc.

NOTE
At the moment there’s no word to display numbers in a window. Therefore
numbers must be converted to strings first and displayed with wemit.

710

WARNING
At the moment windows are not aware of display modes that dont’t use 32
characters per line (e.g. mode-64ao, mode-42pw). If windows are used when such
mode is active, the layout of the output will be wrong.

See also: current-window, wx, wy, wx0, wy0, wcolumns, wrows.

Source file: <src/lib/display.window.fs>.

wipe-rectangle

wipe-rectangle (column row width height --)

Clear a screen rectangle at the given character coordinates and of the given size in characters. Only
the bitmap is cleared. The color attributes remain unchanged.

See also: clear-rectangle, color-rectangle, wcls.

Source file: <src/lib/graphics.rectangle.fs>.

within

within (n1|u1 n2|u2 n3|u3 -- f)

Perform a comparison of a test value n1|u1 with a lower limit n2|u2 and an upper limit n3|u3,
returning true if either (n2|u2 < n3|u3 and (n2|u2 ⇐ n1|u1 and n1|u1 < n3|u3)) or (n2|u2 > n3|u3
and (n2|u2 ⇐ n1|u1 or n1|u1 < n3|u3)) is true, returning false otherwise.

Origin: Forth-94 (CORE EXT), Forth-2012 (CORE EXT).

See also: between, polarity.

Source file: <src/lib/math.operators.1-cell.fs>.

within-of

within-of
 Compilation: (C: -- of-sys)
 Run-time: (x1 x2 x3 -- | x1)

A variant of of.

Compilation:

Put of-sys onto the control flow stack. Append the run-time semantics given below to the current
definition. The semantics are incomplete until resolved by a consumer of of-sys, such as endof.

Run-time:

711

If x1 is not in range x2 x3, as calculated by within, discard x2 x3 and continue execution at the
location specified by the consumer of of-sys, e.g., following the next endof. Otherwise, consume also
x1 and continue execution in line.

within-of is an immediate and compile-only word.

Usage example:

: test (x --)
 case
 1 of ." one" endof
 2 5 within-of ." within two and five; not five" endof
 5 of ." five" endof
 endcase ;

See also: case, between-of, (within-of.

Source file: <src/lib/flow.case.fs>.

wltype

wltype (ca len --) "w-l-type"

Display string ca len in the current-window, left justified.

See also: wtype, wemit, ltype.

Source file: <src/lib/display.window.fs>.

word

word (c "<chars>ccc<char>" -- ca)

Skip leading c character delimiters from the input stream. Parse the next text characters from the
input stream, until a delimiter c is found, storing the packed character string beginning at ca (which
is the current address returned by here), as a counted string (the character count in the first byte),
and with one blank at the end (not included in the count).

This word is obsolescent. Its function is superseeded by parse and parse-name.

NOTE

The requirement to follow the string with a space is obsolescent and was included
in Forth-94 as a concession to existing programs that use convert (superseded by
>number). A program shall not depend on the existence of the space. The
requirement to follow the string with a space was removed from Forth-2012.

Origin: Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE), Forth-2012
(CORE).

712

Source file: <src/lib/parsing.fs>.

word-length-mask

word-length-mask (-- b)

A cconstant. b is the bitmask of the word length.

See also: smudge-mask, immediate-mask, compile-only-mask.

Source file: <src/kernel.z80s>.

wordlist

wordlist (-- wid)

Create a new word list and return its identifier wid, which is the address of the following data
structure (/wordlist bytes long):

Table 42. Data structure created by wordlist.

Cell Description

0 nt of the latest definition in the word list

1 wid of the previous word list, or zero

2 nt of the word-list name, or zero

Definition:

: wordlist (-- wid) here wordlist, ;

See also: wordlist,, set-order, vocabulary, last-wordlist, wordlist>last, wordlist>link,
wordlist>name, /wordlist, wordlists, dump-wordlists.

Source file: <src/kernel.z80s>.

wordlist,

wordlist, (--) "wordlist-comma"

Compile in data space the contents of a new word list.

Definition:

713

: wordlist, (--)
 here 0 , last-wordlist @ , last-wordlist ! 0 , ;

See also: wordlist, last-wordlist, wordlist>last, wordlist>link, wordlist>name, /wordlist.

Source file: <src/kernel.z80s>.

wordlist-name!

wordlist-name! (nt wid --) "wordlist-name-store"

Store nt as the name associated to the word list identified by wid. nt is stored into the name field of
the word-list metadata.

See also: wordlist, wordlist-name@, wordlist>name.

Source file: <src/lib/word_lists.fs>.

wordlist-name@

wordlist-name@ (wid -- nt|0) "wordlist-name-fetch"

Fetch from the word-list identifier wid its associated name nt, or zero if the word list has no
associated name.

See also: wordlist, wordlist-name!, wordlist>name.

Source file: <src/lib/word_lists.fs>.

wordlist-of

wordlist-of ("name" -- wid)

Return the word-list identifier wid associated to vocabulary name.

Origin: eForth’s widof.

See also: wordlist, vocabulary.

Source file: <src/lib/word_lists.fs>.

wordlist-words

wordlist-words (wid --)

714

List the definition names in word list wid.

See also: words, wordlists.

Source file: <src/lib/tool.list.words.fs>.

wordlist>last

wordlist>last (wid -- a) "wordlist-to-last"

Return the field address a of wordlist identifier wid, which holds the name token of the latest word
defined in wid.

As a is the first field of a word-list structure, wordlist>last is provided only for legibility. It is an
immediate alias of noop.

See also: wordlist>name, wordlist>link, /wordlist, last, latest.

Source file: <src/lib/word_lists.fs>.

wordlist>link

wordlist>link (wid -- a) "wordlist-to-link"

Return the link field address a of the wordlist identifier wid, which holds the word-list identifier of
the previous word list defined in the system.

See also: wordlist>name, wordlist>last, /wordlist.

Source file: <src/lib/word_lists.fs>.

wordlist>name

wordlist>name (wid -- a) "wordlist-to-name"

Return the address a which holds the nt of the wordlist identifier wid (or zero if the word list has no
associated name).

See also: wordlist>link, wordlist>last, /wordlist.

Source file: <src/lib/word_lists.fs>.

wordlist>vocabulary

wordlist>vocabulary (wid "name" --) "wordlist-to-vocabulary"

715

Create a vocabulary name for the word list identified by wid.

See also: wordlist, vocabulary, latest>wordlist, wordlists.

Source file: <src/lib/word_lists.fs>.

wordlists

wordlists (--)

List all wordlists defined in the system, either by name (if they have an associated name) or by
number (its word list identifier, if they have no associated name). The word lists are listed in
reverse chronological order: The first word list listed is the most recently defined.

See also: .wordlist, words, wordlist-words, wordlist, last-wordlist.

Source file: <src/lib/tool.list.word_lists.fs>.

wordlists,

wordlists, (--) "wordlists-comma"

Store all of the current word lists in the data space, updating dp.

wordlists, is a factor of marker,.

See also: @wordlists, order,, wordlist.

Source file: <src/lib/tool.marker.fs>.

words

words (--)

List the definition names in the first word list of the search order.

Origin: Forth-83 (Uncontrolled Reference Words), Forth-94 (TOOLS), Forth-2012 (TOOLS).

See also: wordlist-words, wordlists.

Source file: <src/lib/tool.list.words.fs>.

words#

words# (-- n) "words-number-sign"

716

Return number n of words defined in the first word list of the search order.

Source file: <src/lib/tool.list.words.fs>.

words-like

words-like ("name" --)

List the definition names, from the first word list of the search order, that contain substring
"name".

Source file: <src/lib/tool.list.words.fs>.

write-block

write-block (n --)

Write the buffer to disk block n.

Definition:

: write-block (n --) write-mode transfer-block ;

See also: write-mode, transfer-block, read-block, block.

Source file: <src/kernel.z80s>.

write-file-descriptor

write-file-descriptor (n -- ior)

Write file descriptor from fda to disk directory entry n.

See also: write-file-descriptor.

Source file: <src/lib/dos.trdos.fs>.

write-mode

write-mode (--)

Set the write mode for transfer-sectors and transfer-block.

See also: read-mode.

717

Source file: <src/kernel.trdos.z80s>.

wrows

wrows (-- ca) "w-rows"

ca is the address of a byte containing the heigth in rows of the current-window.

See also: wx, wy, wx0, wy0, wcolumns.

Source file: <src/lib/display.window.fs>.

wspace

wspace (--) "w-space"

Display one space in the current-window.

See also: space.

Source file: <src/lib/display.window.fs>.

wstamp

wstamp (c --) "w-stamp"

Fill the current-window by displaying as many characters c as needed, starting from the top left
corner. The cursor position of the window is not changed.

See also: wblank, wcls, wemit.

Source file: <src/lib/display.window.fs>.

wtype

wtype (ca len --) "w-type"

Display string ca len in the current-window.

See also: wltype, wemit, ltype.

Source file: <src/lib/display.window.fs>.

wtype+

718

wtype+ (ca len --) "w-type-plus"

Display string ca len in the current-window and update the window coordinates accordingly.

Source file: <src/lib/display.window.fs>.

wtyped

wtyped (-- a) "w-typed"

A variable. a is the address o a cell containing a flag indicating if a space-delimited substring was
found and displayed in the current-window. Otherwise, the string must be broken in order to fit the
current line of the window.

wtyped is used by wtype+ and wltype.

Source file: <src/lib/display.window.fs>.

wx

wx (-- ca) "w-x"

ca is the address of a byte containing the x cursor coordinate of the current-window.

See also: wy, wx0, wy0, wcolumns, wrows.

Source file: <src/lib/display.window.fs>.

wx+!

wx+! (n --) "w-x-plus-store"

Add n character positions to the column cursor coordinate of the current window. wx+! is a factor of
wtype+.

Source file: <src/lib/display.window.fs>.

wx0

wx0 (-- ca) "w-x-zero"

ca is the address of a byte containing the left x coordinate on screen of the current-window.

See also: wx, wy, wy0, wcolumns, wrows.

719

Source file: <src/lib/display.window.fs>.

wy

wy (-- ca) "w-y"

ca is the address of a byte containing the y cursor coordinate of the current-window.

See also: wx, wx0, wy0, wcolumns, wrows.

Source file: <src/lib/display.window.fs>.

wy0

wy0 (-- ca) "w-y-zero"

ca is the address of a byte containing the top y coordinate on screen of the current-window.

See also: wx, wy, wx0, wcolumns, wrows.

Source file: <src/lib/display.window.fs>.

x

x

x ("ccc<eol>" --)

A command of specforth-editor: Find and delete the next occurrence of the string ccc.

See also: b, c, d, e, f, h, i, l, m, n, p, r, s, t, text, find, delete.

Source file: <src/lib/prog.editor.specforth.fs>.

x1

x1 (-- a) "x-one"

A 2variable used by adraw176 and aline176.

See also: y1, incx, incy.

Source file: <src/lib/graphics.lines.fs>.

720

x>

x> (-- x) (X: x --) "x-from"

Move x from the current xstack to the data stack.

See also: x>, x@.

Source file: <src/lib/data.xstack.fs>.

x>gx

x>gx (col -- gx) "x-to-g-x"

Convert cursor coordinate col (0..31) to graphic coordinate gx (0..255).

x>gx is an alias of 8*.

See also: xy>gxy, xy>gxy176.

Source file: <src/lib/display.cursor.fs>.

x>gx

x>gx (col -- gx) "x-to-g-x"

Convert cursor column col to graphic x coordinate gx.

See also: y>gy, gx>x.

Source file: <src/lib/graphics.pixels.fs>.

x@

x@ (-- x) (X: x -- x) "x-fetch"

Copy x from the current xstack to the data stack.

See also: x>, >x.

Source file: <src/lib/data.xstack.fs>.

xclear

xclear (--) "x-clear"

721

Clear the current xstack.

See also: xdrop, 2xdrop, xp0, xp.

Source file: <src/lib/data.xstack.fs>.

xdepth

xdepth (-- n) "x-depth"

n is the number of single-cells values contained in the current xstack.

See also: .xs, xlen.

Source file: <src/lib/data.xstack.fs>.

xdrop

xdrop (X: x --) "x-drop"

Remove x from the xstack.

See also: >x, x>.

Source file: <src/lib/data.xstack.fs>.

xdup

xdup (X: x -- x x) "x-dup"

Duplicate x in the current xstack.

See also: 2xdup.

Source file: <src/lib/data.xstack.fs>.

xfree

xfree (--) "x-free"

Free the space used by the current xstack, which was created by allocate-xstack.

Source file: <src/lib/data.xstack.fs>.

722

xkey

xkey (-- c) "x-key"

Show a cursor, wait for the next terminal key struck; if it’s the caps lock key, toggle caps and keep
waiting; else leave the character code c of the key struck.

See also: key, -keys.

Source file: <src/kernel.z80s>.

xlen

xlen (-- n) "x-len"

n is the length of the current xstack, in bytes.

See also: xdepth.

Source file: <src/lib/data.xstack.fs>.

xliteral

xliteral (x --) "x-literal"

If x is a byte, execute cliteral, else execute literal.

xliteral is used in interpret-table to compile the single-cell literals. It is useful as an alternative to
literal, in order to optimize the code when x is unknown.

xliteral is an immediate and compile-only word.

Definition:

: xliteral (x --)
 dup byte? if postpone cliteral exit
 then postpone literal ; immediate compile-only

See also: 2literal,]xl, byte?.

Source file: <src/kernel.z80s>.

xor

xor (x1 x2 -- x3) "x-or"

723

x3 is the bit-by-bit exclusive-or of x1 with x2.

Origin: fig-Forth, Forth-79 (Required Word Set), Forth-83 (Required Word Set), Forth-94 (CORE),
Forth-2012 (CORE).

See also: or, and, negate, 0=, dxor.

Source file: <src/kernel.z80s>.

xor#,

xor#, (b --) "x-or-number-sign-comma"

Compile the Z80 assembler instruction XOR b.

See also: or#,, and#,, add#,, sub#,.

Source file: <src/lib/assembler.fs>.

xor,

xor, (reg --) "x-or-comma"

Compile the Z80 assembler instruction XOR reg.

See also: and,, or,.

Source file: <src/lib/assembler.fs>.

xorx,

xorx, (disp regpi --) "x-or-x-comma"

Compile the Z80 assembler instruction XOR (regpi+disp).

See also: xorx,, orx,, cpx,.

Source file: <src/lib/assembler.fs>.

xover

xover (X: x1 x2 -- x1 x2 x1) "x-over"

Place a copy of x1 on top of the xstack.

Source file: <src/lib/data.xstack.fs>.

724

xp

xp (-- a) "x-p"

A variable. Address a holds the address of the current xstack pointer.

Source file: <src/lib/data.xstack.fs>.

xp0

xp0 (-- a) "x-p-zero"

Initial address of the current xstack pointer.

Source file: <src/lib/data.xstack.fs>.

xpick

xpick (u -- x#u) (X: x#u...x#0 -- x#u...x#0) "x-pick"

Remove u. Copy x#u from the current xstack to the data stack.

Source file: <src/lib/data.xstack.fs>.

xsize

xsize (-- n) "x-size"

Size of the current xstack in bytes.

Source file: <src/lib/data.xstack.fs>.

xstack

xstack (a --) "x-stack"

Make the extra stack a the current one. a is the address returned by allot-xstack or allocate-xstack
when the extra stack was created.

Extra stacks grow towards high memory. a is the address of a table that contains the metadata of
the xstack, which is the following:

725

+0 = initial value of the stack pointer (1 cell below the
 stack space)
+2 = stack pointer
+4 = maximum size in bytes

xp0, xp and xsize are used to access the contents of the table.

See also: estack.

Source file: <src/lib/data.xstack.fs>.

xt-replaces

xt-replaces (xt ca len --) "x-t-replaces"

Set xt (whose execution returns the address and length of a string) as the text to substitute for the
substitution named by ca len. If the substitution does not exist it is created.

The name of a substitution should not contain the "%" delimiter character.

See also: replaces, substitute, unescape, substitute-wordlist.

Source file: <src/lib/strings.xt-replaces.fs>.

xt-substitution

xt-substitution (ca len -- a) "x-t-substitution"

Given a string ca len create its substitution and storage space. Return the address that will hold the
execution token of the substitution.

See also: xt-replaces.

Source file: <src/lib/strings.xt-replaces.fs>.

xy

xy (-- col row) "x-y"

Return the current column and row of the text cursor.

xy is a deferred word (see defer) whose default action is mode-32-xy.

See also: at-xy.

Source file: <src/kernel.z80s>.

726

xy>attr

xy>attr (col row -- b) "x-y-to-attribute-a"

Return the color attribute b of the given cursor coordinates col row.

See also: xy>attra, xy>attra_, xy>gxy.

Source file: <src/lib/display.cursor.fs>.

xy>attra

xy>attra (col row -- a) "x-y-to-attribute-a"

Return the color attribute address a of the given cursor coordinates col row.

See also: xy>attr, xy>attra_, xy>gxy.

Source file: <src/lib/display.cursor.fs>.

xy>attra_

xy>attra_ (-- a) "x-y-to-attribute-a-underscore"

Return the address a of a Z80 routine that calculates the attribute address of a cursor position. This
routine is a modified version of the ROM routine at 0x2583.

Input:

• D = column (0..31) - E = row (0..23)

Output:

• HL = address of the attribute in the screen

See also: xy>attra, xy>attr, xy>gxy.

Source file: <src/lib/display.cursor.fs>.

xy>gxy

xy>gxy (col row -- gx gy) "x-y-to-g-x-y"

Convert cursor coordinates col row to graphic coordinates gx gy. col is 0..31, row is 0..23, gx is 0..255
and gy is 0..191.

727

See also: xy>attra, xy>attr, xy>gxy176, plot, set-pixel.

Source file: <src/lib/display.cursor.fs>.

xy>gxy176

xy>gxy176 (col row -- gx gy) "x-y-to-g-x-y-176"

Convert cursor coordinates col row to graphic coordinates gx gy (as used by Sinclair BASIC, i.e. the
lower 16 pixel rows are not used). col is 0..31, row is 0..23, gx is 0..255 and gy is 0..175.

xy>gxy176 is provided to make it easier to adapt Sinclair BASIC programs.

See also: xy>gxy, plot176, set-pixel176.

Source file: <src/lib/display.cursor.fs>.

xy>r

xy>r (--) (R: -- col row) "x-y-to-r"

Save the current cursor coordinates to the return stack.

See also: r>xy, save-mode.

Source file: <src/lib/display.cursor.fs>.

xy>scra

xy>scra (col row -- a) "x-y-to-s-c-r-a"

Convert cursor coordinates col row to their correspondent screen address a.

See also: xy>scra_ , gxy>scra.

Source file: <src/lib/display.cursor.fs>.

xy>scra_

xy>scra_ (-- a) "x-y-to-s-c-r-a-underscore"

Return address a of a Z80 routine that calculates the screen address correspondent to given cursor
coordinates.

Input registers:

728

• B = y coordinate (0..23)

• C = x coordinate (0..31)

Output registers:

• DE = screen address

See also: xy>scra, gxy>scra_.

Source file: <src/lib/display.cursor.fs>.

y

y

y (--)

A command of gforth-editor: Yank deleted string.

See also: d, dl, l, delete, insert.

Source file: <src/lib/prog.editor.gforth.fs>.

y/n

y/n (-- c) "y-slash-n"

Wait for a valid key press for a "yes/no" question and return its code c, which is "y" or "n".

See also: y/n?.

Source file: <src/lib/keyboard.yes-question.fs>.

y/n?

y/n? (c -- f) "y-slash-n-question"

Is character c, converted to lowercase, a valid answer for a "y/n" question? I.e., is c the current
value of "y" or "n"?

See also: yes?, no?, y/n.

Source file: <src/lib/keyboard.yes-question.fs>.

729

y1

y1 (-- a) "y-one"

A 2variable used by adraw176 and aline176.

See also: x1, incx, incy.

Source file: <src/lib/graphics.lines.fs>.

y>gy

y>gy (row -- gy) "y-to-g-y"

Convert cursor coordinate row (0..23) to graphic coordinate gy (0..191).

See also: xy>gxy, x>gx.

Source file: <src/lib/display.cursor.fs>.

y>gy

y>gy (row -- gy) "y-to-g-y"

Convert cursor coordinate row to graphic coordinate gy.

See also: x>gx, gy>y.

Source file: <src/lib/graphics.pixels.fs>.

yellow

yellow (-- b)

A cconstant that returns 6, the value that represents the yellow color.

See also: black, blue, red, magenta, green, cyan, white, contrast, papery, inversely.

Source file: <src/lib/display.attributes.fs>.

yes?

yes? (-- f) "yes-question"

Wait for a valid key press for a y/n question and return true if it’s the current value of "y", else

730

return false.

See also: no?, y/n?.

Source file: <src/lib/keyboard.yes-question.fs>.

z

z?

z? (-- op) "z-question"

Return the opcode op of the Z80 assembler instruction jp z, to be used as condition and consumed
by ?ret,, ?jp,, ?call,, ?jr,, aif, rif, awhile, rwhile, auntil or runtil.

See also: nz?, c?, nc?, po?, pe?, p?, m?.

Source file: <src/lib/assembler.fs>.

{

{

{ (--)

Part of hayes-tester: Start a Hayes test.

See also: ->, }.

Source file: <src/lib/meta.tester.hayes.fs>.

{do

{do "curly-bracket-do"
 Compilation: (C: -- dest)
 Run-time: (--)

Start a {do control structure.

See also: do}, |do|, do>.

Source file: <src/lib/flow.dijkstra.fs>.

{if

731

{if "curly-bracket-if"
 Compilation: (-- cs-mark)

Start a {if control structure.

See also: if}, if>, |if|.

Source file: <src/lib/flow.dijkstra.fs>.

|

|*

|* (--) "bar-star"

Compile the multiply ROM calculator command.

See also: |/, |**.

Source file: <src/lib/math.calculator.fs>.

|**

|** (--) "bar-star-star"

Compile the to-power ROM calculator command.

See also: |sqrt, |*.

Source file: <src/lib/math.calculator.fs>.

|+

|+ (--) "bar-plus"

Compile the addition ROM calculator command.

See also: |-.

Source file: <src/lib/math.calculator.fs>.

|-

|- (--) "bar-minus"

732

Compile the subtract ROM calculator command.

See also: |+.

Source file: <src/lib/math.calculator.fs>.

|/

|/ (--) "bar-slash"

Compile the division ROM calculator command.

See also: |mod, |*.

Source file: <src/lib/math.calculator.fs>.

|0

|0 (--) "bar-zero"

Compile the ROM calculator command that stacks 0.

See also: |half, |1, |10, |pi2/.

Source file: <src/lib/math.calculator.fs>.

|0<

|0< (--) "bar-zero-less"

Compile the less-0 ROM calculator command.

See also: |0=, |0>, |=, |<>, |>, |<, |<=, |>=.

Source file: <src/lib/math.calculator.fs>.

|0=

|0= (--) "bar-zero-equals"

Compile the not ROM calculator command.

See also: |0<, |0>, |=, |<>, |>, |<, |<=, |>=.

Source file: <src/lib/math.calculator.fs>.

733

|0>

|0> (--) "bar-zero-greater"

Compile the greater-0 ROM calculator command.

See also: |0=, |0<, |=, |<>, |>, |<, |<=, |>=.

Source file: <src/lib/math.calculator.fs>.

|0branch

|0branch (--) "bar-zero-branch"

Compile ROM calculator commands |0= and |?branch to do a jump when the floating-point TOS is
zero.

See also: |branch, |?branch.

Source file: <src/lib/math.calculator.fs>.

|1

|1 (--) "bar-one"

Compile the ROM calculator command that stacks 1.

See also: |0, |half, |10, |pi2/.

Source file: <src/lib/math.calculator.fs>.

|10

|10 (--) "bar-ten"

Compile the ROM calculator command that stacks 10.

See also: |0, |half, |1, |pi2/.

Source file: <src/lib/math.calculator.fs>.

|2dup

|2dup (--) "bar-two-dup"

734

Compile the ROM calculator commands to do 2dup, using |>mem and |mem> (calculator memory
positions 1 and 2 are used).

See also: |drop, |dup, |swap, |over.

Source file: <src/lib/math.calculator.fs>.

|<

|< (--) "bar-less"

Compile the no-less ROM calculator command.

WARNING
This calculator command doesn’t work fine when used from Forth. See its
source file for details.

See also: |0=, |0<, |0>, |=, |<>, |>, |<=, |>=.

Source file: <src/lib/math.calculator.fs>.

|<=

|<= (--) "bar-less-equals"

Compile the no-l-eql ROM calculator command.

WARNING
This calculator command doesn’t work fine when used from Forth. See its
source file for details.

See also: |0=, |0<, |0>, |=, |<>, |>, |<, |>=.

Source file: <src/lib/math.calculator.fs>.

|<>

|<> (--) "bar-not-equals"

Compile the nos-neql ROM calculator command.

WARNING
This calculator command doesn’t work fine when used from Forth. See its
source file for details.

See also: |0=, |0<, |0>, |=, |>, |<, |<=, |>=.

Source file: <src/lib/math.calculator.fs>.

735

|<mark

|<mark (-- dest) "bar-from-mark"

Leave the address dest of the current data-space pointer as the destination of a ROM calculator
backward branch which will later be resolved by |<resolve.

Typically used before either |branch, |?branch or |0branch.

Source file: <src/lib/math.calculator.fs>.

|<resolve

|<resolve (dest --) "bar-from-resolve"

Resolve a ROM calculator backward branch by compiling the displacement from the current
position to address dest, which was left by |<mark.

Source file: <src/lib/math.calculator.fs>.

|=

|= (--) "bar-equals"

Compile the nos-eql ROM calculator command.

WARNING
This calculator command doesn’t work fine when used from Forth. See its
source file for details.

See also: |0=, |0<, |0>, |<>, |>, |<, |<=, |>=.

Source file: <src/lib/math.calculator.fs>.

|>

|> (--) "bar-greater"

Compile the no-grtr ROM calculator command.

WARNING
This calculator command doesn’t work fine when used from Forth. See its
source file for details.

See also: |0=, |0<, |0>, |=, |<>, |<, |<=, |>=.

Source file: <src/lib/math.calculator.fs>.

736

|>=

|>= (--) "bar-greater-equals"

Compile the no-gr-eql ROM calculator command.

WARNING
This calculator command doesn’t work fine when used from Forth. See its
source file for details.

See also: |0=, |0<, |0>, |=, |<>, |>, |<, |<=.

Source file: <src/lib/math.calculator.fs>.

|>mark

|>mark (-- a) "bar-greater-mark"

Compile space for the displacement of a ROM calculator forward branch which will later be
resolved by |>resolve.

Typically used before either |branch, |?branch or |0branch.

Source file: <src/lib/math.calculator.fs>.

|>mem

|>mem (n --) "bar-to-mem"

Compile the st-mem ROM calculator command for memory number n (0..5).

NOTE
st-mem copies the floating-point TOS to the the calculator memory number n, but
does not remove it from the floating-point stack.

Source file: <src/lib/math.calculator.fs>.

|>resolve

|>resolve (orig --) "bar-to-resolve"

Resolve a ROM calculator forward branch by storing the displacement from orig to the current
position into orig, which was left by |>mark.

Source file: <src/lib/math.calculator.fs>.

737

|?branch

|?branch (--) "bar-question-branch"

Compile the jump-true ROM calculator command.

See also: |0branch, |branch.

Source file: <src/lib/math.calculator.fs>.

|abs

|abs (--) "bar-abs"

Compile the abs ROM calculator command.

See also: |sgn, |int, |truncate.

Source file: <src/lib/math.calculator.fs>.

|acos

|acos (--) "bar-a-cos"

Compile the acos ROM calculator command.

See also: |asin, |atan, |cos, |sin, |tan, |pi2/.

Source file: <src/lib/math.calculator.fs>.

|asin

|asin (--) "bar-a-sin"

Compile the asin ROM calculator command.

See also: |acos, |atan, |cos, |sin, |tan, |pi2/.

Source file: <src/lib/math.calculator.fs>.

|atan

|atan (--) "bar-a-tan"

Compile the atan ROM calculator command.

738

See also: |acos, |asin, |cos, |sin, |tan, |pi2/.

Source file: <src/lib/math.calculator.fs>.

|branch

|branch (--) "bar-branch"

Compile the jump ROM calculator command.

See also: |0branch, |?branch.

Source file: <src/lib/math.calculator.fs>.

|cos

|cos (--) "bar-cos"

Compile the cos ROM calculator command.

See also: |acos, |asin, |atan, |sin, |tan, |pi2/.

Source file: <src/lib/math.calculator.fs>.

|do|

|do| "bar-do-bar"
 Compilation: (C: orig dest -- dest)

Part of the {do control structure.

Source file: <src/lib/flow.dijkstra.fs>.

|drop

|drop (--) "bar-drop"

Compile the delete ROM calculator command.

See also: |dup, |swap, |over, |2dup.

Source file: <src/lib/math.calculator.fs>.

|dup

739

|dup (--) "bar-dup"

Compile the duplicate ROM calculator command.

See also: |drop, |swap, |over, |2dup.

Source file: <src/lib/math.calculator.fs>.

|else

|else (orig1 -- orig2) "bar-else"

Compile a ROM calculator unconditional |branch and return the address orig2 of its destination
address, to be resolved by |then; then resolve the forward reference orig1, left by |if.

See also: |>mark, |>resolve.

Source file: <src/lib/math.calculator.fs>.

|exp

|exp (--) "bar-exp"

Compile the exp ROM calculator command.

See also: |ln.

Source file: <src/lib/math.calculator.fs>.

|from-here

|from-here (a -- n) "bar-from-here"

Calculate the displacement n from the current data-space pointer to address a. Used by |>resolve
and |<resolve.

Source file: <src/lib/math.calculator.fs>.

|half

|half (--) "bar-half"

Compile the ROM calculator command that stacks 1/2.

See also: |0, |1, |10, |pi2/.

740

Source file: <src/lib/math.calculator.fs>.

|if

|if (-- orig) "bar-if"

Compile a ROM calculator conditional |0branch and return the address orig of its destination
address, to be resolved by |else or |then.

See also: |>mark.

Source file: <src/lib/math.calculator.fs>.

|if|

|if| "bar-if-bar"
 Compilation: (count -- count)
 (C: orig...orig1 -- orig...orig2)

Part of the {if control structure.

Source file: <src/lib/flow.dijkstra.fs>.

|int

|int (--) "bar-int"

Compile the int ROM calculator command.

See also: |abs, |truncate.

Source file: <src/lib/math.calculator.fs>.

|ln

|ln (--) "bar-l-n"

Compile the ln ROM calculator command.

See also: |exp.

Source file: <src/lib/math.calculator.fs>.

741

|mem>

|mem> (n --) "bar-mem-to"

Compile the get-mem ROM calculator command for memory number n (0..5).

Source file: <src/lib/math.calculator.fs>.

|mod

|mod (--) "bar-mod"

Compile the n-mod-m ROM calculator command.

See also: |/.

Source file: <src/lib/math.calculator.fs>.

|negate

|negate (--) "bar-negate"

Compile the negate ROM calculator command.

See also: |abs, |sgn.

Source file: <src/lib/math.calculator.fs>.

|over

|over (--) "bar-over"

Compile the ROM calculator commands to do over, using |>mem and |mem> (calculator memory
positions 1 and 2 are used).

See also: |drop, |dup, |swap, |2dup.

Source file: <src/lib/math.calculator.fs>.

|pi2/

|pi2/ (--) "bar-pi-two-slash"

Compile the ROM calculator command that stacks pi/2.

742

See also: |0, |half, |1, |10, |acos, |asin, |atan, |sin, |cos, |tan.

Source file: <src/lib/math.calculator.fs>.

|re-stack

|re-stack (r -- r') "bar-re-stack"

Compile the re-stack ROM calculator command.

Source file: <src/lib/math.calculator.fs>.

|sgn

|sgn (--) "bar-s-g-n"

Compile the sgn ROM calculator command.

See also: |abs, |negate.

Source file: <src/lib/math.calculator.fs>.

|sin

|sin (--) "bar-sin"

Compile the sin ROM calculator command.

See also: |acos, |asin, |atan, |cos, |tan, |pi2/.

Source file: <src/lib/math.calculator.fs>.

|sqrt

|sqrt (--) "bar-s-q-r-t"

Compile the sqr ROM calculator command.

See also: |**.

Source file: <src/lib/math.calculator.fs>.

|swap

743

|swap (--) "bar-swap"

Compile the exchange ROM calculator command.

See also: |drop, |dup, |over, |2dup.

Source file: <src/lib/math.calculator.fs>.

|tan

|tan (--) "bar-tan"

Compile the tan ROM calculator command.

See also: |acos, |asin, |atan, |cos, |sin, |pi2/.

Source file: <src/lib/math.calculator.fs>.

|then

|then (orig --) "bar-then"

Resolve the forward reference orig, left by |else or |if, the calculator conditional control-flow
structure.

See also: |>resolve.

Source file: <src/lib/math.calculator.fs>.

|truncate

|truncate (--) "bar-truncate"

Compile the truncate ROM calculator command.

See also: |abs, |int.

Source file: <src/lib/math.calculator.fs>.

}

}

} (a1 n -- a2) "right-curly-bracket"

744

If in range, return address a2 of the n item of the 1-cell array a1. Otherwise throw an exception #-
272 ("array index out of range").

See also: 1array, array>items.

Source file: <src/lib/data.array.noble.fs>.

}

} (i*x --)

Part of hayes-tester: End a Hayes test by comparing stack (expected) contents with saved (actual)
contents.

See also: {, ->.

Source file: <src/lib/meta.tester.hayes.fs>.

}bench

}bench (-- d) "curly-bracket-bench"

Return the current value of the clock ticks.

See also: bench{, dticks, bench., }bench..

Source file: <src/lib/time.fs>.

}bench.

}bench. (--) "curly-bracket-bench-dot"

Stop timing and display the result.

See also: bench{, }bench, bench..

Source file: <src/lib/time.fs>.

}private

}private (--) "curly-bracket-private"

End private definitions. See privatize for a usage example.

Source file: <src/lib/modules.privatize.fs>.

745

}t

}t (i*x --)

Part of ttester: End a test by comparing stack (expected) contents with saved (actual) contents.

See also: t{, ->.

Source file: <src/lib/meta.tester.ttester.fs>.

}}

}} (a1 n1 n2 -- a2) "double-right-curly-bracket"

Return address a2 of the n1,n2 item of the 2-dimension array a1. Data stored row-wise.

See also: 2array.

Source file: <src/lib/data.array.noble.fs>.

~

~~

~~ (--) "tilde-tilde"

Compile the name token, block and line of the current definition, and (~~.

~~ is an immediate and compile-only word.

Origin: Gforth.

See also: (~~, ~~?, ~~y, ~~quit-key, ~~resume-key, ~~info, ~~control ~~before-info, ~~after-info.

Source file: <src/lib/tool.debug.tilde-tilde.fs>.

~~?

~~? (-- a) "tilde-tilde-question"

A variable. a is the address of a cell containing a flag. When the flag is true, the debugging code
compiled by ~~ is executed, else ignored. Its default value is true.

Source file: <src/lib/tool.debug.tilde-tilde.fs>.

746

~~after-info

~~after-info (--) "tilde-tilde-after-info"

Executed at the end of the debugging code compiled by ~~. ~~after-info is a deferred word (see
defer). Its default action is ~~restore-xy, which restores the cursor coordinates.

See also: ~~before-info, ~~restore-xy.

Source file: <src/lib/tool.debug.tilde-tilde.fs>.

~~before-info

~~before-info (--) "tilde-tilde-before-info"

Executed at the start of the debugging code compiled by ~~. ~~before-info is a deferred word (see
defer). Its default action is ~~save-xy, which saves the cursor coordinates.

See also: ~~after-info, ~~save-xy.

Source file: <src/lib/tool.debug.tilde-tilde.fs>.

~~control

~~control (--) "tilde-tilde-control"

Keyboard control used by the debug points compiled by ~~: If the contents of ~~quit-key and
~~resume-key are zero do nothing, else wait for a key press in an endless loop: If the pressed key
equals the contents of ~~quit-key, then execute quit; if the pressed key equals the contents of
~~resume-key, then exit.

See also: ~~control?, ~~press?.

Source file: <src/lib/tool.debug.tilde-tilde.fs>.

~~control?

~~control? (-- f) "tilde-tilde-control-question"

Is there any key to be checked by ~~control?

~~control? is part of the ~~ tool.

Source file: <src/lib/tool.debug.tilde-tilde.fs>.

747

~~info

~~info (--) "tilde-tilde-info"

Show the debugging info compiled by ~~ and the current contents of the data stack. ~~info is a
deferred word (see defer) whose default action is (~~info.

Source file: <src/lib/tool.debug.tilde-tilde.fs>.

~~press?

~~press? (c ca -- f) "tilde-tilde-press-question"

Is the character stored at ca not zero and equal to c? ~~press? is a factor of ~~control used to check
key presses, in the code compiled by ~~.

Source file: <src/lib/tool.debug.tilde-tilde.fs>.

~~quit-key

~~quit-key (-- ca) "tilde-tilde-quit-key"

A cvariable. ca is the address of a character containing the key code used to quit at the debugging
points compiled by ~~. If its value is not zero, ~~control will wait for a key press in order to quit the
debugging. Its default value is the code of 'q'.

See also: ~~resume-key.

Source file: <src/lib/tool.debug.tilde-tilde.fs>.

~~restore-xy

~~restore-xy (--) "tilde-tilde-restore-x-y"

Restore the cursor coordinates. ~~restore-xy is the default action of ~~after-info.

~~restore-xy is part of the ~~ tool.

See also: ~~save-xy, ~~before-info, ~~xy-backup.

Source file: <src/lib/tool.debug.tilde-tilde.fs>.

~~resume-key

748

~~resume-key (-- ca) "tilde-tilde-resume-key"

A cvariable. ca is the address of a character containing the key code used to resume execution at
the debugging points compiled by ~~. If ~~resume-key contains zero, ~~control will not wait for a key.
If ~~resume-key contains $FF, ~~control will wait for any key. Otherwise ~~control will wait for the
key stored at ~~resume-key, whose default value is bl, the code of the space character.

See also: ~~quit-key.

Source file: <src/lib/tool.debug.tilde-tilde.fs>.

~~save-xy

~~save-xy (--) "tilde-tilde-save-x-y"

Save the cursor coordinates. ~~save-xy is the default action of ~~before-info.

~~save-xy is part of the ~~ tool.

See also: ~~restore-xy, ~~after-info, ~~xy-backup.

Source file: <src/lib/tool.debug.tilde-tilde.fs>.

~~xy-backup

~~xy-backup (-- a) "tilde-tilde-x-y-backup"

A 2variable. a is the address of a double cell that holds cursor coordinates saved and restored by
the default actions of ~~before-info and ~~after-info.

~~xy-backup is part of the ~~ tool.

Source file: <src/lib/tool.debug.tilde-tilde.fs>.

~~y

~~y (-- ca) "tilde-tilde-y"

A cvariable. ca is the address of a character containing the row the debugging information
compiled by ~~ will be printed at. Its default value is zero.

Source file: <src/lib/tool.debug.tilde-tilde.fs>.

[7] In Forth-79, if n2 is less than 1, no leading blanks are supplied.

[8] In Forth-83, if the number of characters required to display n1 is greater than n2, an error condition exists, which depends on
the system.

749

[9] In fig-Forth the size of each disk buffer was the size of a disk sector, usually 128 bytes by the time.

[10] In Forth-83, if the number of characters required to display d is greater than n, an error condition exists, which depends on the
system.

[11] In Forth-79, if the number of characters required to display u is greater than n, no leading spaces are given.

[12] In Forth-83, if the number of characters required to display u is greater than n, an error condition exists, which depends on
the system.

750

	Solo Forth: Version 0.14.0-rc.124+20201123 for TR-DOS
	Table of Contents
	Description
	Main features
	Minimum requirements

	Motivation, history and current status
	About this manual
	Platforms
	Comparative of DOS support

	Download
	Project directories
	Disks
	The TRD disk image format

	How to run
	Pentagon 128
	Pentagon 512
	Pentagon 1024
	Scorpion ZS 256
	ZX Spectrum 128/+2 with the Beta 128 interface

	How to use the library
	How to make a library index

	How to load a program that needs the library
	How to search the source files
	How to test and benchmark
	First, set the required block disks
	Second, load the desired code

	How to write Forth programs
	How to rebuild Solo Forth
	Exception codes
	Notation
	Stack notation
	Z80 flags notation

	Z80 instructions
	Legend

	Glossary
	!
	"
	#
	%
	'
	(
)
	*
	+
	,
	-
	.
	/
	0
	1
	2
	3
	4
	8
	:
	;
	<
	=
	>
	?
	@
	[
	\
]
	_
	a
	b
	c
	d
	e
	f
	g
	h
	i
	j
	k
	l
	m
	n
	o
	p
	q
	r
	s
	t
	u
	v
	w
	x
	y
	z
	{
	|
	}
	~

